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Abstract 
Optimal time interval between inspections of the redundant systems is raised as a 

substantial issue to plan a preventive maintenance model for maintenance planners. To 

have an optimal time period for preventive maintenance of systems, especially complex 

systems such as redundant systems, two variables of maintenance are mostly connived. 

Against other studies in the literature of preventive maintenance in which repair time is 

a negligible factor as an assumption, repair time is considered as a noticeable variable 

incorporated into the model developed in this paper. Another contribution, the number 

of facilities, is focused as a significant variable used in real applications. Particularly, 

systems with complex performance needing technical repair facilities (i.e., technical 

repairmen, tools, materials, outsourced repair, etc.). In this regard, parallel systems have 

been analyzed stochastically using the way of preventive maintenance in which repair 

time would be contemplated as an essential factor in maintenance planning. Using 

Markov chain, a model based on expected total cost per time is made to demonstrate 

that a proper time interval achieving lowest possible cost is obtained by taking into 

account repair time and the number of repair facility. Three models are studied as 

instances of redundant systems to find the optimal time interval between inspections. 

These models differ in the number of repair facilities (i.e., one, two and three repair 

facilities). A sensitivity analysis is done to depict the variability of input variables over 

optimal the expected total cost per time and time interval between inspections. As a 

main contribution, the repair time could be an essential factor in maintenance planning, 

this study contemplates this factor in redundant systems.  

Keywords: Preventive maintenance, repair time, repair facility, redundant systems    

 

1-Introduction 
1-1-Motivation 
   In capital-intensive firms such as oil and gas, power, refinery, robotic machines, etc., providing an 

effective plan for preventive maintenance of equipment and parallel redundancy helps a business be more 

flexible and has a smooth path to plan its production. That a system can be reliable for a long time depends 

on what interval time, it will be maintained and how it would be maintained. There are several techniques 

to ensure system reliability, the most important way is redundancy. Moreover, repairable systems can be 

repaired and referred to as good as new state and this is another way. Systems that can be constructed like  

redundant systems are redundant turbines in power systems, redundant pumps in refinery industries, 

redundant robotic arms in automotive industries etc., as whole units can be repaired and restored to their 
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initial status. Designing the optimal preventive maintenance for these parallel systems will minimize the 

operating cost considering system availability. Both provisions of redundant components and repairing or 

maintaining components are costly and must be reasonably decided to achieve the optimum decision. In 

these systems, contemplation of all cost-effective details is supposed to be analyzed. These factors motivate 

authors to review deeply on redundant systems and study in repair time as a basis factor.  

1-2-Literature review  
   Availability and reliability analysis with discrepant approaches have been studied by many researchers. 

Maintenance as a way to improve reliability and availability in redundant systems has been evolved and 

many cost-effective models considering redundancy and maintenance jointly have been constructed to 

improve system availability and system reliability. A discussion on maintenance optimization has been 

studied by Barlow and Proschan (1965). Lai and Yuan (1999) developed a maintenance model for a 

redundant system. In their model, optimal redundant units and the optimal number of units to be repaired 

have been obtained considering repair and maintenance costs. Laprie et al. (1981) have studied a 2-unit 

redundant system through a semi-Markov model that the failure rate of the operating unit is directly 

dependent on the failed unit. Actually, failure rate of the operating unit increases when another unit is under 

repair. Percy et al. (1997) considered stochastic models and Bayesian methods to set preventive 

maintenance plans. Various maintenance optimization models and their applications have been analyzed 

(Dekker 1996). Dekker (1996) approximately reviewed all aspects of the maintenance optimization factors 

involved in applications. It is commonly used as an appropriate reference for maintenance optimization. 

Chareonsuk et al. (1997) studied on determining the optimal preventive maintenance intervals for paper 

production systems. They established a model incorporating multiple criteria for their case study in the 

paper factory; the expected cost and reliability have been taken into the model, and method called 

PROMETHEE has been used the relevant problem. For redundant systems, Levitin and Lisnianski in (1999) 

discussed redundancy and maintenance optimization as a joint model. They studied on a series-parallel 

system and generalized a joint redundancy and maintenance optimization model for multistate systems 

where the system and its units have a range of performance levels. 

   A cost-effective maintenance plan can play a vital role in the productivity and safety of redundant systems. 

In the literature on redundant systems, planned preventive maintenance has been studied, and new models 

have been proposed. For instance, Bris et al. (2003) presented a cost function of a maintenance policy under 

a given availability constraint. They presented a basic maintenance optimization model in which a method 

is used to select critical objects. Then preventive maintenance plans are separately calculated based on the 

availability constraint for each selected object in a redundant system. Samrout et al. (2005) introduced a 

new method using the ant colony optimization to improve the previous study by Bris et al. (2003). They 

used the ant colony optimization technique to solve the model proposed by Bris et al. (2003), compared the 

results with the previous study and demonstrated the improvement. Castro and Cavalca (2006) have studied 

maintenance optimization for manufacturing systems. The authors proposed a model to optimize the 

availability of a series-parallel production line in the presence of maintenance cost constraints. A 

maintenance optimization problem has been investigated to find the minimal cost configuration of a multi-

state series-parallel system under reliability constraints (Nourelfath and Ait, 2007). The analytical approach 

has been developed to model the system using the universal moment-generating function and the Markov 

chain method. Another research by Nahas et al. (2008) proposed an approach to improve the results of the 

maintenance optimization problem of series-parallel systems studied by Levitin and Lisinianski (1999). An 

optimization method based on the extended excellent deluge algorithm has been presented to solve the 

problems (Lai and Yuan 1999). Samrout et al. (2009) modeled maintenance optimization of the systems 

based on their proportional hazard functions and considering either corrective maintenance or preventive 

maintenance optimization. An improved particle swarm optimization has been established to minimize 

preventive maintenance period for a series-parallel system by Wang and Lin (2011). They proposed an 

efficient meta-heuristic to solve the model developed by Bris et al. (2003). Wang and Tsai (2012) presented 

a bi-objective model for preventive maintenance optimization of a series-parallel system and solved the 

model using a hybrid genetic algorithm. In their study, an improvement factor method has been employed 
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to investigate how repairing components can restore the system’s reliability. Two objectives consist of total 

maintenance cost and mean system reliability simultaneously would be optimized. Nourrelfath et al. (2012) 

modeled imperfect preventive maintenance using the Markov process and the universal moment generating 

function for a multi-state series-parallel system and solved the established model by a genetic algorithm. A 

new multi-objective nonlinear mixed-integer model has been presented by Moghaddam, 2013. They 

developed it for preventive maintenance of multi-workstation manufacturing system in which the rate of 

occurrence of failure is increasing. Three maintenance actions (i.e., repair, replacement and do nothing) 

have been incorporated for each workstation in each period during the planning horizon. A multi-objective 

function consists of total operational costs, overall reliability and the system availability and, it has been 

solved using a hybrid Monte Carlo simulation and goal programming methods. A new approach to model 

preventive maintenance has been established through two-stage stochastic programming by Chatwattanasiri 

et al. (2014). They strictly studied uncertain environment for the preventive maintenance optimization. 

Their approach was to specify some scenarios based on uncertain future usages. Their problem is divided 

into two stages which the first stage includes both selection and the number of components, and the second 

stage is to determine the preventive maintenance plan for the specified configuration in the first stage. 

Alrabghi and Tiwari (2015) reviewed lots of papers having researched on preventive maintenance 

optimization based on the simulation method. They showed that discrete event simulation was the most 

technique to model maintenance systems.  

   Hajipour and Taghipour (2016) proposed a model to find the optimal inspection interval over a finite 

planning horizon for k-out-of-n systems. They studied m identical components with redundancy in each 

subsystem and find a non-periodic inspection plan with failure following non-homogeneous Poison process. 

In their model, there is not any evidence to consider repair time as an essential factor. A new model for 

inspection intervals of a turbine rotor with failure interaction is presented by Rezaei (2017). Also, both 

perfect and minimal repairs are considered in the model. The case study provided by Rezaei (2017) does 

not include repair time as a parameter in the model. Seyedhosseini et al (2018) studied on inspection plan 

for a two-component system with a hidden failure and a three-mode failure. They provided an optimal 

inspection interval in which repair time is ignored and developed a simulation algorithm to calculate the 

expected total cost.    

   Sharifi and Taghipour (2020) developed a continuous-time discrete-state model for periodic inspection 

of a k-out-of-n system with non-identical components. They try to find an optimal inspection plan to 

minimize the total cost of the inspection intervals. In their study, repair time is ignored. Sharifi et al (2021) 

provided an optimal inspection interval plan for a k-out-of-n load sharing system with a mixed redundancy 

strategy. They assumed that the component’s repair time is less than the inspection interval (i.e., the repair 

time was ignored). Peng et al (2022) using simulation procedure tried to find the optimal inspection interval 

for parallel systems regarding minimization of total cost. Yang et al. (2022) studied redundant systems and 

established a condition-based strategy, and proposed reinforcement learning as a novel approach to reduce 

the maintenance cost. Their assumption about imperfect repair and replacement of failed components is 

dynamically decided.In k-out-of-n systems, each subsystem consists of parallel components, Zhao et al 

(2023) studied on a k-out-of-n system in which a load sharing dependency exists among components of 

parallel subsystems. They presented a regular inspection policy to minimize long-run expected cost per unit 

time. In their study repair time would be assumed zero.  

   Many researchers have used the Markov process and numerical solutions to elaborate a maintenance 

optimization model (Osaki 1972). Osaki (1972) used the Markov renewal process and the laplace-Stieltjes 

transform to model a system with two similar units. Billinton and Pan (1998) studied redundant components 

in a system. The authors tried to demonstrate the optimum maintenance interval by using equations that 

consist of failure frequency and the failure rate of the whole system. In the studied system, each component 

operates in its wear-out period, and the failure rate of each component is not constant.  The stochastic 

approach, in the particular Markov process, in the preventive maintenance has been employed to model real 

applications with various states in pieces of research (Bloch 2001, Flammini et al. 2009, Montoro and Perez 

2006, Taghipour et al. 2010, Xu and Hu 2013 and Zequeria and Berenguer 2006). The instantaneous 

availability of the repairable system has been modeled using the Markov process and considering the 
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optimal preventive maintenance plan (Xu and Hu 2013). Most of the research has investigated steady-state 

availability, but Xu and Hu (2013) presented a new model for instantaneous availability. A comprehensive 

investigation of a preventive maintenance plan for various models of the system consisting of active and 

standby systems with discrepant repair conditions has been studied by Mendes et al. (2014). They used the 

Markov process and the Laplace transform to model a system with four states (i.e., active redundant systems 

without component repair, active redundant systems with component repair, standby redundant systems 

without component repair and standby redundant systems with component repair). They also contemplated 

downtime cost and restarting the system after failure cost into their model. Models have been presented for 

two and three components.  A cost function consists of four types (i.e., cost of periodic inspection, cost of 

repair for a component, cost of a system downtime per time and cost of system repair after failure).  
 

Table 1. All studies based on year, redundancy, inspection plan, repair time and repair facility 

Authors Year Redundancy 
Inspection 

Interval 

Repair 

Time 

Repair 

Facility 

Laprie J et al. 1981 Yes Yes No No 

David F et al. 1997 No Yes No No 

Chareonsuk et al. 1997 No Yes No No 

Billinton R & Pan J. 1998 Yes Yes No No 

Lai M & Yuan J. 1999 Yes Yes No No 

Levitin G & Lisnianski A. 1999 Yes Yes No No 

Bloch-Mercier S. 2001 No Yes No No 

Bris R et al. 2003 Yes Yes No No 

Samrout M et al. 2005 Yes Yes No No 

Castro HC & Cavalca KL. 2006 No Yes No Yes 

Montoro-Cazorla D & Perez-Ocon R. 2006 Yes Yes No No 

Zequeria RI & Berenguer C. 2006 No Yes No No 

Nourelfath M & Ait-Kadi D. 2007 Yes Yes No No 

Dimitrakos & Kyriakidis. 2008 No Yes Yes No 

Nahas N et al. 2008 Yes Yes No No 

XU H & HU W. 2008 No Yes No No 

Flammini F et al. 2009 Yes Yes No No 

Samrout M et al. 2009 No Yes No No 

Taghipour S et al. 2010 Yes Yes No No 

Wang CH & Lin TW. 2011 Yes Yes No No 

Nourelfath M et al. 2012 Yes Yes No No 

Wang CH & Tsai SW. 2012 Yes Yes No No 

Moghadaddam K.S. 2013 No Yes No No 

XU H & HU W. 2013 Yes Yes No No 

Chatwattanasiri N et al. 2014 No Yes No No 

Mendes A. et al. 2014 Yes Yes No No 

Yassin Hajipour & Sharareh Taghipour. 2016 Yes Yes No No 

Esmaeil Rezaei. 2017 Yes Yes No No 

Seyedhosseini et al. 2018 Yes Yes No No 

Mani Sharifi & Sharareh Taghipour. 2020 Yes Yes No No 

Mani Sharifi et al. 2021 Yes Yes No No 

Yang A et al. 2022 Yes Yes No No 

Peng et al. 2022 Yes Yes No No 

Zhao et al.  2023 Yes Yes No No 

 

   Table 1 summarizes all studies in literature from four points of view; redundancy, inspection plan, repair 

time and repair facility. As noted in table 1, all studies did not consider repair time and repair facility as 

noticeable variables that can be a remarkable gap in this study. Thus, it is highlighted that incorporating 

repair time as a remarkable time into the model and repair facility as a resource in the model are considered 

in this study. 
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1-3-Contribution 
   Due to the stochastic behavior of the failing process in most systems, a common approach to study 

reliability and availability of the systems are Markov and semi-Markov methods with Laplace transforms 

(Osaki 1972). To the best of our knowledge, from the literature review, all the above-mentioned research 

did not consider the repair time as real time. In contrast, in real applications, repair time can be a significant 

time during the planning horizon. One of the most critical concerns, a maintenance manager is facing with 

is time-consuming actions during preventive maintenance processes. For instance, consider redundant 

pumps, boilers, rails, power motors, etc. When one of the redundant components fails, a repairer may 

deviate hours or days to repair or even to outsource the component and restore it to the system.  

Our contributions in this study can be summarized as follows: 

 The main contribution of the model proposed in this paper is to study on repair time in the 

preventive maintenance model using the Markov process. 

 Another advantage of the presented model in this study as a minor contribution is the inclusion of 

the number of repair facility in the redundant systems. 

   The main contribution of the model proposed in this paper is to study the repair time in the preventive 

maintenance model using the Markov process. Thus, an analysis is presented for the repair time of the 

redundant systems. However, more in high technology, the repair facilities (i.e., repairer, tools and 

materials) can play an outstanding role in maintenance costs.  

Models for three components with a various numbers of repair facilities will be modeled and analyzed in 

this paper. This model can be generalized for n components. The model’s objective is to find the optimal 

preventive maintenance plan (i.e., the optimal time interval between inspections) considering repair time.  

As mentioned, two main contributions are presented in this paper. The first one as a major contribution is 

to incorporate repair time as a remarkable time into the model and the second one is the number of repair 

facilities as a sensitive parameter which would be decision variable in the model. We used Markov process 

to model the maintenance plan and made a comprehensive analysis associated to the parameters in the 

model.  

   This paper is organized as follows. Section 2 describes the model description, mathematical model, 

method and assumptions. Section 3 presents some numerical examples, particularly considers the number 

of repair facilities in various examples. A comprehensive sensitivity analysis is presented in section 4. 

Section 5 depicts a case study as a tangible instance in real world and finally in section 6, concluding 

remarks and a summarization of the paper are described.   

    

2-System description 
2-1-Model description and assumptions 
   Modeling a redundant system with repairable components considering repair time and the number of 

repair facilities are carried out in this paper. When system’s behavior in a stochastic environment is studied, 

the Markov process is a standard method to model the system. The system under consideration is modeled 

based on the Markov process. The system consists of some known states which the state of the system can 

change with the known probability and would be characterized by the number of failed components in the 

time interval between two inspections and the number of failed components in the repair period.  

The system, discussed in this paper, consists of 𝑛 redundant components with 𝑟 repair facilities. Some 

assumptions have been considered to construct the model as follows: 

 Every 𝑇 unit of time, the system goes under inspection and repair, 𝑇 is fixed in the model. 

 Each repair facility can just be allocated to a component during repair time. 

 Time to failure of each component follows the same exponential distribution with the parameter 𝜆. 

 Each repair time period spends 𝑡 units of time, which means that if we have two repair facilities, in 

each period, two components can be repaired and it takes 𝑡 unit of time or if we have two repair 

facilities and three failed components have been detected, only two failed components can be 

repaired, and restored to the operating state and one of them must wait for the next repair period. 

 Perfect repair is considered in the paper.  
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 The inspection time of all components is considered negligible compared to the operation time and 

repair time.  

   All components of the system can be first inspected, the possible failed component(s) can be detected and 

considering the maintenance resource, the failed components would be repaired in the period of inspection.  

   The exponential distribution for the time to failure of each component makes us use the Markov Chain 

method, and it is well-known to use the Markov Chain method (Mendes et al. 2014) to model the time to 

failure of a system.   

   As stated before, systems with 𝑛 redundant components with 𝑟 repair facilities are studied in this paper, 

all components start to work at the same time and once all components fail, the system stops working until 

the inspection period starts. Every 𝑇 units of time the system goes to repair operations while the system can 

continue to work if, at least, one component works. However, the real world, due to the high level of 

availability, the system can work continuously. The main advantage of this study is to take into account the 

repair time and maintenance resource as two essential factors in the model because many machines in some 

industries, such as nuclear, rail, and power are complex and needs to be repaired through special repair 

facilities and technical repair person. Thus, this resource can have a high cost for the system.     

   As seen in figure1, the horizontal line denotes the timeline, the 𝑇 time interval is the system operation 

time, and the possible failed components are proportional to the number of repair facilities that can be 

restored during time [𝑇, 𝑇 + 𝑡]. 
 

 

Fig 1. The time to repair and repair time of the model 

2-2-Notations 
All notations applied in the models are described as follows. 

 

𝑛 The number of redundant components 

𝑟 The number of repair facilities 

𝐶𝑟 The cost of a repair facility 

𝐶𝑖 The inspection cost of components per a period 

𝐶𝑑 The cost of downtime of the system per unit of time 

𝐶𝑠 The cost of reactivating the system after failure  

𝑇 The operation time of the system   

𝑡 The repair time of the possible failed component(s) 

𝜆 Parameter for the exponential distribution of each component  

𝑇𝐶 Expected cost function of the system  
 

 

 
 

𝐽 State number 

𝑣 The number of failed components during operation time (𝑇) 

𝑤 The number failed components during repair time (𝑡) 

𝑃 Matrix of state transitions probabilities 

𝑝𝑖𝑗  The probability from state 𝑖 to 𝑗 

𝑄 Transition part of matrix 𝑝 

 𝐽 𝑣,𝑤 
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𝑁 Matrix of expected number of times that the process is among states 

𝑛𝑖𝑗 The expected number of times that the process is in state 𝑗 given that it is started from state 𝑖 

𝑇𝑇𝐹 Time to failure 

𝑀𝑇𝑇𝐹𝑖𝑗 Mean time to failure between state 𝑖 and 𝑗 

𝑀𝑇𝑇𝐹 Mean time to failure 

𝜌𝑖𝑗  Downtime between state 𝑖 and 𝑗 

𝜌 Downtime 

𝐴𝑇 The operation time of the component(s) 

 

 

2-3-Mathematical model 
   Three models are presented for a redundant system with three components and one, two and three repair 

facilities, respectively. To model the system, we need to calculate the transition probabilities. With the 

transition probabilities for the system presented in the following, we make use the Markov Chain process 

to form the system states and known probabilities, 𝑝𝑖𝑗 , where 𝑝𝑖𝑗 is the probability of moving from state 𝑖 

to state 𝑗. Transition probability, the probability that the system is in a state with respect to its last state and 

along with the cost of the transition help us to calculate the expected cost of the maintenance. More 

importantly, the possible states of the system without dependency on the time or previous states are drawn 

through the Markov chain process. This state space would be presented by a diagram shown Fig 2, Fig 3 

and Fig 4 for a system with three components with one repair facility, three components with two repair 

facilities and three components with three repair facilities, respectively. Modeling this configuration with 

the various repair facilities is intended to show the important effect of maintenance resources on preventive 

maintenance optimization. A comprehensive analysis is described in section 4.  
 

 

Fig 2. State space diagram of a system with three components and one repair facilities 

   A 10-by-10 matrix of the transition probability is formed for three models. In the following, we calculate 

the probability for each possible transition. For instance, the probability 𝑝01 showing the probability of 

going from state 0 to state 1 is interpreted as the probability of one component between three components 

failing while two other components are still working during 𝑇, with respect to one repair facility, it is 

automatically detected and repaired during 𝑡 and two other components are also working, so no failed 

component is remained at the end of time period 𝑡. This probability can be calculated as 𝑝01 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ] .  
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All probabilities that constitute the 10-by-10 transition probability are calculated as follows.  

𝑝00 = [(𝑒−𝜆(𝑇+𝑡))
3
], 𝑝01 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ] , 𝑝10 = [(𝑒−𝜆(𝑇+𝑡))

3
], 𝑝02 =

[(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] , 𝑝20 = 0, 𝑝03 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝30 = 0, 𝑝04 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝40 = 0, 𝑝05 = [(𝑒−𝜆𝑇)

3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
]  , 

𝑝50 = 0 ,  𝑝06 = [(1 − 𝑒−𝜆𝑇)
3
] , 𝑝60 = 0,  𝑝07 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)] , 𝑝70 = 0,  𝑝08 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝08 = 0 , 𝑝09 = [(𝑒−𝜆𝑇)

3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝90 = 0,  𝑝11 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ], 𝑝12 = [(𝑒−𝜆𝑇)

3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] , 𝑝21 = [(𝑒−𝜆(𝑇+𝑡))

2
] , 

𝑝13 = [(
3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝31 = [ (𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ] , 𝑝14 = [(

3
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)
2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝41 = [(𝑒−𝜆(𝑇+𝑡))

2
], 𝑝15 = [(𝑒−𝜆𝑇)

3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
] , 

𝑝51 = 0, 𝑝16 = [(1 − 𝑒−𝜆𝑇)
3
], 𝑝61 = 0 , 𝑝17 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)], 𝑝71 = 0, 𝑝18 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
], 𝑝81 = 0, 𝑝19 = [(𝑒−𝜆𝑇)

3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝91 = 0, 𝑝22 = 0 , 𝑝23 =

[(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝32 = 0 , 𝑝24 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)] , 𝑝42 = 0, 𝑝25 = 0, 

𝑝52 = 0 , 𝑝26 = [(1 − 𝑒−𝜆𝑇)
2
], 𝑝62 = 0, 𝑝27 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)] , 𝑝72 = 0, 𝑝28 =

[(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝82 = 0, 𝑝29 = 0 , 𝑝92 = 0, 𝑝33 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝34 =

[(𝑒−𝜆𝑇)
2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝43 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝35 = 0 , 𝑝53 = [𝑒−𝜆(𝑇+𝑡)], 

𝑝36 = [(1 − 𝑒−𝜆𝑇)
2
], 𝑝63 = [𝑒−𝜆(𝑇+𝑡)] , 𝑝37 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)] , 𝑝73 = [(𝑒−𝜆(𝑇+𝑡))] 

, 𝑝38 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝83 = [(𝑒−𝜆(𝑇+𝑡))] , 𝑝39 = 0 , 𝑝93 = 0, 𝑝44 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 −

𝑒−𝜆𝑡)(𝑒−𝜆𝑡)],  𝑝45 = 0 , 𝑝54 = 0, 𝑝46 = [(1 − 𝑒−𝜆𝑇)
2
] , 𝑝64 = 0 , 𝑝47 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 −

𝑒−𝜆𝑡) ] , 𝑝74 = 0, 𝑝48 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝84 = 0 , 𝑝49 = 0 , 𝑝94 = 0, 𝑝55 = 0 , 𝑝56 =

[(1 − 𝑒−𝜆𝑇)] , 𝑝65 = 0 , 𝑝57 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝75 = 0, 𝑝58 = 0 , 𝑝85 = 0 , 𝑝59 = 0 , 𝑝95 = 0, 

𝑝66 = [(1 − 𝑒−𝜆𝑇)] , 𝑝67 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝76 = [(1 − 𝑒−𝜆𝑇)], 𝑝68 = 0, 𝑝86 = [(1 − 𝑒−𝜆𝑇)], 

𝑝69 = 0, 𝑝96 = 1, 𝑝77 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝78 = 0 , 𝑝87 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ], 𝑝79 = 0 , 𝑝97 = 0 

𝑝88 = 0 , 𝑝89 = 0 , 𝑝98 = 0, 𝑝99 = 0  

    In a similar way to that of three redundant components with one repair facility, for the three redundant 

system with two repair facilities, the transition probability matrix is derived as follows. As seen in Fig 3 

and Fig 2, 10 states exist in two models and their difference between two models incurs in states that the 

number of failed components exceed the number of facilities. For instance, in state 3, for the first diagram 

two components have failed during 𝑇 and due to one repair facility, just one failed component can be 

restored to the system during 𝑡, while in the second model, as seen in Fig 3, both two failed components 

can be repaired. 
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Fig 3. State space diagram of a system with three components and two repair facilities 

 

𝑝00 = [(𝑒−𝜆(𝑇+𝑡))
3
], 𝑝01 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ], 𝑝10 = [(𝑒−𝜆(𝑇+𝑡))

3
], 𝑝02 =

[(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)], 𝑝20 = 0, 𝑝03 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)], 𝑝30 = 

[(𝑒−𝜆(𝑇+𝑡))
3
], 𝑝04 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)], 𝑝40 = 0, 𝑝05 =

[(𝑒−𝜆𝑇)
3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
], 𝑝50 = 0, 𝑝06 = [(1 − 𝑒−𝜆𝑇)

3
], 𝑝60 = 0, 𝑝07 = [(

3
2
) (1 −

𝑒−𝜆𝑇)
2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)] , 𝑝70 = 0, 𝑝08 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝80 = 0, 𝑝09 =

[(𝑒−𝜆𝑇)
3
(1 − 𝑒−𝜆𝑡)

3
], 𝑝90 = 0, 𝑝11 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ], 𝑝12 =

[(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] , 𝑝21 = [(𝑒−𝜆(𝑇+𝑡))

2
], 𝑝13 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝31 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ], 𝑝14 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)], 𝑝41 =

[(𝑒−𝜆(𝑇+𝑡))
2
], 𝑝15 = [(𝑒−𝜆𝑇)

3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
], 𝑝51 = 0, 𝑝16 = [(1 − 𝑒−𝜆𝑇)

3
], 𝑝61 =

[(𝑒−𝜆(𝑇+𝑡))
2
], 𝑝17 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)], 𝑝71 = [(𝑒−𝜆(𝑇+𝑡))

2
], 𝑝18 = [(

3
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)
2
], 𝑝81 = 𝑝19و 0 = [(𝑒−𝜆𝑇)

3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝91 = 0, 𝑝22 = 0, 𝑝23 = [(

2
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝32 = [(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)], 𝑝24 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)] , 

𝑝42 = 0, 𝑝25 = 0, 𝑝52 = 0, 𝑝26 = [(1 − 𝑒−𝜆𝑇)
2
], 𝑝62 = 0, 𝑝27 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 

𝑝72 = 0, 𝑝28 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
],  𝑝82 = 0, 𝑝29 = 0 , 𝑝92 = 0, 𝑝33 = [(

3
2
) (1 −

𝑒−𝜆𝑇)
2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)], 𝑝34 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝43 = [(

2
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)],  𝑝35 = [(𝑒−𝜆𝑇)
3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
] , 𝑝53 = [𝑒−𝜆(𝑇+𝑡)], 𝑝36 = [(1 − 𝑒−𝜆𝑇)

3
], 



97 
 

𝑝63 = [(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)], 𝑝37 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)], 𝑝73 = [(

3
2
) (1 −

𝑒−𝜆𝑇)
2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)], 𝑝38 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
], 𝑝83 = [(𝑒−𝜆(𝑇+𝑡))], 𝑝39 =

[(𝑒−𝜆𝑇)
3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝93 = 0, 𝑝44 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)], 𝑝45 = 0, 𝑝54 = 0, 𝑝46 =

[(1 − 𝑒−𝜆𝑇)
2
], 𝑝64 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)], 𝑝47 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ], 

𝑝74 = [(𝑒−𝜆𝑇)
2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)] , 𝑝48 = [(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝84 = 0, 𝑝49 = 0 , 𝑝94 = 0, 

𝑝55 = 0, 𝑝56 = [(1 − 𝑒−𝜆𝑇)] , 𝑝65 = 0, 𝑝57 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝75 = 0, 𝑝58 = 0 , 𝑝85 = 0, 𝑝59 =

0 , 𝑝95 = 0, 𝑝66 = [(1 − 𝑒−𝜆𝑇)
2
], 𝑝67 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ], 𝑝76 = [(1 − 𝑒−𝜆𝑇)

2
], 

𝑝68 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝86 = [(1 − 𝑒−𝜆𝑇)],𝑝69 = 0, 𝑝96 = 1, 𝑝77 = [(

2
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ], 𝑝78 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝87 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)], 𝑝79 = 0 , 𝑝97 = 0, 

𝑝88 = 0 , 𝑝89 = 0 , 𝑝98 = 0, 𝑝99 = 0  

 

Fig 4. State space diagram of a system with three components and three repair facilities 

 

   Figure 4 shows the state space diagram for a system having three redundant components with three repair 

facilities. Note that if all components are failed during 𝑇, due to existing three repair facilities, all 

components can be repaired during 𝑡. Thus, only operating components might be failed during 𝑡 and the 

failed one(s) must waited for the next repair period. The transition probabilities are computed same as two 

previous models and presented as below.  

 

 

𝑝00 = [(𝑒−𝜆(𝑇+𝑡))
3
] , 𝑝01 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ] , 𝑝10 = [(𝑒−𝜆(𝑇+𝑡))

3
] , 𝑝02 =

[(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] , 𝑝20 = 0, 𝑝03 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝30 = 
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[(𝑒−𝜆(𝑇+𝑡))
3
],𝑝04 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)],𝑝40 = 0,𝑝05 =

[(𝑒−𝜆𝑇)
3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝50 = 0,𝑝06 = [(1 − 𝑒−𝜆𝑇)

3
] , 𝑝60 = [(𝑒−𝜆(𝑇+𝑡))

3
],𝑝07 =

[(
3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)] , 𝑝70 = 0,𝑝08 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝08 =

0,𝑝09 = [(𝑒−𝜆𝑇)
3
(1 − 𝑒−𝜆𝑡)

3
], 𝑝90 = 0,  𝑝11 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ], 𝑝12 =

[(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] , 𝑝21 = [(𝑒−𝜆(𝑇+𝑡))

2
] , 𝑝13 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝31 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑡)

2
 ],𝑝14 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝41 =

[(𝑒−𝜆(𝑇+𝑡))
2
],𝑝15 = [(𝑒−𝜆𝑇)

3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
] , 𝑝51 = 0,𝑝16 = [(1 − 𝑒−𝜆𝑇)

3
], 𝑝61 = [(

3
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)
2
(𝑒−𝜆𝑡)

2
 ] , 𝑝17 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)], 𝑝71 = [(𝑒−𝜆(𝑇+𝑡))

2
], 𝑝18 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡)

2
], 𝑝81 = 0,𝑝19 = [(𝑒−𝜆𝑇)

3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝91 = 0,𝑝22 = 0,𝑝23 =

[(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)] , 𝑝32 = [(𝑒−𝜆𝑇)

3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)],𝑝24 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 −

𝑒−𝜆𝑡)(𝑒−𝜆𝑡)] , 𝑝42 = 0, 𝑝25 = 0, 𝑝52 = 0,𝑝26 = [(1 − 𝑒−𝜆𝑇)
2
], 𝑝62 = [(𝑒−𝜆𝑇)

3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)]  

𝑝27 = [(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝72 = 0,𝑝28 = [(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
]  , 𝑝82 = 0,𝑝29 = 0 , 

𝑝92 = 0, 𝑝33 = [(
3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)],𝑝34 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] 

, 𝑝43 = [(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)],𝑝35 = [(𝑒−𝜆𝑇)

3
(
3
2
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)

2
] , 𝑝53 = [(𝑒−𝜆(𝑇+𝑡))], 

𝑝36 = [(1 − 𝑒−𝜆𝑇)
3
], 𝑝63 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)],𝑝37 = [(

3
2
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 −

𝑒−𝜆𝑡)] , 𝑝73 = [(
2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(𝑒−𝜆𝑡)],𝑝38 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝83 =

[(𝑒−𝜆(𝑇+𝑡))] ,𝑝39 = [(𝑒−𝜆𝑇)
3
(1 − 𝑒−𝜆𝑡)

3
] , 𝑝93 = 0,𝑝44 = [(𝑒−𝜆𝑇)

2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)],𝑝45 = 0 , 

𝑝54 = 0,𝑝46 = [(1 − 𝑒−𝜆𝑇)
2
] , 𝑝64 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)

2
(
2
1
) (𝑒−𝜆𝑡)(1 − 𝑒−𝜆𝑡)] , 𝑝47 = [(

2
1
) (1 −

𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝74 = [(𝑒−𝜆𝑇)
2
(
2
1
) (1 − 𝑒−𝜆𝑡)(𝑒−𝜆𝑡)],𝑝48 = [(𝑒−𝜆𝑇)

2
(1 − 𝑒−𝜆𝑡)

2
], 𝑝84 =

0,𝑝49 = 0 , 𝑝94 = 0,𝑝55 = 0 ,𝑝56 = [(1 − 𝑒−𝜆𝑇)] , 𝑝65 = [(𝑒−𝜆𝑇)
3
(
3
1
) (𝑒−𝜆𝑡)

2
(1 − 𝑒−𝜆𝑡)] ,𝑝57 =

[(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝75 = 0,𝑝58 = 0 , 𝑝85 = 0,𝑝59 = 0 , 𝑝95 = 0 ,𝑝66 = [(1 − 𝑒−𝜆𝑇)
3
],𝑝67 =

[(
3
1
) (1 − 𝑒−𝜆𝑇)

2
(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ] , 𝑝76 = [(1 − 𝑒−𝜆𝑇)

2
] , 𝑝68 = [(

3
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 −

𝑒−𝜆𝑡)
2
], 𝑝86 = [(1 − 𝑒−𝜆𝑇)],𝑝69 = [(𝑒−𝜆𝑇)

3
(1 − 𝑒−𝜆𝑡)

3
], 𝑝96 = 1,𝑝77 = [(

2
1
) (1 − 𝑒−𝜆𝑇)(𝑒−𝜆𝑇)(1 −

𝑒−𝜆𝑡) ],𝑝78 = [(𝑒−𝜆𝑇)
2
(1 − 𝑒−𝜆𝑡)

2
] , 𝑝87 = [(𝑒−𝜆𝑇)(1 − 𝑒−𝜆𝑡) ],𝑝79 = 0 , 𝑝97 = 0, 𝑝88 = 0,𝑝89 = 0 , 

𝑝98 = 0, 𝑝99 = 0  

   Now, the cost model of the system per unit of time is calculated as a way to measure the performance of 

the system in the long period. Total maintenance cost per the cycle of the inspection period, as described 

below, is a base to be optimized in this study.    

𝑇𝐶 =
𝐸[𝑐𝑜𝑠𝑡 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒]

𝐸[𝑙𝑒𝑛𝑔ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒]
                             (1) 



99 
 

   The cost in a cycle consists of the inspection cost of components and it is independent of the number of 

failed components, cost of the system downtime, cost of repair facility and cost of the system repair after 

the failure of the system. Four types of costs are computed based on the states of the system.  

   The inspection cost of the components consists of monitoring all components and doing regular 

maintenance action on each component (𝐶𝑖) that its time is assumed negligible. The cost of the repair facility 

consists of technical repairer, unique materials and tools involved in performing the repair action on the 

failed component (𝐶𝑟); its time is assumed to be significant. The cost of the system repair after failure is 

defined as a type of cost spent on the system reactivating after it is down (𝐶𝑠). The final type of cost is 

related to the loss of the system availability per unit of time (𝐶𝑑). To compute the last cost, the expected 

downtime should be calculated based on the system state. As mentioned, 𝐶𝑠 is a function of time, which 

means that the more downtime increase, the more losses increase. 

   For a system with three redundant components as mentioned above, the system’s mean time to failure is 

calculated as below: 

𝑀𝑇𝑇𝐹 =
1

𝜆
+

1

𝜆
+

1

𝜆
−

1

2𝜆
−

1

2𝜆
−

1

2𝜆
+

1

3𝜆
=

11

6𝜆
                            (2) 

   In some states, the operating components are known and may be smaller than three redundant 

components. For instance, the transition from state 4, the system with one failed component, to state 6 in 

which two more components will be failed during 𝑇 (i.e., that one component has been failed is known at 

the begging of state 6), 𝑀𝑇𝑇𝐹 would be calculated as: 

𝑀𝑇𝑇𝐹46 =
1

𝜆
+

1

𝜆
−

1

2𝜆
=

3

2𝜆
                  (3) 

   As Mendes et al. [14] presented, for a system with three components, if the inspection interval is relatively 

small compared to the expected failure time and considering time-to-failure following an exponential 

distribution, the approximate expected downtime would be as follows. 

𝐸[𝜌] =
𝐴𝑇

𝑛+1
   for  𝐴𝑇 ≤ 𝐸[𝑇𝑇𝐹]                  (4) 

   As noted above, equation (3) is an approximation based on the condition that the inspection interval is 

less than the expected failure time of the system. As the time interval between inspections increases, the 

expected downtime becomes longer than the system’s mean time to failure and for 𝐴𝑇 > 𝐸[𝑇𝑇𝐹], the 

expected downtime would be approximated using (𝐴𝑇 − 𝑀𝑇𝑇𝐹). Generally, the expected downtime for a 

system would be approximated as below. 

𝐸[𝜌𝑖𝑗] = max {𝐴𝑇 − 𝑀𝑇𝑇𝐹𝑖𝑗,
𝐴𝑇

𝑛+1
}                    (5) 

   The above-mentioned equation also depends on states. The model studied in this paper includes two types 

of times, one is denoted by 𝑇  must be determined as a decision variable and another type of time is denoted 

by 𝑡 must be given as an input variable. A detailed explanation on 𝐸[𝜌𝑖𝑗] is described state by state as 

follows. The cost matrix for the above-mentioned models is presented as below: 

I. Model 1: Three redundant components with one repair facility 

𝐶 =

[
 
 
 
 
 
 
 
 
 
 𝐶𝑖

𝐶𝑖

0
0
0
0
0
0
0
0

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0
0
0
0

𝐶𝑖

𝐶𝑖

0
0
0
0
0
0
0
0

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌06 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌16 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0
0
0
0

0
0
0
0
0
0
0
0

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌26 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌36 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌46 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌56 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌66 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌76 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌86 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌96 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌07 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌08 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌09 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌17 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌18 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌19 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌27 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌37 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌47 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌57 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌67 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌77 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌87 + 𝐶𝑆

0

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌28 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌38 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌48 + 𝐶𝑆

0
0
0
0
0

0
0
0
0
0
0
0
0 ]
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   As seen in the matrix above, for instance, downtime cost must be incorporated into all states and their 

next state is state 6 (i.e., three failed components during 𝑇 and two failed components during 𝑡, the seventh 

column of the matrix). Thus, their 𝐸[𝜌𝑖𝑗] would be calculated as below: 

𝐸[𝜌06] = max (𝑇 − 𝑀𝑇𝑇𝐹06,
𝑇

4
) + 𝑡,𝐸[𝜌16] = max (𝑇 − 𝑀𝑇𝑇𝐹16,

𝑇

4
) + 𝑡,𝐸[𝜌26] = max (𝑇 −

𝑀𝑇𝑇𝐹26,
𝑇

3
) + 𝑡,𝐸[𝜌36] = max(𝑇 − 𝑀𝑇𝑇𝐹36,

𝑇

3
) + 𝑡,𝐸[𝜌46] = max (𝑇 − 𝑀𝑇𝑇𝐹46,

𝑇

3
) + 𝑡,𝐸[𝜌56] =

max (𝑇 − 𝑀𝑇𝑇𝐹56,
𝑇

2
) + 𝑡,𝐸[𝜌66] = max (𝑇 − 𝑀𝑇𝑇𝐹66,

𝑇

2
) + 𝑡,𝐸[𝜌76] = max (𝑇 − 𝑀𝑇𝑇𝐹76,

𝑇

2
) + 𝑡 

𝐸[𝜌86] = max (𝑇 − 𝑀𝑇𝑇𝐹86,
𝑇

2
) + 𝑡,𝐸[𝜌96] = 𝑇 + 𝑡  

   The important point to calculate the expected downtime for each one is that time 𝑡 (repair time) should 

be added as a fixed number, because state 6 includes three failed components during 𝑇 and no component 

could work during 𝑡 and it is known that the system is down during 𝑡. For other states, expected downtime 

can be calculated in the above-mentioned similar way.  

II. Model 2: Three redundant components with two repair facilities 

In a similar way to that obtained for the first model, the cost matrix for a system having three redundant 

components with two repair facilities model is represented as below. 

𝐶 =

[
 
 
 
 
 
 
 
 
 
 𝐶𝑖

𝐶𝑖

0
𝐶𝑖

0
0
0
0
0
0

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0

𝐶𝑖

𝐶𝑖

0
𝐶𝑖

0
0
0
0
0
0

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

0

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌06 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌16 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0

0
𝐶𝑖

0
0
0
0
0
0

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌26 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌36 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌46 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌56 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌66 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌76 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌86 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌96 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌07 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌08 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌09 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌17 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌18 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌19 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌27 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌37 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌47 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌57 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌67 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌77 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌87 + 𝐶𝑆

0

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌28 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌38 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌48 + 𝐶𝑆

0
𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌68 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌78 + 𝐶𝑆

0
0

0
𝐶𝑖 + 𝐶𝑑𝜌39 + 𝐶𝑆

0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 

   

 

III. Model 3: Three redundant components with three repair facilities 

Like two previous models, the cost matrix of the system having three redundant components with three 

repair facilities is calculated and represented as below. 

𝐶 =

[
 
 
 
 
 
 
 
 
 
 𝐶𝑖

𝐶𝑖

0
𝐶𝑖

0
0
𝐶𝑖

0
0
0

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0

𝐶𝑖

𝐶𝑖

0
𝐶𝑖

0
0
𝐶𝑖

0
0
0

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

𝐶𝑖 + 2𝐶𝑟

0

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌06 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 𝐶𝑖 𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌16 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
𝐶𝑖 + 𝐶𝑟

𝐶𝑖 + 𝐶𝑟

0
0

0
𝐶𝑖

0
0
𝐶𝑖

0
0
0

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌26 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌36 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌46 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌56 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌66 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌76 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌86 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌96 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌07 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌08 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌09 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌17 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌18 + 𝐶𝑆 𝐶𝑖 + 𝐶𝑑𝜌19 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌27 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌37 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌47 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌57 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌67 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌77 + 𝐶𝑆

𝐶𝑖 + 2𝐶𝑟 + 𝐶𝑑𝜌87 + 𝐶𝑆

0

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌28 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌38 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌48 + 𝐶𝑆

0
𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌68 + 𝐶𝑆

𝐶𝑖 + 𝐶𝑟 + 𝐶𝑑𝜌78 + 𝐶𝑆

0
0

0
𝐶𝑖 + 𝐶𝑑𝜌39 + 𝐶𝑆

0
0

𝐶𝑖 + 𝐶𝑑𝜌39 + 𝐶𝑆

0
0
0 ]

 
 
 
 
 
 
 
 
 
 

 

The expected cost in a cycle can be approximated by: 

𝐸[𝑐𝑜𝑠𝑡 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒] = ∑ ∑ 𝑛𝑖𝑗𝑝𝑖𝑗𝑐𝑖𝑗𝑖∈𝐼  𝑗∈𝐽                   (6) 

Where, 𝑛𝑖𝑗 denotes the expected number of times that the process is in state 𝑗 given that it is started from 

state 𝑖. It for all 𝑖 and 𝑗 incorporate matrix 𝑁 calculated from the equation below: 

𝑁 = (1 − 𝑄)−1                                               (7) 

Where 𝑄 is the transient part of matrix 𝑃. 
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The length of the cycle means the time of a period consists of the time to repair (𝑇) and repair time(𝑡):  

𝐸[𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒] = 𝑇 + 𝑡                                                                                             (8) 

Based on two equations above, the total cost as a function of 𝑇 to be minimized is shown below: 

 𝑇𝐶(𝑇) =
∑ ∑ 𝑛𝑖𝑗𝑝𝑖𝑗𝑐𝑖𝑗𝑖∈𝐼  𝑗∈𝐽

𝑇+𝑡
                                (9) 

To derivate the optimum point of 𝑇, the equation above must be minimized. Some numerical examples are 

presented to demonstrate the model. 

3-Numerical examples and simulation experiments 
   In this section, numerical examples are given to validate theoretical results in which Optimal inspection 

interval is determined by minimizing total cost. Then, to evaluate the performance of the policy, the 

simulation experiments are carried out. 

3-1-Numerical examples 
   The application of the proposed model is illustrated by considering several examples. Numerical 

examples for the mentioned models are presented and discussed in the sequence below. Based on the three 

mentioned models, equal parameters are used to compare these models. 𝜆 = 0.027, 𝐶𝑖 = 20000, 𝐶𝑟 =
20000, 𝐶𝑑 = 50000 ,  𝐶𝑠 = 100000 and 𝑡 = 2 hours are used as input parameters for three models. All 

parameter ban be estimated statistically by the method of maximum likelihood. 

Fig 5 shows the behavior of the function 𝑇𝐶 concerning the time interval between two inspections for three 

models, and the optimal time interval is depicted in the graphs as well.  

 

Fig 5. Numerical examples for systems with three redundant components and various number of one repair facilities 
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   The minimum of the expected total cost per unit of time of each example is obtained by utilizing numerical 

search technique and presented in table 2. 

Table 2. A cost comparison for three models and their results. 

Model The number of 

repair facility 

Optimal time 

interval between 

inspection 

Optimal expected 

total cost per unit of 

time 

Cost reduction (%) 

Model 1 1 10.6 hr 7321314.65 - 

Model 2 2 12.6 hr 6474433.42 11.5 

Model 3 3 13.2 hr 6343337.01 13.3 
 

   According to figure 5 and the results presented in table 2, the best model for a system with three redundant 

components is model 3. It seems that three repair facilities can be appropriate considering the repair facility 

cost and other cost types. Model 3 can be used as an applicable model for its cost reduction of approximately 

13.3 % in the expected total cost per unit of time in comparison with other models. It can be logical that, 

due to more maintenance resource for model with three repair facilities, the optimal time interval for model 

3 is longer than others.  

3-2-Simulation experiments 
   To evaluate the performance of the policy, simulation experiments under different parameters sets were 

carried out. The distributions of repair times are exponential distributions which is the same as in our policy. 

The parameter sets are shown in table 3 and the results of the experiments are shown in table 4. 

Table 3. Parameter sets of the scheme 

 𝐶𝑖 𝐶𝑟 𝐶𝑑 𝐶𝑠 𝜆 

Set 1 3 300000 825000 80000 0.01 

Set 2 40 250000 900000 70000 0.02 

Set 3 350 120000 123000 90000 0.04 

Set 4 4800 140000 410000 25000 0.06 

Set 5 27000 280000 750000 50000 0.07 

 

Table 4. Total cost per set for model 1 

 Set 1 Set 2 Set 3 Set 4 Set 5 

Model 1 Optimal expected total cost 

per unit of time 678485.33 778480.01 922411.00 1895620.32 8462702.34 

Optimal time interval 

between inspection 7.4 8 9.7 11.6 46.8 

Model 2 Optimal expected total cost 

per unit of time 657890.13 751324.01 901200.60 1563236.01 8188654.26 

Optimal time interval 

between inspection 9.1 10.3 12 14.1 49.1 

Model 3 Optimal expected total cost 

per unit of time 601967.20 718902.64 798321.76 986543.00 7712145.69 

Optimal time interval 

between inspection 11.2 14.2 16.1 19.3 54.7 

    

   The minimum of the expected total cost per unit of time of each experiment is obtained by utilizing 

numerical search technique and presented in table 4. According to the results presented in table 4, the best 

model for a system with three redundant components is model 3. It seems that three repair facilities can be 

appropriate considering the repair facility cost and other cost types considering various cost values in 

experiments. 
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4-Sensitivity analysis 
   A sensitivity analysis was conducted for model 1 in order to evaluate the performance of the input 

parameters (i.e., 𝜆, 𝐶𝑖 ,𝐶𝑟 , 𝐶𝑑 ,  𝐶𝑠 and particularly 𝑡 the repair time) and to demonstrate the effect of the 

inputs on the expected total cost. It is noted that all input were analyzed based on the minimal 𝑇𝐶.  

 

 

Fig 6. The effect of hazard rate 𝜆 on the expected total cost per unit of time for model 1 

   According to figure 6, the effect of hazard rate (𝜆) implies that a higher hazard rate increases the expected 

total cost per hour and decreases the optimal interval between inspections (𝑇). If we divide all figures in 

sensitivity analysis section preparing the effect of input parameter on 𝑇𝐶 and optimal 𝑇 into two areas (after 

optimal time interval between inspections and before optimal time interval between inspections), it can be 

stated that the difference between 𝑇𝐶s is significant after optimal time interval inspections. It would be 

logical to say that a higher time interval between inspections can increase the probability of failure in more 

components, and the probability of a system down can be increased as well. 

 

 

Fig 7. The effect of inspection cost 𝐶𝑖 on the expected total cost per unit of time for model 1 
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Fig 8.  The effect of maintenance resource cost 𝐶𝑟 on the expected total cost per unit of time for model 1 

   Figure 7 shows the effect of inspection cost on components per period. As seen, when the inspection cost 

increases, both the expected total cost per hour and optimal time interval inspections increases. As seen in 

Fig 8, like inspection cost, repair facility cost exactly has an effect that increasing in repair facility cost 

leads to increases in expected total cost and optimal time interval between inspections. In these figures, the 

difference between 𝑇𝐶s before optimal time interval between inspections (𝑇) is more significant than after 

the optimal 𝑇. However, fewer time intervals between inspections (i.e., a greater number of inspection 

periods) would lead to higher costs spent on inspection and repair facilities. 

 

 

Fig 9. The effect of downtime cost 𝐶𝑑 on the expected total cost per unit of time for model 1 
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Fig 10. The effect of system reactivating cost 𝐶𝑠 on the expected total cost per unit of time for model 1 

 

 

Fig 11. The effect of repair time 𝑡 on the expected total cost per unit of time for model 1 

   The effect of downtime cost on 𝑇𝐶 and optimal 𝑇 is presented in Fig.9. As shown, increases in the 

downtime cost would produce increases in the 𝑇𝐶 and optimal 𝑇.    

   The effect of the cost of the reactivating the system after failure can be seen in Fig.10. It is shown that, 

like other parameters, higher cost of reactivating will produce a higher 𝑇𝐶 and optimal 𝑇.  

   One of the contributions considered in this paper is based on repair time (𝑡). Against the research 

mentioned in the introduction, main advantage of this paper is to incorporate repair time as a noticeable 

factor in the maintenance model. The last figure, (i.e., figure 11) is related to the variability of repair time 

and its effect on 𝑇𝐶 and optimal 𝑇. Fig.11 shows that higher 𝑡 leads to higher optimal 𝑇𝐶 and 𝑇. It is noted 

that the effect of 𝑡 conversely produces less 𝑇𝐶 after optimal 𝑇. However, it seems that during 𝑡 other 

possible components either work or fail as well. 
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5-Case study 
   In power generation industry, pumps can play a vital role and reliable pump would transfer high solid fly 

ash slurry through long pipelines. With environmental protection, the engineering consultants are supposed 

to design pump systems that could manage both the flow and high pressure required. Any failure must be 

handled and downtime would be expensive for this kind of system. The first technique is to consider 

redundancy and the second one is to plan efficiently maintenance of the pumps. Our study is based on this 

case study; however, we do not have access right to a real data.  

6-Conclusions  
  This section is divided into four parts; the first one is a brief description of what have been done and the 

novelty, the second part is related to the main parameters and the way the system is investigated, the third 

part provided the summary of results and the final part is associated to suggestions for future researches.   

6-1-A brief description 
   Discrete-time Markov chain was used to model an applicable redundant system noticing repair time and 

the number of repair facilities as two more essential variables. This paper presented three models based on 

the number of facilities to analyze the reliability and the optimal time interval between inspections based 

on various costs involved in the system. 

6-2-Investigation direction 
   In every preventive maintenance model, due to a direct relation to maintenance costs, the inspection time 

interval is an important issue raised from a tradeoff between availability and costs. It is known that long 

time interval between inspections can decrease costs related to inspection costs and decreases the 

availability of the system. Still, it might increase downtime cost and repair cost. An appropriate time interval 

between inspections can be obtained considering system availability and the lowest possible cost.  

   Using a discrete Markov chain, a model based on the expected total cost per time was established to 

ensure that a proper time interval achieving the lowest possible cost is obtained by considering repair time 

and the number of repair facilities. The main advantage of the model proposed in this paper is to incorporate 

repair time and the number of facilities as substantial variables into the preventive maintenance model. 

However, in the real world, there exist complex systems in which repairing takes significant time and is 

costly.  

6-3-Results 
   Three models were studied and numerical examples were solved by search technique in Python to 

demonstrate the efficiency of the models. A comparison was made between the three models.  

 

 Model 1 consists of three redundant components with one repair facility,  

 Model 2 consists of the three redundant components with two repair facilities,  

 Model 3 consists of three redundant components with three repair facilities.  

  The best model for a system with three redundant components is model 3. It seems that three repair 

facilities can be appropriate considering the repair facility cost and other cost types. Model 3 can be used 

as an applicable model for its cost reduction of approximately 13.3 % in the expected total cost per unit of 

time in comparison with other models. It can be logical that, due to more maintenance resource for model 

with three repair facilities, the optimal time interval for model 3 is longer than others. 

6-4-Future research 
   The model presented in this paper can be studied for other redundant structures, such as cold-standby 

systems, k-out-of-n systems, and load-sharing systems, as future research. Other extensions to this study 

would be a study on 𝑛 redundant components in which 𝑛 would be considered as a decision variable, and a 
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study would be started on the classified repair facilities. The classified repair facilities can be developed in 

the repair quality and the time it consumes to restore the failed components.  
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