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Abstract 
This study addresses the Hub Location-Routing Problem (HLRP) in 

transportation networks, considering the inherent uncertainty in travel times 

between nodes. We employed a method centered on data-driven robust 

optimization, utilizing Support Vector Clustering (SVC) to form an uncertainty 

set grounded in empirical data. The proposed methodology is compared against 

traditional uncertainty sets, showcasing its superior performance in providing 

robust solutions. A comprehensive case study on a retail store's transportation 

network in Tehran is presented, demonstrating significant differences in hub 

locations, allocations, and vehicle routes between deterministic and robust 

models. The SVC-based model proves to be particularly effective, yielding 

substantially improved objective function values compared to polyhedral and box 

uncertainty sets. The study concludes by highlighting the practical significance of 

this research and suggesting future directions for advancing transportation 

network optimization under uncertainty. 

Keywords: Robust optimization, hub location, machine learning, data-driven 

approach, support vector clustering 

 

 

1- Introduction 
   The efficient management of transportation networks is of paramount importance in contemporary 

logistics and supply chain management. In the realm of network design and optimization, the Hub Location-

Routing Problem (HLRP) holds a pivotal position, addressing the intricate challenge of determining optimal 

locations for hubs and the corresponding allocation of demand nodes to these hubs. However, the 

conventional HLRP formulations typically assume deterministic travel times between nodes, a 

simplification that might not adequately capture the complexities inherent in real-world transportation 

systems. 

   In practice, transportation networks often operate under conditions of considerable uncertainty. Variations 

in travel times caused by factors such as traffic congestion, weather conditions, and unexpected incidents 

can substantially impact the performance and cost-effectiveness of hub-based logistics solutions. To address 

these uncertainties and enhance the robustness of HLRP solutions, the emerging field of Data-Driven 

Robust Optimization (DDRO) offers a promising avenue for research and application. 
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   This paper delves into the challenging domain of the HLRP, where travel times between nodes are 

inherently uncertain. Our objective is to develop a robust optimization framework that leverages data-driven 

techniques to enhance the resilience and reliability of hub-based logistics operations. By incorporating real-

world data on travel time uncertainties into the optimization process, our approach seeks to yield solutions 

that are not only cost-efficient but also capable of withstanding the vagaries of an uncertain operational 

environment. 

The contributions of this paper can be summarized as follows: 

 We present a comprehensive mathematical model that integrates data-driven insights into the 

traditional HLRP framework, allowing for the representation and management of uncertain travel 

times. 

 We introduce robust optimization techniques to address the inherent uncertainties, ensuring that 

the proposed hub location and routing solutions remain effective under a range of plausible 

scenarios. 

 We demonstrate the practical relevance of our approach through a set of illustrative examples and 

case studies, showcasing its potential to improve decision-making in logistics and supply chain 

management. 

 By advancing the understanding of the HLRP in uncertain environments and offering innovative 

solutions, this work contributes to the theoretical foundations of robust optimization in logistics. 

 Our research provides a valuable decision support tool for practitioners seeking resilient hub-based 

logistics solutions that can adapt to the ever-changing dynamics of transportation networks. 

   The subsequent sections of this paper can be outlined as follows: Section 2 offers a comprehensive review 

of the relevant literature. In Section 3, we establish a clear problem definition and present the mathematical 

formulation. Section 4 delves into the intricacies of data-driven robust optimization. Moving on to Section 

5, a thorough numerical analysis is provided. Section 6 showcases a compelling case study, and lastly, 

Section 7 encapsulates the concluding insights. 

 

2- Literature review 
   The HLRP with uncertain travel times constitutes a variant of the classic hub location problem that 

incorporates uncertainty in travel times between nodes. Klincewicz (1991), Campbell (1994) and Ernst & 

Krishnamoorthy (1999) can be credited as pioneers in the field of classical hub locations. Their seminal 

papers laid the groundwork for subsequent research in this area, shaping the way we understand and analyze 

hub location problems. Their early contributions provided valuable insights and methodologies that 

continue to influence and inform current studies in the field. Interested readers seeking to delve deeper into 

the evolving landscape of hub location problems can find valuable insights in the following review papers: 

S. A. Alumur et al. (2021), S. Alumur & Kara (2008) and Campbell & O’Kelly (2012). These 

comprehensive works offer a nuanced exploration of the historical development, key methodologies, and 

emerging trends within the field, providing an invaluable resource for researchers and practitioners alike. 

One notable variant of hub location problems is HLRPs, which combines the determination of hub locations 

with the optimization of routing decisions. A seminal contribution to this field was made by de Camargo et 

al. (2013), whose work introduced a novel formulation for this pivotal problem. The solution approach 

employed a meticulously crafted Benders decomposition algorithm, showcasing both innovation and 

effectiveness. Another noteworthy contribution in the domain of HLRP are the works by Catanzaro et al. 

(2011) and Rodríguez-Martín et al. (2014), where they introduced branch-and-cut algorithm specifically 

tailored for addressing the HLRP. This algorithm represents a significant advancement in the field, 

providing a powerful tool for efficiently solving complex instances of this intricate problem. The work by 

Lopes et al. (2016) presented innovative heuristics tailored for addressing the many-to-many HLRP. 

Subsequently, Karimi (2018) made a notable advancement by integrating capacitated hub covering location 

considerations into the simultaneous pickup and delivery vehicle routing problem (VRP). This integration 

represents a significant extension of previous research, addressing the added complexity of capacity 

constraints in hub locations while simultaneously managing pickup and delivery operations. Danach et al. 
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(2019) provided a lagrangian relaxation and a hyper-heuristic solution method for this problem. Recently, 

researchers including Ghaffarinasab et al., (2018), Ratli et al. (2022), and Wu et al. (2022) have made 

substantial strides in exploring diverse solution methodologies for the HLRP. Their investigations have 

encompassed a range of approaches, such as large neighborhood decomposition and continuous 

approximation techniques, as well as the development of highly efficient heuristics. These efforts represent 

a concerted endeavor to advance the state-of-the-art in solving this complex problem, offering a spectrum 

of tools and strategies for achieving optimal or near-optimal solutions across various real-world 

applications. 

   In the field of transportation logistics, managing uncertainty is a critical aspect of ensuring efficient and 

reliable operations. Traditional approaches often rely on predefined uncertainty sets and perturbation 

ranges, which may lead to overconservative solutions. Asefi et al. (2019) addressed the challenge of 

Municipal Solid Waste Management in large cities, emphasizing the need for practical decision-making 

tools. They introduced a two-stage stochastic optimization approach to effectively support cost-effective 

ISWM transportation system planning under uncertainty. Jiang et al. (2020) tackled uncertainty in a 

regional logistics network design problem with CO2 emission reduction goals in urban clusters. They 

introduced an improved adjustable robust optimization approach to address uncertainty in demands, 

providing a practical guide for sustainable logistics development. Russell et al. (2020) emphasized the 

growing uncertainties in container port logistics, exacerbated by factors like the COVID-19 pandemic. They 

proposed a concise framework to evaluate port logistics capacity, aiding in navigating uncertain scenarios. 

In recent years, data-driven approaches have emerged as a transformative paradigm in the field of 

optimization, offering novel solutions to address uncertainty and variability in decision-making processes. 

Bertsimas et al. (2018) stands as a pioneer in the realm of data-driven robust optimization, being 

instrumental in its introduction and early development. This groundbreaking work revolutionized the way 

uncertainty is handled in optimization models, paving the way for more resilient and adaptable decision-

making processes in the face of real-world variability and unpredictability. Shang et al. (2017) introduced 

a transformative approach known as data-driven robust optimization, leveraging the principles of kernel 

learning. This pioneering work represents a significant paradigm shift in handling uncertainty within 

optimization models. Shang & You (2019) also put forth a pioneering data-driven robust optimization 

methodology for scenario-based stochastic model predictive control. 

   Numerous researchers have applied data-driven robust optimization across a diverse range of 

applications. Noteworthy implementations include: large-scale industrial energy systems (Shen et al., 

2020), wastewater sludge-to-biodiesel supply chain (Mohseni & Pishvaee, 2020), crude oil blending (Dai 

et al., 2020), optimization of grinding processes (Inapakurthi et al., 2020), supply chain planning (Gumte 

et al., 2021), multi-objective renewable energy location (Lotfi et al., 2022), integrated network design for 

solar photovoltaic to microgrid systems (Gilani et al., 2022), scheduling of power to methanol processes 

(Zheng et al., 2022), and privacy-preserving energy trading management in networked microgrids (Mohseni 

et al., 2023). 

   Recently, Zhang et al. (2022) introduced an innovative machine learning-based data-driven robust 

optimization approach tailored for uncertain environments. This method harnesses the power of machine 

learning to enhance the robustness and adaptability of optimization models, representing a significant 

advancement in the field. In parallel, Goerigk & Kurtz (2023) put forth a cutting-edge data-driven robust 

optimization framework, leveraging deep neural networks to effectively handle uncertainty. This approach 

demonstrates the potential of advanced neural network architectures in bolstering the resilience of 

optimization models to real-world variability and unpredictability.  

   The current state of research in the HLRP with uncertain travel times reveals several noteworthy gaps. 

Existing literature predominantly focuses on deterministic scenarios, with limited attention to uncertainty 

in travel times. Traditional robust optimization approaches with predefined uncertainty sets are prevalent, 

yet there is a significant opportunity to harness available data for more tailored uncertainty characterization. 

Moreover, while Support Vector Clustering (SVC) has demonstrated efficacy in machine learning, its 

application in constructing uncertainty sets for HLRP remains relatively unexplored. Bridging these gaps 
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would lead to a more comprehensive understanding of the impact of uncertain travel times and result in 

more efficient and robust solutions. 

 

3- Problem definition 
   The HLRP under uncertain environment stands as a variant of the classic hub location problem, 

distinguished by its integration of uncertain travel times between nodes. This stochastic element introduces 

a layer of complexity to the optimization process, considering factors such as traffic variations, weather 

conditions, and unforeseen events, which significantly impact the efficiency and cost-effectiveness of 

transportation operations. 

   In this context, we consider a total of 𝑁 nodes, with a subset of 𝑃 nodes designated as hubs and the 

remainder as non-hub locations. Each hub node is associated with a deterministic number of vehicles, 

denoted as 𝑉, each possessing a specific load capacity, denoted as 𝐿. The primary objective is to judiciously 

allocate the non-hub nodes to the selected hubs, establishing an optimal network configuration that 

minimizes transportation costs. This entails determining the optimal hub locations and devising the most 

efficient routes between nodes, while effectively managing the uncertainties inherent in travel times. Each 

vehicle within the fleet is endowed with a specific load capacity and is dispatched to provide services to 

various customers, facilitating the delivery of goods. Every customer is exclusively serviced by a single 

vehicle, and each vehicle is mandated to return to its assigned hub upon the completion of its delivery 

operations. 

   With the integration of uncertain travel times into the HLRP, the conventional metric of minimizing total 

travel time is replaced by a comprehensive objective function. This function seeks to minimize the 

combined path length and associated costs. This comprehensive approach to cost optimization is designed 

to ensure the efficient allocation of resources and the timely delivery of goods, even in the face of 

unpredictable travel conditions. 

 

 

Fig. 1. Graphical representation of the hub location-routing problem 
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3-1- Problem assumptions 
Model assumptions for the HLRP under Uncertain Environment: 

 Uncertain Travel Times: The planning horizon is continuous, allowing for the utilization of 

mathematical techniques to address the uncertainties in travel times. 

 Euclidean Geometry: Distance computations are based on a simplified Euclidean space, providing 

a practical approximation for real-world transportation scenarios. 

 Homogeneous Fleet: The vehicle fleet is composed of identical vehicles in terms of capacity, 

speed, and operational efficiency, simplifying the optimization process. 

 Fixed Customer Demand: Customer demands remain constant throughout the planning horizon, 

eliminating the need to account for demand fluctuations or uncertainties. 

 Static Hub Locations: Hub locations are predetermined and remain fixed throughout the planning 

period, providing a stable foundation for the optimization process. 

 Single Allocations: Each customer node is allocated to a single hub for servicing, streamlining the 

allocation process and ensuring clear responsibility for customer satisfaction. 

 Direct Routes: Vehicles follow direct routes between their respective hubs and allocated nodes, 

disregarding factors like detours or multi-step routes. 

 

3-2- Problem formulation 

Indices: 

𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1,2, … , 𝑁 + 1} Index for nodes 

 

Parameters: 

𝑃 Number of hubs to locate 

𝛼 Discount factor for inter-hub connections, 0 ≤ 𝛼 ≤ 1 

𝑉 Number of available vehicles at each hub 

𝐿 Vehicle capacity 

𝑀 Big number 

𝑐𝑖𝑗 Transportation cost between nodes 𝑖 and 𝑗 

𝑤𝑖𝑗 Flow of products from node 𝑖 to node 𝑗 

𝑡𝑖𝑗 Travel time between nodes 𝑖 and 𝑗 

 

Positive variables: 

𝑎𝑡𝑖 Arrival time of delivery at node 𝑖 
𝑙𝑜𝑎𝑑𝑖 Load of vehicle in delivery of node 𝑖 
𝑦𝑖𝑘𝑙 Flow of products from node 𝑖, routed through hubs 𝑘 and 𝑙 

 

Binary variables: 

𝑥𝑖𝑗 Equal to 1 if node 𝑖 is allocated to node 𝑗, otherwise 0, node 𝑖 is a hub if 𝑥𝑖𝑖 = 1 

𝑧𝑖𝑗𝑘 
Equal to 1 if customer 𝑖 is served before customer 𝑗, which both nodes allocated to 

distribution center 𝑘, otherwise 0 

 

Objective function: 

∑ [∑ 𝑐𝑖𝑘𝑥𝑖𝑘 (∑ 𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑘=1

]

𝑁

𝑖=1

+ 𝛼 ∑ ∑ ∑ 𝑦𝑖𝑘𝑙𝑐𝑘𝑙

𝑁

𝑙=1

𝑁

𝑘=1

𝑁

𝑖=1

+ ∑ [∑ 𝑐𝑘𝑖𝑥𝑖𝑘 (∑ 𝑤𝑗𝑖

𝑁

𝑗=1

)

𝑁

𝑘=1

]

𝑁

𝑖=1

+ ∑ 𝑎𝑡𝑖

𝑁

𝑖=1

 (1) 
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Constraints: 

∑ 𝑥𝑖𝑖

𝑁

𝑖=1

= 𝑃  (2) 

∑ 𝑥𝑖𝑘

𝑁

𝑘=1

= 1 ∀𝑖 = 1,2, … , 𝑁 (3) 

𝑥𝑖𝑘 ≤ 𝑥𝑘𝑘 ∀𝑖, 𝑘 = 1,2, … , 𝑁 (4) 

∑ 𝑦𝑖𝑘𝑙

𝑁

𝑙=1

− ∑ 𝑦𝑖𝑙𝑘

𝑁

𝑙=1

= ∑ 𝑤𝑖𝑗𝑥𝑖𝑘

𝑁

𝑗=1

− ∑ 𝑤𝑖𝑗𝑥𝑗𝑘

𝑁

𝑗=1

 ∀𝑖, 𝑘 = 1,2, … , 𝑁 (5) 

2𝑧𝑖𝑗𝑘 ≤ 𝑥𝑗𝑘 + 𝑥𝑖𝑘 
∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑁, 𝑖 ≠ 𝑗, 𝑖

≠ 𝑘, 𝑗 ≠ 𝑘 
(6) 

∑ 𝑧𝑖𝑗𝑘

𝑁

𝑖=0
𝑖≠𝑗
𝑖≠𝑘

= 𝑥𝑗𝑘 
∀𝑗, 𝑘 = 1,2, … , 𝑁, 𝑗 ≠ 𝑘 (7) 

∑ 𝑧𝑖𝑗𝑘

𝑁+1

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

= 𝑥𝑖𝑘 
∀𝑖, 𝑘 = 1,2, … , 𝑁, 𝑖 ≠ 𝑘 (8) 

∑ 𝑧0,𝑗𝑘

𝑁

𝑗=1
𝑗≠𝑘

≤ 𝑉 ∀𝑘 = 1,2, … , 𝑁 (9) 

∑ 𝑧𝑖,𝑁+1,𝑘

𝑁

𝑖=1
𝑖≠𝑘

≤ 𝑉 ∀𝑘 = 1,2, … , 𝑁 (10) 

𝑎𝑡𝑖 ≥ 𝑡𝑖�̃�𝑧0,𝑖𝑘 ∀𝑖, 𝑘 = 1,2, … , 𝑁 (11) 

𝑎𝑡𝑗 + 𝑀(1 − 𝑧𝑖𝑗𝑘) ≥ 𝑡𝑖�̃� + 𝑎𝑡𝑖 
∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑁, 𝑖 ≠ 𝑗, 𝑖

≠ 𝑘, 𝑗 ≠ 𝑘 
(12) 

𝑙𝑜𝑎𝑑𝑖 ≥ ∑ 𝑤𝑗𝑖

𝑁

𝑗=1

𝑧0,𝑖𝑘 ∀𝑖, 𝑘 = 1,2, … , 𝑁, 𝑖 ≠ 𝑘 (13) 

𝑙𝑜𝑎𝑑𝑗 + 𝑀(1 − 𝑧𝑖𝑗𝑘) ≥ ∑ 𝑤𝑗𝑖

𝑁

𝑗=1

+ 𝑙𝑜𝑎𝑑𝑖 
∀𝑖, 𝑗, 𝑘 = 1,2, … , 𝑁, 𝑖 ≠ 𝑗, 𝑖

≠ 𝑘, 𝑗 ≠ 𝑘 
(14) 

𝑙𝑜𝑎𝑑𝑖 ≤ 𝐿 ∀𝑖 = 1,2, … , 𝑁 (15) 

𝑎𝑡𝑖, 𝑙𝑜𝑎𝑑𝑖 , 𝑦𝑖𝑘𝑙 ≥ 0 
𝑧𝑖𝑗𝑘 , 𝑥𝑖𝑘 ∈ {0,1} 

∀𝑖, 𝑗, 𝑘 = 0,1,2, … , 𝑁 + 1 (16) 

 

   The objective function (1) comprises four components. The first term computes the total transportation 

costs between non-hub and hub nodes. The second term calculates the total transportation costs between 

hub nodes. The third term assesses the total transportation costs between hub nodes and non-hub nodes. 

The fourth term quantifies the total travel time of vehicles. 

   Equation (2) enforces the constraint that only a maximum of 𝑃 hubs can be located. Equation (3) mandates 

that each non-hub node must be allocated to exactly one hub node. Equation (4) states that node allocation 

to hub 𝑘 is contingent on the presence of hub 𝑘. 
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   Equation (5) delineates the threshold for inter-hub product transportation. Equation (6) stipulates those 

vehicles within hub 𝑘 are permitted to serve non-hub nodes i and j exclusively if these non-hub nodes have 

been assigned to hub k. Equations (7) and (8) constitute the standard constraints of a vehicle routing 

problem, ensuring that each vehicle enters and exits the assigned node only once. 

Equations (9) and (10) validate that the commencement and conclusion of vehicle routes within hubs hinge 

on the number of vehicles in those hubs. Equations (11) and (12) compute the arrival times of vehicles at 

nodes. Equations (13) and (14) ascertain the load of vehicles while servicing nodes. 

Equation (15) mandates that the load of vehicles must not exceed their capacity. Finally, equation (16) 

outlines the variable types utilized in the proposed model. 

 

4- Data-driven robust optimization 
   The foundation of conventional robust optimization methodologies often lies in the construction of 

uncertainty sets, a process that traditionally neglects the wealth of available information regarding uncertain 

parameters. This results in a challenging task for the user, who must select an appropriate uncertainty set, 

often leading to unnecessary overestimation. Significantly, methods in robust optimization induced by 

uncertainty sets have been developed assuming restricted knowledge about the exact values of uncertain 

parameters. In contrast, stochastic programming relies on past data to get the precise distribution of them. 

However, in practical scenarios, obtaining extensive historical data for accurate distribution estimation can 

be a formidable task. 

   For our specific application in the HLRP under Uncertain Environment, recent advancements have 

introduced a groundbreaking data-driven robust optimization approach. This innovative method harnesses 

empirical data and deploys machine learning techniques, including Support Vector Clustering (SVC), to 

cover data samples which results to an uncertainty. 

   In particular, the data-driven robust optimization methodology, as introduced by (Shang et al., 2017), 

extracts an uncertainty set directly from the available information on uncertain parameters. The choice of 

SVC as the preferred uncertainty set in our study is rooted in its unique capability to construct a data-driven 

uncertainty set tailored to the specific characteristics of uncertain parameters. SVC, a powerful machine 

learning technique, enables us to accurately identify and encompass relevant data samples that closely align 

with the genuine distribution of uncertainties in the HLRP. Unlike predefined uncertainty set structures, 

SVC allows for a flexible and adaptive approach, eliminating unnecessary overcoverage and providing a 

more precise representation of the uncertainty faced in real-world scenarios. By employing SVC, it 

accurately identifies and encompasses pertinent data samples, aligning closely with the genuine distribution 

of uncertainties in the HLRP. This data-driven approach represents a promising avenue for optimizing the 

HLRP, as it flexibly adapts to the specific characteristics of uncertain travel times. Consequently, it 

significantly enhances the robustness and practical applicability of the solution methodology. 

 

4-1- Support vector clustering 
   Ben-Hur et al. (2001) introduced the SVC algorithm within the domain of machine learning theory, aims 

to identify a compact hypersphere with the least possible volume. This hypersphere is designed to tightly 

encompass all available data samples (Shang et al., 2017). To elucidate the algorithm, consider a collection 

of 𝑁 data samples denoted as 𝑆 = {𝑠𝑖|𝑖 = 1,2, … , 𝑁}. Through a nonlinear transformation𝜙, the original 

input space is mapped into a higher-dimensional feature space. Subsequently, the algorithm seeks the 

smallest hypersphere, characterized by a radius denoted as 𝑅, encompassing all representations of data 

samples within this specific feature space. This objective is addressed through the following optimization 

problem: 

 

min 𝑅2 

𝑠. 𝑡. ‖𝜙(𝑠𝑖) − 𝑐‖2 ≤ 𝑅2 
∀𝑖 = 1,2, … , 𝑁 (17) 
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   Here, the center of the hypersphere’s center is 𝑐 and the Euclidean norm is showed by ‖. ‖. Then slack 

variables to permit certain data samples to deviate from the confines of the hypersphere are added: 

min 𝑅2 + 𝐻 ∑ 𝜉𝑖

𝑁

𝑖=1

 

𝑠. 𝑡. ‖𝜙(𝑠𝑖) − 𝑐‖2 ≤ 𝑅2 + 𝜉𝑖 , ∀𝑖 = 1, … , 𝑁 

𝜉𝑖 ≥ 0, ∀𝑖 = 1, … , 𝑁 

   (18) 

 

   Here, 𝐻 serves as a parameter determining the level of penalty. The resolution of this problem involves 

the formulation of the Lagrangian in the following manner: 

𝐿(𝑅, 𝑐, 𝛽, 𝛼, 𝜉) = 𝑅2 − ∑(𝑅2 + 𝜉𝑖 − ‖𝜙(𝑠𝑖) − 𝑐‖2)𝛽𝑖

𝑁

𝑖=1

− ∑ 𝜉𝑖𝛼𝑖

𝑁

𝑖=1

+ 𝐻 ∑ 𝜉𝑖

𝑁

𝑖=1

 (19) 

Here, 𝛽𝑖 and 𝛼𝑖 (where 𝛼𝑖 ≥ 0) denote the Lagrangian multipliers. Calculating the derivatives of 𝐿 yields: 

∑ 𝛽𝑖

𝑁

𝑖=1

= 1 (20) 

𝑐 = ∑ 𝛽𝑖𝜙(𝑠𝑖)

𝑁

𝑖=1

 (21) 

𝛽𝑖 = 𝐻 − 𝛼𝑖 (22) 

 

   By substituting the aforementioned definitions, equations (20) to (22) are incorporated into the 

Lagrangian, resulting in the dual form. This form takes the shape of a quadratic programming problem, 

expressed as follows: 

𝑀𝑎𝑥 ∑ 𝐾(𝑠𝑖, 𝑠𝑖)𝛽𝑖

𝑁

𝑖=1

− ∑ ∑ 𝛽𝑖𝛽𝑗𝐾(𝑠𝑖, 𝑠𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

𝑠. 𝑡. ∑ 𝛽𝑖

𝑁

𝑖=1

= 1 

0 ≤ 𝛽𝑖 ≤ 𝐻, ∀𝑖 = 1, … , 𝑁 

(23) 

 

   In this context, 𝐾(𝑠𝑖, 𝑠𝑖) represents the kernel function. The kernel function is a key component of the 

SVC technique, influencing how data points are mapped in the high-dimensional feature space. Choosing 

an appropriate kernel function involves a trade-off between capturing fine-grained details and maintaining 

a generalized representation. A well-suited kernel function will align with the underlying distribution of 

uncertain parameters in the HLRP. There are several widely recognized forms of kernel functions available 

(Hsu et al., 2003): 

1. Polynomial Kernel: 𝐾(𝑠𝑖, 𝑠𝑗) = (𝛾𝑠𝑖
𝑇𝑠𝑗 + 1)

𝑑
 

2. Radial Basis Function (RBF) Kernel: 𝐾(𝑠𝑖, 𝑠𝑗)  = exp {− ‖
𝑠𝑖−𝑠𝑗

2𝜎2 ‖} 

3. Sigmoid Kernel: 𝐾(𝑠𝑖, 𝑠𝑗) = tanh{𝛾𝑠𝑖
𝑇𝑠𝑗 + 𝑟} 

 

   Employing these functions introduces intricate nonlinear terms into the robust optimization problem. 

Shang et al. (2017) have proposed the utilization of the subsequent generalized intersection kernel function: 

𝐾(𝑠𝑖, 𝑠𝑗) = ∑ 𝑙𝑘

𝑁

𝑖=1

− ‖𝐹(𝑠𝑖 − 𝑠𝑗)‖
1
 (24) 
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   In this function, 𝐹 is determined as 𝐹 = Σ−
1

2, which is the whitening matrix. Additionally, 𝑙𝑘 serves as 

the width parameter, which is adjusted to guarantee the positive-definiteness of the kernel function 𝐾 and 

make the problem convex. This parameter tuning ensures the stability and effectiveness of the robust 

optimization process. It is noteworthy that Σ is to minimize biases that might arise due to a limited sample 

size (𝑁). 

 

4-1- Robust counterpart formulation 
   Upon attaining the optimal solutions for 𝛽𝑖 as determined by model (23), the computation of the 

hypersphere's radius proceeds as outlined below: 

𝑅2 = 𝐾(𝑠𝑖′ , 𝑠𝑖′) − 2 ∑ 𝐾(𝑠𝑖′ , 𝑠𝑖)𝛽𝑖

𝑁

𝑖=1

+ ∑ ∑ 𝛽𝑖𝛽𝑗𝐾(𝑠𝑖, 𝑠𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

, 𝑖′ ∈ 𝑆𝑉 (25) 

The area encompassed by the hypersphere constitutes the uncertainty set derived from 𝑆, and its 

characterization is: 

 

𝑈(𝑆) = {𝑠|𝐾(𝑠, 𝑠) − 2 ∑ 𝐾(𝑠, 𝑠𝑖)𝛽𝑖
𝑁
𝑖=1 + ∑ ∑ 𝛽𝑖𝛽𝑗𝐾(𝑠𝑖, 𝑠𝑗)𝑁

𝑗=1
𝑁
𝑖=1 ≤ 𝑅2} (26) 

 

By substituting equation (25) into (26) we have: 

 

𝑈(𝑆) = {𝑠| ∑ 𝐾(𝑠𝑖′ , 𝑠𝑖)𝛽𝑖
𝑁
𝑖=1 ≤ ∑ 𝐾(𝑠, 𝑠𝑖)𝛽𝑖

𝑁
𝑖=1 , 𝑖′ ∈ 𝑆𝑉}

= {𝑠| ∑ 𝐾(𝑠𝑖′ , 𝑠𝑖)𝛽𝑖𝑖∉𝐼𝐷 ≤ ∑ 𝐾(𝑠, 𝑠𝑖)𝛽𝑖𝑖∉𝐼𝐷 , 𝑖′ ∈ 𝑆𝑉} 
(27) 

 

It's worth noting that the condition 𝑖 ∉ 𝐼𝐷 in the second equality stems from 𝛽𝑖 = 0 when 𝑖 ∈ 𝐼𝐷. When we 

substitute the kernel function (24) into equation (27), we arrive at the subsequent form of the uncertainty 

set: 

 

𝑈(𝑆) = {𝑠| ∑ ‖𝐹(𝑠 − 𝑠𝑖)‖1𝛽𝑖𝑖∉𝐼𝐷 ≤ ∑ ‖𝐹(𝑠𝑖′ − 𝑠𝑖)‖1𝛽𝑖𝑖∉𝐼𝐷 , 𝑖′ ∈ 𝑆𝑉} (28) 

 

   By incorporating auxiliary variables 𝑍 = [𝑧1, … , 𝑧𝑁] and defining Ω = ∑ ‖𝐹(𝑠𝑖′ − 𝑠𝑖)‖1𝛽𝑖𝑖∉𝐼𝐷 , the 

expression for the uncertainty set (28) can be rephrased as: 

 

𝑈(𝑆) = {𝑠|

∃𝑧𝑖, 𝑖 ∉ 𝐼𝐷, 𝑠. 𝑡.
∑ 𝑧𝑖𝛽𝑖𝑖∉𝐼𝐷 ≤ Ω

−𝑧𝑖 ≤ 𝐹(𝑠 − 𝑠𝑖) ≤ 𝑧𝑖  𝑖 ∉ 𝐼𝐷
} (29) 

 

The robust adaptation within the uncertainty set 𝑈(𝑆) is delineated in the following: 

 

min
𝑥∈𝑋

𝑐𝑇𝑥 

𝑠. 𝑡. max
𝑎∈𝑈(𝑆)

𝑎𝑇𝑥 ≤ 𝑏 
(30) 

 

To derive the equivalent LP formulation of (30), we can express the internal maximizing problem in the 

following way: 

max
𝑠,𝑧𝑖

𝑠𝑇𝑥 

𝑠. 𝑡. ∑ 𝑧𝑖𝛽𝑖

𝑖∉𝐼𝐷

≤ Ω 

−𝑧𝑖 ≤ 𝐹(𝑠 − 𝑠𝑖) ≤ 𝑧𝑖   ∀𝑖 ∉ 𝐼𝐷 

(31) 
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The dual form of the (31) will be: 

min
𝛾𝑖,𝜗𝑖,𝜆

∑ (𝛾𝑖 − 𝜗𝑖)𝑇𝐹𝑠𝑖 + Ω𝜆

𝑖∉𝐼𝐷

 

𝑠. 𝑡. ∑ 𝐹(𝛾𝑖 − 𝜗𝑖)𝑇

𝑖∉𝐼𝐷

+ 𝑥 = 0 

𝛾𝑖 + 𝜗𝑖 = 𝜆𝛽𝑖   ∀𝑖 ∉ 𝐼𝐷 

𝜗𝑖, 𝛾𝑖 ∈ 𝑅+
𝑛𝜆 ≥ 0 

(32) 

 

In this context, 𝛾𝑖, 𝜗𝑖, and 𝜆 denote dual variables. By incorporating (32) into (30), we arrive at the ensuing 

robust counterpart problem: 

 

min
𝑥∈𝑋

𝑐𝑇𝑥 

𝑠. 𝑡. ∑(𝛾𝑖 − 𝜗𝑖)𝑇𝐹𝑠𝑖

𝑖∉𝐼𝐷

+ Ω𝜆 ≤ 𝑏 

∑ 𝐹(𝛾𝑖 − 𝜗𝑖)𝑇

𝑖∉𝐼𝐷

+ 𝑥 = 0 

𝛾𝑖 + 𝜗𝑖 = 𝜆𝛽𝑖   ∀𝑖 ∉ 𝐼𝐷 

𝜗𝑖, 𝛾𝑖 ∈ 𝑅+
𝑛𝜆 ≥ 0 

(33) 

 

   Finally, we discuss the step-by-step procedure for implementing the proposed approach. To maintain 

generality, let's assume the model at hand can be represented like the problem in (30). Here, the set 𝐷 =
{𝑠𝑖}𝑖=1

𝑁  comprises 𝑁 available samples, representing realizations of uncertainties. This formulation 

accommodates more complex cases in a similar manner. The parameter 𝐻 is the regularization factor and 

can be customized based on the conservatism of the decision maker. 

The subsequent robust optimization (30) can be tackled through the subsequent steps: 

1. Calculate Σ using the sample datapoints. Obtain the weighting matrix 𝐹 = Σ−
1

2. 

2. Establish the kernel parameters {𝑙𝑘}. 

3. Create the kernel matrix 𝐾(𝑠𝑖, 𝑠𝑗) utilizing the kernel function (24) with the 𝑁 samples. 

4. Resolve the SVC model by addressing the problem (23) with the kernel matrix 𝐾. Acquire the 

indices of support vectors and 𝛽. 

5. Utilize the support vectors {𝑠𝑖, 𝑖 ∈ 𝑆𝑉} along with their corresponding Lagrange multipliers 
{𝛽𝑖, 𝑖 ∈ 𝑆𝑉} to construct the robust counterpart problem (32). Subsequently, employ it to substitute 

the constraint containing uncertainty in (30). 

6. Resolve the modified problem. 

 

5- Numerical analysis 
   Our primary objective in this section is to validate and assess the efficacy of the SVC-based uncertainty 

set, following the methodology introduced by Shang et al. (2017). 

To accomplish this, we have generated three distinct datasets for 𝑡𝑖𝑗 utilizing bivariate gamma, truncated 

uniform, and mixed Gaussian distributions. The remaining parameters of these datasets have been adopted 

from the widely utilized CAB dataset, originally presented by O’kelly (1987). This dataset is derived from 

airline passenger flows between 25 cities, serving as a valuable benchmark for our analysis. For the 

experimental setup, we have set 𝛼 to 0.5, 𝑃 to 3, and 𝑉 to 2. Additionally, the parameter 𝐿 is determined as 
1.5×∑ 𝑤𝑖𝑗𝑖,𝑗

𝑃×𝑉
. 

   It's worth noting that all coding implementations have been executed in the Julia programming language. 

The experiments have been conducted on a computer system equipped with a 2 GHz Quad-Core Intel Core 
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i5 processor and 16 GB of RAM. This robust computational environment ensures reliable and efficient 

execution of our experiments. Figure 2 illustrates the uncertainty data generated by different distributions 

for two nodes for computational experiments. 

 

 

(a) Truncated Uniform 

 

 

(b) Bivariate Gamma 
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(c) Mixed Gaussian 

Fig. 2. Uncertainty data generated by different distributions for computational experiments 

   Once the uncertainty sets are defined, we formulate the robust counterpart optimization problem. 

Following this, a variety of robust solutions is derived for each set by modifying the size of its 

corresponding uncertainty set. To assess the efficacy of these robust solutions, 1500 scenarios are produced, 

randomly. Each scenario is carefully examined to ascertain if a robust solution results in any constraint 

breaches. The degree of protection provided by a solution is subsequently gauged by calculating the 

percentage of random scenarios that do not incur any constraint violations. 

   The computational analysis results, illustrated in figure 3, show the effectiveness of the SVC-based 

uncertainty sets in solving the minimization problem for the total costs of the hub location-routing scenario. 

In this figure, we represent the total costs of the network for each protection level. It's important to note that 

since our problem is a minimization task, a smaller objective function value under the same protection level 

signifies a less conservative solution. 

   Consequently, we aim for a performance-tradeoff curve that resides as close as possible to the lower right 

corner. The results indicate that the data-driven SVC-based uncertainty set substantially outperforms both 

the box uncertainty set and the polyhedral uncertainty set. 

   Even in cases involving other uncertainty set (mixed Gaussian and bivariate gamma), the SVC-based 

uncertainty set consistently demonstrates superior performance. This underscores the notion that by 

efficiently encapsulating the distributional characteristics of our data, the uncertainty set can effectively 

mitigate uncertainties and reduce the conservatism inherent in the solutions of robust optimization 

problems. 
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(a) Truncated Uniform 

 

 

(b) Bivariate Gamma 
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(c) Mixed Gaussian 

Fig. 3. Performance of the robust HLRP under different uncertainty sets 

 

6- Case study 
   In this section, we delve into a comprehensive case study centered around the transportation network of 

a prominent retail store situated within the city of Tehran, which encompasses 22 distinct areas. Our 

objective is to subject the proposed model to rigorous scrutiny in four distinct configurations: the 

deterministic model, the robust model incorporating a box uncertainty set, the robust model utilizing a 

polyhedral uncertainty set, and finally, the robust model employing the data-driven SVC-based uncertainty 

set. 

   A critical facet of this case study lies in the pivotal data regarding 𝑡𝑖𝑗, signifying the travel time between 

the 22 unique areas of Tehran. It is imperative to note that this data is inherently uncertain, introducing a 

crucial dimension to our analysis. To obtain this dataset, we harnessed Google Maps data and undertook a 

web scraping process utilizing the Google Maps API. The process involved several key steps: 

1. API Configuration: We started by setting up the Google Maps API, configuring it to retrieve travel 

time data between specific geographic coordinates. This ensured that we could obtain precise 

information tailored to the 22 unique areas of Tehran. 

2. Coordinate Selection: We identified the geographic coordinates corresponding to each of the 22 

areas within Tehran. These coordinates were crucial for accurately querying travel time data from 

the API. 

3. Automated Querying: We designed a script to automate the querying process. The script 

systematically sent requests to the API for travel time data between all possible pairs of the 22 

areas. This automated approach streamlined the data collection process and minimized the potential 

for errors. 

4. Data Validation and Cleaning: Upon retrieval, we implemented a validation process to ensure the 

integrity and reliability of the acquired data. This involved checking for outliers, anomalies, and 

inconsistencies. Any questionable data points were flagged for further review. 
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   The resulting dataset comprises historical data spanning a 12-month period, capturing the travel times 

between each pair of the 22 areas. This comprehensive dataset forms the bedrock of our case study, 

facilitating a robust and thorough evaluation of the proposed model across varying uncertainty scenarios. 

The transportation network derived from the robust models is established based on a protection level of 

85%, a highly regarded threshold for conservative decision-makers. A comparative analysis between the 

deterministic and robust models reveals substantial disparities in hub locations, allocations, and vehicle 

routes. 

   In figure 4, we present the optimized transportation networks, encompassing hub locations, allocations, 

and vehicle routes, for each model. Notably, the robust models yield a more centralized network 

configuration, indicative of their enhanced resilience to uncertainties. 

   Upon evaluation, the SVC-based model demonstrates a 5.83% improvement in objective function 

compared to the polyhedral uncertainty set, underscoring its superior performance. Additionally, it exhibits 

a 2.41% enhancement in objective function when contrasted with the box uncertainty set, further solidifying 

its efficacy in addressing uncertainties within the transportation network. 

 

 

(a) Deterministic 
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(b) Box uncertainty set 

 

 

(c) Polyhedral uncertainty set 
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(d) SVC-based uncertainty set 

Fig. 4. Optimal transportation networks as determined by deterministic and robust models 

 

   Furthermore, the robust models exhibit a marked influence on the overall efficiency and cost-

effectiveness of the transportation network. Specifically, they lead to a more streamlined allocation of 

resources, optimized vehicle routes, and strategically positioned hub locations, all of which collectively 

contribute to a more resilient and adaptable system. 

   In terms of practical implications, the centralized network structure resulting from the robust models may 

translate to improved resource utilization, reduced operational costs, and enhanced service quality. This can 

be particularly advantageous in scenarios where uncertainties in travel times between areas are prevalent, 

such as urban environments with fluctuating traffic conditions. 

It's worth noting that the utilization of the SVC-based uncertainty set proves to be instrumental in achieving 

these improvements. By harnessing data-driven insights, this approach leverages real-world information to 

construct a more accurate representation of uncertainty, resulting in more reliable and effective 

transportation solutions. 

   The outcomes of our study carry substantial significance for real-world decision-making, particularly in 

the domain of HLRPs under uncertain environments. The implementation of robust models yields 

transformative effects on the efficiency and cost-effectiveness of transportation networks, fundamentally 

reshaping the way resources are allocated and vehicles navigate through the system. 

   Specifically, the optimization brought about by these models leads to a more strategic placement of hub 

locations. This, in turn, contributes to a centralized network structure, which has far-reaching practical 

implications. Firstly, it enhances resource utilization, ensuring that assets are deployed in a manner that 

maximizes their effectiveness. This streamlined allocation not only minimizes wastage but also optimizes 

the use of valuable resources, ultimately reducing operational costs. 

   Moreover, the optimized vehicle routes generated by the robust models have a twofold impact. On one 

hand, they lead to time savings, as routes are carefully selected to minimize travel times between areas. 

This not only improves the overall efficiency of operations but also translates to cost savings, particularly 

in contexts where time-sensitive deliveries or services are involved. On the other hand, these optimized 

routes contribute to a reduction in environmental impact, as fuel consumption and emissions are curtailed. 
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   In urban environments characterized by unpredictable traffic conditions, the benefits are even more 

pronounced. The robust models provide a framework that can dynamically adapt to changing traffic 

patterns, ensuring that routes remain effective even as the urban landscape evolves. This adaptability is a 

crucial asset in real-world scenarios, where flexibility and responsiveness to changing conditions are 

imperative for success. 

 

7- Conclusions 
   In conclusion, this study addresses the critical challenge of optimizing hub location-routing problems in 

the face of uncertain travel times. By introducing a data-driven robust optimization approach, we have 

demonstrated a significant advancement in tackling uncertainties inherent in transportation networks. Our 

findings showcase the superiority of the SVC-based uncertainty set in providing robust solutions, 

outperforming traditional uncertainty sets. The centralized network structures resulting from the robust 

models not only improve resource allocation and vehicle routes but also enhance overall system 

adaptability. 

   Furthermore, our case study on the transportation network of a retail store in Tehran has provided valuable 

insights into real-world applications. The comparison between deterministic and robust models reveals stark 

differences in hub locations, allocations, and vehicle routes. This highlights the necessity of considering 

uncertainties in decision-making processes, particularly in transportation and logistics scenarios. The SVC-

based model, in particular, emerges as a standout performer, yielding significantly improved objective 

function values compared to both polyhedral and box uncertainty sets. 

   This research underscores the crucial role of data-driven robust optimization methodologies in addressing 

uncertainties in transportation networks. The outcomes of this study not only contribute to the theoretical 

advancements in the field but also hold practical significance for industries reliant on efficient logistics 

operations. We anticipate that our findings will inspire further exploration and adoption of robust 

optimization techniques in diverse applications, ultimately leading to more resilient and adaptable 

transportation systems. 

   Future research in this field could explore dynamic environments with evolving uncertainties, integrating 

real-time data updates and adaptive decision-making strategies. Additionally, investigating the integration 

of advanced machine learning techniques for more accurate uncertainty characterization holds immense 

potential. It is important to note that while our proposed methodology shows promising results, it may face 

challenges in scenarios with highly volatile and unpredictable uncertainties. Exploring multi-objective 

optimization frameworks, sustainability metrics, and scalability for larger and more complex networks 

could further advance practical implementation in metropolitan areas. It is noteworthy that the proposed 

model integrates two inherently complex and NP-Hard problems: hub location and vehicle routing. Solving 

large-scale instances of this combined problem can present significant computational challenges. While we 

have achieved promising results in our experiments, it is important to acknowledge that further research on 

efficient solution techniques, parallel computing, and heuristic algorithms tailored to our specific 

formulation could enhance scalability for real-world applications in even larger urban environments. These 

avenues promise to enhance the responsiveness and resilience of transportation networks. 
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