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                                                            Abstract 
Considering the extensive application of dynamic multi-objective optimization 

problems (DMOPs) and the significance of the quality of solutions, developing 

optimization methods to find the finest solutions takes a privileged position, attracting 

considerable interest. Most optimization methods involve multiple conflicting 

objectives that change over time. The present article develops an electromagnetic field 

optimization (EFO) using decomposition, crowding distance, and the quantum 

behavior of particles techniques to solve multi-objective problems. In the proposed 

algorithm, the position of new particles is determined between the neighbors within 

the MOEA/D by drawing inspiration from the quantum delta potential well model, 

the nonlinear trajectory of quantum-behaved particles, and the interactions of 

electromagnetic particles introduced from positive and negative fields, which can 

offer superior exploration and exploitation. To develop the proposed algorithm for 

solving dynamic problems, the mean difference between particles' center of mass in 

the two latest changes to predict the extent of change is applied along with polynomial 

mutation and random reproduction. A total of 9 benchmarks from the set of DF 

functions and two metrics, i.e., MIGD and MHV, are used to assess the performance 

of the proposed algorithm. The results from 20 independent runs of the proposed 

algorithm on each benchmark function are compared with the results from other 

algorithms. The Wilcoxon Rank-Sum non-parametric statistical test is applied at the 

significance level of 5% to compare the mean results. The experimental results 

indicated that the proposed algorithm gains a significant superiority in metrics MIGA 

and MHV in most experiments. The simultaneously great results of these two metrics 

indicate a superior distribution and approximation of the Pareto front.  
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1-Introduction 
   We should make different decisions in our life, which are accompanied by problem-solving and data 

analysis. The best solution for these problems is usually searched, known as finding the optimal point 

or simply "optimization." Solving optimization problems requires advanced optimization techniques 

most of the time. Nature-inspired algorithms can be a good and efficient option for solving these 

problems. It is not an exaggeration if saying that optimization exists everywhere, from engineering 

design to commercial planning. Since resources are always limited in the real world, solutions must be 

found for the optimal use of these resources under different constraints. Because of the nonlinear nature 

of most real-world problems, complicated optimization tools are required to deal with them (Yang, 

2020). 

   Classical optimization algorithms are insufficient in large scale combinatorial problems and in 

nonlinear problems. Hence, metaheuristic optimization algorithms have been proposed. General 

purpose metaheuristic methods are evaluated in nine different groups: biology-based, physics-based, 

social-based, music-based, chemical-based, sport- based, mathematics-based, swarm-based, and hybrid 

methods which are combinations of these (Akyol and Alatas, 2017) and (Chobar et al., 2022). Each 

group can be divided into other sub-groups. For instance, Alatas and Bingol (2020) and Zandbiglari et 

al., (2023) introduce two ray optimization and optics-inspired optimization algorithms, as light-based 

intelligent optimization algorithms and analyses their performance. 

   On the other hand, optimization algorithms are evaluated in two different groups: single-objective 

and multi-objective. The majority of problems in the real world have different inconsistent objectives. 

In such problems, instead of a single optimal solution, there are a set of optimal solutions that are not 

superior to each other if all objectives are considered. 

   When more than one objective is considered, a metaheuristic algorithm cannot compare solutions. In 

this situation, researchers have compared solutions using the Pareto dominance operator (Asrari et al. 

2015) and (sharifzadegan and Pourghader Chobar, 2022). The mechanism of most metaheuristic multi-

objective algorithms is almost the same. An important component is an archive or repository to store 

dominated solutions during the optimization. Multi-objective explorations continuously update this 

archive to improve the non-dominated solution in the archive. Another responsibility is finding different 

non-dominated solutions that are uniformly distributed between all objectives (Deb, 2014), (Pourghader 

Chobar et al., 2021) and (Eshghali et al., 2023). 

   In the literature, many algorithms have been presented for solving multi-objective problems. One of 

the most focused algorithms is the non-dominated sorting genetic algorithm (NSGA-II) which uses non-

dominated sorting methods and crowding distance (Deb et al., 2002), (Pourghader Chobar et al., 2022) 

and (Asgari et al., 2022). Simulation results have shown better expansion of solutions and better 

convergence close to the Pareto optimal front for this algorithm relative to PAES and SPEA. Another 

outlined algorithm is the multi-objective particle swarm optimization (MOPSO) (Coello and Lechuga, 

2002 May) and (Maadanpour Safari et al., 2021). In this algorithm, a repository is designed that stores 

non-dominated solutions. The repository size must be kept constant at the required level for which the 

adaptive network mechanism is used. So, for a larger number of non-dominated solutions in a specific 

part of the network, it is more probable to eliminate a solution and less probable to select the global 

optimum from these solutions.  

   Some conventional methods decompose multi-objective problems into several single-objective 

problems to solve them conveniently. To this end, Zhang and Li (2007) proposed a multi-objective 

evolutionary algorithm based on decomposition (MOEA/D), which initially decomposes a multi-

objective problem into some sub-problems and then simultaneously optimizes these sub-problems. 

Every sub-problem is optimized only using information about its adjacent sub-problem. Empirical 

results showed that MOEA/D with simple decomposition methods outperforms MOGLS and NSGA-II 

in continuous multi-objective optimization problems. This method has been the centre of attention. 

Zhang et al. (2009, May) designed a numerical resource allocation strategy that focused the algorithm 

on more promising sub-problems. 

   If the optimization problem is time-dependent, the optimization will be dynamic. Deb et al. (2007, 

March) extended NSGA-II to solve dynamic multi-objective problems and named it dynamic NSGA-

II (DNSGA-II). This algorithm employs polynomial mutation for the optimization process, non-

dominated sorting for selecting non-dominated solutions, and crowding distance concept to broaden 

solutions' dispersion. In order to recognize variations in the environment, this algorithm selects some 
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population members randomly and re-evaluates their objective functions. If the environment changes, 

a percentage of population members are randomly selected and replaced by random solutions (DNSGA-

II-A), or some are randomly selected and substituted for their previous value after applying mutation to 

them (DNSGA-II-B). 

   Zeng et al. (2006, July) proposed a dynamic multi-objective evolutionary algorithm (DOMOEA) for 

solving dynamic multi-objective problems. This algorithm uses orthogonal crossover and linear 

crossover operators to produce offspring. If the number of obtained solutions exceeds the intended 

population, a sorting method named crowding distance is used to eliminate excessive solutions. Some 

members of the population are randomly selected and reevaluated to detect changes in the environment. 

All population members are reevaluated in the new environment if a change occurs. 

   Du and Li (2008) developed a new algorithm for adapting to environmental variation by modifying 

PSO. In this algorithm, all particles are divided into two parts, and two new strategies, Gaussian local 

search for enhance the convergence ability and differential mutation for extend the searching area, are 

introduced into these two parts. This can enhance the ability of catching up with the changing optimum. 

This algorithm has been compared with other algorithms, and results have confirmed the better 

performance of the proposed algorithm. 

   Physics is a natural science with infinite fascinating phenomena. Quantum mechanics is a theory in 

physics that describes many aspects of nature at small (atomic and subatomic) scales. Sun et al. (2004, 

June) proposed a new strategy based on quantum mechanics. Inspired by the convergence analysis of 

PSO, they studied a single particle of the PSO system, which moved in multi-dimensional quantum 

space and developed a quantum-delta potential well model of PSO. Then, they proposed a trial method 

of parameter control for this model. The experiment result shows many advantages of quantum-behaved 

particle swarm optimization (QPSO) to the conventional PSO. Wang et al. (2007) introduced a new 

version of PSO based on quantum angles and their update using PSO. Their results indicate the much 

better performance of this algorithm relative to comparative algorithms. Inspired by concepts in 

quantum mechanics, Li et al. (2012) presented a cooperative QPSO, where a particle firstly obtains 

several individuals using the Monte Carlo method, and these individuals cooperate between them. 

Experiment results indicate that this algorithm outperforms other benchmark algorithms. 

   While there are ample successful optimization algorithms, the philosophy of scientific advancement 

requires a constant search for designing better methods. We still lack an algorithm that can provide the 

best results for each and every problem. Therefore, it is crucial to propose modifications or new 

approaches. Along the same line, the present research seeks to present an algorithm to solve dynamic 

and multi-objective optimization problems efficiently. 

   Electromagnetic field optimization (EFO) (Abedinpourshotorban et al., 2016), is a relatively new 

physics-based algorithm, outperforms widely-known single-objective optimization algorithms. 

However, it still lacks a dynamic and multi-objective version. In this research, we present a method to 

develop an electromagnetic field algorithm for solving dynamic and multi-objective problems 

efficiently. This method uses the techniques and concepts of decomposition, crowding distance, the 

quantum behavior of particles, and new location prediction. The proposed algorithm is inspired by the 

quantum delta potential well model and the nonlinear trajectory of quantum-behaved particles in Sun 

(2004, June), integrating them with electromagnetic field optimization. While this method offers an 

excellent rate of convergence, an accelerated rate of convergence implies a rapid decline in diversity. 

This decreased diversity can result in the aggregation of electromagnetic particles in a single region, 

which contradicts our objective to achieve a well-distributed Pareto set. Considering the significance of 

diversity in multi-objective problems, the introduction of electromagnetic particles from positive and 

negative fields based on crowding distance offers the chance of detecting a better-distributed Pareto set. 

A fine combination of diversity and convergence, which ultimately gives fine solutions, is provided 

through the interaction and competition between these particles in the quantum delta potential well 

model between the neighbors within the MOEA/D and based on the decomposition technique and 

Tchebycheff approach to determine the position of new particles. For extending the proposed method 

to solve dynamic problems as well, the average difference in the centre of gravity of particles in two 

previous changes is used to predict the new change. 

   In the following, the second section presents those works related to this study, including EFO, 

MOEA/D using the Tchebycheff approach, and QPSO. The third section outlines the proposed multi-
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objective algorithm and applied approaches. In the fourth section, the simulation and experiment results 

are analysed. Finally, the fifth section describes the conclusions. 

 

2-Related works 
2-1-Electromagnetic field optimization 
   EFO is a meta-heuristic algorithm inspired by physics and the behavior of electromagnets with 

different polarities and takes advantage of a nature-inspired ratio known as the golden ratio. In this 

algorithm, a possible solution is assumed to be an electromagnetic particle made of electromagnets, and 

the number of electromagnets is determined by the number of variables of the problem. EFO is a 

population-based algorithm where the population is divided into three fields (positive, negative, and 

neutral). Attractive and repulsive forces among electromagnets of these three fields direct particles 

toward global minima. The golden ratio determines the ratio between attraction and repulsion forces to 

help particles converge quickly and effectively (Abedinpourshotorban et al., 2016). 

   In contrast to a permanent magnet, an electromagnet has a single polarity determined by the electrical 

current direction. There are two different forces among electromagnets: attraction and repulsion. 

Electromagnets with the same polarity repel each other, and those with opposite polarity attract each 

other. The proposed algorithm utilizes these concepts and replaces the ratio between attraction and 

repulsion forces with the golden ratio, which helps particles to adequately explore the problem search 

space and find a near-optimal solution (Abedinpourshotorban et al., 2016). 

   This algorithm is population-based, and each solution vector is represented by one group of 

electromagnets. The number of electromagnets of an electromagnetic particle is determined by the 

number of variables of the optimization problem. Moreover, all electromagnets of the same 

electromagnetic particle have the same polarity. However, each electromagnet can apply a force of 

attraction or repulsion on the peer-electromagnets that correspond to the same variable of the 

optimization problem (Eshghali et al., 2023). 

   In this algorithm, a population of electromagnetic particles is initially generated randomly, and a 

fitness function evaluates the fitness of each particle; then, particles are sorted according to their fitness. 

Second, sorted particles are divided into three groups. The first group, the positive field, consists of the 

fittest electromagnetic particles with positive polarity, and the second group, the negative field, consists 

of the electromagnetic particles with the lowest fitness and negative polarity. The remaining 

electromagnetic particles form a group called the neutral field, which has a slight negative polarity 

almost near zero. Figure 1 illustrates the force direction between electromagnets (Abedinpourshotorban 

et al., 2016). 

 

Fig 1. Force direction among electromagnets (Abedinpourshotorban et al., 2016)  
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   In each iteration of the algorithm, a new electromagnetic particle is shaped and evaluated by a fitness 

function. If the generated electromagnetic particle is fitter than the worst particle in the population, then 

the generated particle will be inserted into the sorted population according to its fitness and obtain a 

polarity based on its position in the population; moreover, the worst particle will be eliminated. This 

process continues until the termination conditions are met. The coexistence of two opposite forces 

among electromagnets and the fact that the new solution is generated by moving a distance away from 

bad solutions and moving closer to the good solutions cause effective search and fast convergence. 

However, to keep diversity and avoid local minima, randomness is an indispensable part of this 

algorithm. Therefore, for some of the generated electromagnetic particles, only one of the 

electromagnets is changed with a randomly generated electromagnet (Abedinpourshotorban et al., 

2016). 

   For developing the search strategy in this algorithm, a randomly selected electromagnet from the 

neutral field is affected (virtually) by selected electromagnets from the positive field (attraction) and 

negative field (repulsion) to determine the position of the generated electromagnet. The new position is 

calculated as equation (1). 

𝐸𝑀𝑃𝑗
𝑁𝑒𝑤 = 𝐸𝑀𝑃

𝑗

𝐾𝑗 + ((𝜑 ∗ 𝑟) ∗ (𝐸𝑀𝑃
𝑗

𝑃𝑗 − 𝐸𝑀𝑃
𝑗

𝐾𝑗)) − (𝑟 ∗ (𝐸𝑀𝑃
𝑗

𝑁𝑗 − 𝐸𝑀𝑃
𝑗

𝐾𝑗))                      (1) 

   Where EMP is the electromagnetic particle; r is the random value between 0 and 1 (generated once 

for each new electromagnetic particle; P is the random index from the positive field (generated for each 

electromagnet of the generated particle); N is the random index from the negative field. 

   The general flow of EFO is presented in figure 2. Ps-rate is the probability of selecting electromagnets 

of the generated electromagnetic particle from electromagnets of the positive field without changing 

them, and R_rate is the possibility of changing one electromagnet of the generated electromagnetic 

particle with a randomly generated electromagnet. Also, N_Var represents the number of variables of 

the problem. 
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Fig 2. General flow of EFO (Abedinpourshotorban et al., 2016)  

2-2-MOEA/D based on Tchebycheff approach  
   In the Tchebycheff approach, 𝜆1, … , 𝜆𝑛 is the weight vector, and 𝑧∗ is the reference point. This 

approach can decompose the Pareto front approximation sub-problem into N scalar optimization 

problems, and the objective function of the jth sub-problem is defined as equation (2) (Zhang and Li, 

2007). 
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𝑔𝑡𝑒(𝑥|𝜆𝑗, 𝑧∗) = max
1≤𝑖≤𝑚

{𝜆𝑖
𝑗|𝑓𝑖(𝑥) − 𝑧𝑖

∗|}                                                                                                 (2) 

   Where 𝜆𝑗 = (𝜆1
𝑗
, … , 𝜆𝑛

𝑗
)𝑇 . MOEA/D minimizes all objective functions simultaneously in one run. In 

this algorithm, the neighborhood of the weight vector 𝜆𝑖 is defined as a set of several adjacent weight 

vectors in {𝜆1, … , 𝜆𝑛}. The population includes the obtained best solution for sub-problems. For 

optimization of a sub-problem in MOEA/D, only the current solutions of its neighboring sub-problems 

are used. Information exchanges always exist between neighborhoods in MOEA/D. Each sub-problem 

is optimized only using the information of sub-problems in its neighborhood. The main steps of this 

algorithm are as follows: 

Step 1: Initialization 

Set archive equal to null. Calculate the Euclidean distance between each pair of weight vectors. Then, 

specify the closest weight vectors to every weight vector. Suppose 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇} for 𝑖 = 1,… , 𝑁, 

where T represents the closest weight vectors. 

Afterward, generate an initial population, calculate their objective functions, and initialize the ideal 

vector z. 

Step 2: Updating 

Generate a new solution (y) collaborating with neighboring solutions. Then, update the ideal vector z. 

Update the neighboring solutions so that if 𝑔𝑡𝑒(𝑦|𝜆𝑗, 𝑍) ≤ 𝑔𝑡𝑒(𝑥𝑗|𝜆𝑗, 𝑍) for each 𝑗 ∈ 𝐵(𝑖), then 𝑥𝑖 =
𝑦. Lastly, update the archive. 

Step 3: Stop if the termination conditions are met; otherwise, return to step 2 (Zhang and Li, 2007). 

  

2-3- Quantum-behaved particle swarm optimization 
   Inspired by the analysis of the convergence of PSO, this algorithm investigates a single particle from 

a system of particles in multi-dimensional quantum space and proposes a quantum delta-potential well 

model of PSO (Sun et al., 2004 June). 

   In quantum mechanics, the state of motion of a particle is given by wave function 𝜓. Schrodinger 

equation is expressed as equation (3) to present the state of a particle over time. 

𝑗ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = (−

ℏ2

2𝑚
𝛻2 + 𝑉(𝑥))𝜓(𝑥, 𝑡)                                             (3) 

   The potential energy of each particle in the one-dimensional delta potential well is defined by equation 

(4), and the position of each particle is expressed by equation (5). Point P is the center of the potential 

well, and L is the length of the potential well in which particles are placed. Parameter L is formulated 

as equation (6). 

𝑉(𝑥) = −𝛾 ∗ 𝛿(𝑥 − 𝑝)                                                                                      (4) 

𝑥 = 𝑝 ±
𝐿

2
𝑙𝑛(

1

𝑢
)                                                                                            (5) 

𝐿(𝑡) =
1

𝑔
. |𝑋𝑘(𝑡) − 𝑃|                                                                        (6) 

So, the position of each particle is given by equation (7). 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑃𝑖,𝑗(𝑡) ± 𝛽. |𝑃𝑖,𝑗(𝑡) − 𝑋𝑖,𝑗(𝑡)|. 𝑙𝑛(
1

𝑢
)                                                                    (7) 

 

2-4-Dynamic multi-objective optimization algorithm based on EFO and quantum 

mechanics 
   The strategies and parameters applied in the proposed algorithm for solving multi-objective problems 

include Tchebycheff decomposition, crowding distance, and particle modeling in the delta potential 

well. 
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   The proposed algorithm is developed using the general framework of MOEA/D (Zhang and Li, 2007).  

First, weight vectors 𝜆 are generated with a uniform distribution to all population members. Then, the 

Euclidean distance between these vectors is calculated, and based on this distance, the closest weight 

vectors to a specific weight vector are specified. Each particle 𝑖 = (1,… ,𝑁) has a set of 

neighbors 𝐵(𝑖) = {𝑖1, … , 𝑖𝑇}, where T represents the closest weight vectors. Afterward, an initial 

population is generated, their objective functions are determined, and ideal vector Z is initialized. In the 

collaboration phase, different methods can be applied to generate a new solution. In the proposed 

algorithm, the position of particles is determined by getting inspired by the quantum delta-potential well 

model and nonlinear movement of quantum-behaved particles (Sun et al., 2004 June), as well as the 

interaction of electromagnetic particles introduced from positive and negative fields and cooperation 

between neighbors. 

   The positive field is created in every execution of the algorithm through the collection of particles, 

which are non-dominated or compromised relative to other particles and each other and have the largest 

crowding distance. The variable P_field determines the ratio of the number of these particles to the non-

dominated ones. Also, the negative field is generated in every execution of the algorithm from collecting 

those particles, which are dominated relative to a single or some particles or each other and have the 

smallest crowding distance. N_field represents the ratio of the number of these particles to all dominated 

particles. Therefore, sorting all particles in terms of crowding distance in each iteration is required. The 

population is first sorted in ascending order to calculate the crowding distance based on the objective 

function value. Then, the distance is considered equivalent to infinity for each dimension's first and last 

solutions. For the middle solutions, the crowding distance is considered equal to the normalized 

difference of the value of the objective function between two adjacent neighbors. The overall value of 

the crowding distance is the sum of distances obtained in each dimension. 

   In the proposed strategy, P is an electromagnetic particle from the positive field, and N is an 

electromagnetic particle from the negative field. Equations (8) and (9) define the positions associated 

with the former and latter particles. 

𝑃𝑗 =
(𝜙1∗𝐸𝑀𝑃𝑗

𝑝𝑗+𝜙2∗𝐸𝑀𝑃𝑗
3𝑗)

𝜙1+𝜙2
                                                           (8) 

𝑁𝑗 =
(𝜙1∗𝐸𝑀𝑃𝑗

𝑛𝑗
1
+𝜙2∗𝐸𝑀𝑃𝑗

𝑛𝑗
2
)

𝜙1+𝜙2
                                                           (9) 

Where 𝐸𝑀𝑃𝑝 is the random electromagnetic particle from the positive field, and 𝐸𝑀𝑃3 is the third 

particle with the largest crowding distance in the positive field, and 𝐸𝑀𝑃𝑛
1
 and 𝐸𝑀𝑃𝑛

2
 are the random 

electromagnetic particles from the negative field. j is the variable index (index of generated 

electromagnet). Also, 𝜙1 and 𝜙2 represent random numbers between 0 and 1. 

   The position of two new electromagnetic particles, with inspiration from the quantum delta-potential 

well model (Sun et al., 2004 June), as well as interaction of electromagnetic particles from positive and 

negative fields in collaboration with neighbors’ k and l, is determined according to equations (10) and 

(11). In these equations, 𝜑 is a random number in the range of (0, 1), u is another random number in 

the range of (0,1], and g is the golden ratio (approximately 1.61). The new electromagnets are generated 

with the probability of Pg_rate. 

𝑋𝑗
𝑖(𝑡 + 1) = 𝑃𝑗(𝑡) + 𝜑 ∗ (𝑔 ∗ (𝑃𝑗(𝑡) − 𝐸𝑀𝑃𝑗

𝑘(𝑡)) − (𝑁𝑗(𝑡) − 𝐸𝑀𝑃𝑗
𝑘(𝑡))). 𝑙𝑛(

1

𝑢
)              (10) 

𝑌𝑗
𝑖(𝑡 + 1) = 𝑃𝑗(𝑡) + 𝜑 ∗ (𝑔 ∗ (𝑃𝑗(𝑡) − 𝐸𝑀𝑃𝑗

𝑙(𝑡)) − (𝑁𝑗(𝑡) − 𝐸𝑀𝑃𝑗
𝑙(𝑡))). 𝑙𝑛(

1

𝑢
)                           (11) 

   Where 𝐸𝑀𝑃𝑘 is a k-neighboring electromagnetic particle, and 𝐸𝑀𝑃𝑙 is an l-neighboring 

electromagnetic particle. With the contribution of two neighbors, k and l, the position of a new particle 

is obtained from equation (12):  
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𝐸𝑀𝑃
𝑗

𝑖
(𝑡 + 1) =

(𝜙1∗𝑋𝑗
𝑖
(𝑡+1)+𝜙2∗𝑌𝑗

𝑖
(𝑡+1))

𝜙1+𝜙2
                                           (12) 

   The new particle is evaluated, and ideal point Z is updated. In the competition phase, if 𝑔𝑡𝑒(𝐸𝑀𝑃 
𝑖
(𝑡 +

1)|𝜆𝑗, 𝑍) ≤ 𝑔𝑡𝑒(𝐸𝑀𝑃 
𝑗
(𝑡)|𝜆𝑗, 𝑍) for each 𝑗 ∈ 𝐵(𝑖), then 𝐸𝑀𝑃𝑗(𝑡) = 𝐸𝑀𝑃𝑖(𝑡 + 1). 

   Then, each particle is compared with others, and if any other particle does not dominate, it is assigned 

to the positive pole. Suppose the memory of the positive pole is filled. In that case, the second measure 

(crowding distance) is employed to identify those particles with more contribution in the approximate 

Pareto distribution, and particles with lower preference are eliminated. Also, particles, which are 

dominated by even one other particle, are inserted into the negative pole. 

   At the end of each iteration, all particles in the positive pole are compared, and dominated particles 

are removed. Then, the remaining particles are sorted with their crowding distance. 

   For developing an algorithm to solve time-dependent problems, in order to recognize changes in the 

environment, ten percent of the population with uniform probability distribution is selected randomly, 

and their objective functions are evaluated. This portion of the population is named the detection 

population. In each iteration, if some members of the detection population confirm the change by 

reevaluating the objective function and comparison with the value of the objective function in the 

previous iteration, the algorithm starts the change adaptation phase. In this phase, the average position 

of particles is first calculated. Mutation and random regeneration are applied to half of the particles if 

the change has occurred for the first time. In this process, the polynomial mutation of Deb and Deb, 

(2014) is used, as expressed by equation (13): 

𝐸𝑀𝑃′ = 𝐸𝑀𝑃 + 𝛿(𝑈𝑏 − 𝐿𝑏)                                                         (13) 

   Where 𝐸𝑀𝑃′ is mutated electromagnetic particle, Ub is the upper bound, and Lb is the lower bound 

of the space in each dimension, and 𝛿 is given by equation (14): 

{
𝛿 = (2 ∗ 𝑢)

1

1+𝜂𝑚
−1
,  𝑓𝑜𝑟 𝑢 ≤ 0.5.

𝛿 = 1 − (2 ∗ (1 − 𝑢))
1

1+𝜂𝑚 ,  𝑓𝑜𝑟 𝑢 > 0.5

                                                       (14) 

   If the change has occurred for the second time, half of the particles shift their positions as much as 

the difference between two recent average points; another half is subjected to polynomial mutation and 

random regeneration and updated. Finally, in all the next changes, half of the particles shift their 

positions as much as the difference between two recent average points; another half is subjected to 

polynomial mutation and random regeneration and updated. Algorithm 1 indicates this process. 

Begin 

Initialize: the electromagnetic population (nEMP); the number of the subproblems (N); a uniform spread of N weight 

vectors (𝜆); the number of the Neighbors of each weight vector (T); portion of population, which belongs to positive field 

(P_field); portion of population, which belongs to negative field (N_field); probability of generating electromagnets 

(Pg_rate); golden ratio (g = 1.618); Estimated pareto front (EP). 

EP  0; Z  infinity; 

D  Calculate the euclidean distances (𝜆); 

Determine Neighbors (𝜆, D, T); 

For i=1 to Population size do 

       Popi position Random Position (Problem size);  

       Popi Cost  Evaluate Popi; 

       Z  Minimum (Z, Popi Cost); 

End   
For i=1 to Population size do 

       Popi g Decomposed Cost (Popi Cost', Z, 𝜆); 

End   

Pop  Determine domination (Pop);  

EP  Population is not dominated and sorted base on crowding distance;  
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NPol  Population is dominated and sorted base on crowding distance; 

DP  Create diagnostic random population (10% of population); 

DP Cost Reference  Evaluate DP (DP); 

Change Count  0; 

While Stop Condition () do  

DP Cost  Evaluate DP (DP); 

Change  Detect the change (DP Cost Reference , DP Cost); 

If Change = True then  

    Change Count Change Count + 1; 

    MEP ChangeCount  Calculate the mean of EP population positions (EP); 

    DP Cost Reference  DP Cost; 

    If Change Count =1 then 

        Pop  Gaussian Mutation on 50% of population (Pop); 

    End   
    If Change Count = 2 then 

        D ChangeCount  Calculate the diferance of tow before MEP 

        Pop  Add the D to 50% of population position (P, D); 

        Pop  Gaussian Mutation on 50% of population (Pop); 

    End   
    If Change Count > 2 then 

        D ChangeCount  Calculate the diferance of tow before MEP; 

        MD  Calculate the mean of tow before D; 

        Pop  Add the MD to 50% of population position (Pop, MD); 

        Pop  Gaussian Mutation on 50% of population (Pop); 

    End   

Pop Cost, Z  Update (Pop, Z); 

Pop  Determine domination (Pop);  

EP  Population is not dominated and sorted base on crowding distance;  

NPol  Population is dominated and sorted base on crowding distance; 

End   
For i=1 to Population size do 

       (K, l)  Randomly select tow indexes from Neighbors (Neighbors);  

       For j=1 to Number of variables do 

              I_pos  Index of a random particle from positive field (1, floor (nEP * P_field)); 

              I_neg1,2  Index of tow random particles from negative field ((floor (1 - N_field) * nNPol), nNPol); 

              Pi positionj  Calculate by using equation 8 (EP(I_pos), EP (3)); 

              Ni positionj  Calculate by using equation 9 (NPol(I_neg1), NPol(I_neg2)); 

              if rand (0,1) < Ps_rate then 

                  Popi positionj  Generate a new solution Pop from Popk and Popl by using equation 10, 11 and 12 

              End   

       End   

       Popi Cost  Evaluate Popi; 

       Z Minimum (Z, Popi Cost); 

       For j=1 to T do 

              Pop j g Decomposed Cost (Popj Cost', Z, 𝜆); 

              Pop i g Decomposed Cost (Popi Cost', Z, 𝜆); 

              if Popi g <= Pop j g then 

                 Pop j g = Pop i g 

              End   

       End   

End   

Pop  DetermineDomination (Pop);  

EP Population is not dominated and sorted base on crowding distance;  

NPol Population is dominated and sorted base on crowding distance; 

End While 
Return EP; 

End 

Fig 3. The proposed algorithm 1 

2-5-Setting DMOQEFO parameters 
   One of the important parameters is nEMP, which determines the number of electromagnetic particles 

in the population. For lower values of nEMP, adequate awareness of the search space is not realized, 
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and convergence will slow down for higher values. This parameter depends on the problem type, the 

number of dimensions, and the number of objectives. In conducted experiments in this study, it is 

empirically found that a population of almost 100 particles can give a suitable performance. The 

proposed algorithm has two groups with positive and negative polarities. P_field is the percentage of 

the population allocated to the positive field. Based on experience, the best value for P_field is between 

0.1 and 0.15. N_field is the percentage of the population allocated to the negative field. Empirically, 

the best value for this parameter is between 0.4 and 0.5. Another important parameter is Pg_rate which 

determines the probability of generating a new electromagnet in the electromagnetic particle. Based on 

experiments, the best value for Pg_rate is between 0.2 and 0.4. 

 

3-Results and discussion 
   This section describes the conducted experiments to examine the performance of comparative 

algorithms and their results. All the experiments are conducted under similar conditions. The algorithms 

are simulated on MATLAB software installed on a PC with Intel Core i5 CPU with 3 GHz, and RAM 

of 8 GB. Initializing searching solutions for all algorithms is done completely randomly and by 100 

particles.  

   Initially, the parameters of examined algorithms are presented. Then, the applied benchmark functions 

are introduced. Afterward, the indices for measuring the performance of algorithms are explained. 

Finally, the results of conducted experiments are compared and analyzed. 

 

3-1-Experimental parameters 
   All tested algorithms are individually executed 20 times on the benchmark functions, and their 

parameters are set as recommended in the original reference. The population size is assumed to be 100, 

and the number of decision variables is 10 in all experiments. Also, suppose the frequency of change 

(𝜏𝑡) to be 10 and 30 and the severity of change (𝑛𝑡) to be 10. The termination condition of each 

individual run of the algorithms are 300 iterations. Other parameters of algorithms are presented in table 

1. 

Table 1. Parameters of algorithms used in experiments 

Algorithms Parameters 
DMOQEFO P_field=0.1, N_field=0.45, Pg_rate=0.25, g=1.618, T=40, EP=100, nEMP=100 

DMOEA/D Gamma=0.5, T=40, EP=100, nPop=100 

DMOPSO C1=1, C2=2, nGrid=20, Gamma=2, Mu=0.1, w=0.5, nRep=100, nPop=100 

DNSGA II-A pCrossover=0.7, MutationPercentage=0.4, MutationRate=0.02, nPop=100 

DNSGA II-B pCrossover=0.7, MutationPercentage=0.4, MutationRate=0.02, nPop=100 

 

 3-2-Benchmark functions 
   In all experiments, nine benchmark functions (DF) (Jiang et al., 2018), firstly introduced in 2018 for 

the CEC2018 competition on dynamic multi-objective optimization are used. The mathematical 

expressions of these functions and their search space are presented in table 2. These functions cover 

diverse properties, such as time-dependent PF/PS geometries, irregular PF shapes, disconnectivity, and 

knee, covering diverse properties, which nicely represent various real-world scenarios. In these 

problems, 𝜏 is the current iteration of the algorithm, 𝜏𝑡 is the frequency of change, and 𝑛𝑡 is the severity 

of change. 
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Table 2. Benchmark test functions (Jiang et al., 2018) 

 

3-3-Performance indices 
   Zitzler (1999) introduces the goals that must be achieved in a dynamic multi-objective optimization 

problem as the minimization of the distance between the non-dominated front and the Pareto optimal 
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front and the suitable distribution of solutions. To this end, two metrics presented by Zitzler (1999) are 

used to evaluate the performance of the algorithm proposed in this study. 

3-3-1-Mimicked inverted generational distance (MIGD) 

   Inverted generational distance (IGD) gives the distance between each solution from the Pareto optimal 

front and the closest solution obtained from the test algorithms (Sierra and Coello, 2005 March). 

Mimicked inverted generational distance (MIGD) is adapted from the static IGD, and its lower values 

indicate the better performance of an algorithm. Suppose 𝑃𝑡 is a set of uniformly-distributed points in 

real PF, and 𝑃𝑡
∗ is an approximation of PF at time t. MIGD is calculated as follows: 

𝑀𝐼𝐺𝐷 =
1

𝑇
∑ 𝐼𝐺𝐷(𝑃𝑡

∗, 𝑃𝑡)
𝑇
𝑖=1 =

1

𝑇
∑ ∑

𝑑𝑡
𝑖

𝑛𝑝𝑡

𝑛𝑝𝑡
𝑖=1

𝑇
𝑖=1                                                        (15) 

   Where 𝑛𝑝𝑡 = |𝑃𝑡| is the Euclidean distance between the ith member of 𝑃𝑡 and the closest member in 

𝑃𝑡
∗. It is expected a set of about 1000 points with uniform distribution from the real PF is used to 

calculate MIGD. 

3-3-2-Mimicked hyper-volume (MHV) 

   MHV is adapted from the static hyper-volume metric and used to measure the region covered by 

obtained optimal solutions relative to a specific reference point. The higher the MHV, the better the 

algorithm performance (Guerreiro et al., 2020). MHV is expressed as follows: 

𝑀𝐻𝑉 =
1

𝑇
∑ 𝐻𝑉𝑡(𝑃𝑡

∗)𝑇
𝑖=1                                                                                   (16) 

Where HV (S) is the covered volume of set S relative to the reference point. The reference point for 

determining this metric is define as (𝑧1 + 0.5, 𝑧2 + 0.5,… , 𝑧𝑀 + 0.5), where 𝑧𝑗 is the value of the jth 

objective function from real PF at time t, and M is the number of objectives. 

 

3-4-Comparison with some competitor algorithms 
   This section considers four algorithms, including MOPSO (Coello and Lechuga, 2002 May), 

DNSGAII-B (Deb and Karthik, 2007 March), DNSGAII-A (Deb and Karthik, 2007 March), and 

MOEA/D (Zhang and Li, 2009), for comparison. An idea similar to DNSGAII is used to adapt MOPSO 

and MOEA/D with dynamic variations of problems so that after each change, half the population is 

subjected to polynomial mutation and random regeneration. In order to evaluate the performance of the 

proposed algorithm compared to others, a two-step experiment is designed. 

   In the first step, the comparative algorithms are applied to nine benchmark functions with a frequency 

of 10. In order to ensure the validity of results, each experiment is conducted 20 times, and the average 

and standard deviation of results are presented in table 3. In the second step, experiments are repeated 

with a frequency of 30, and the average and standard deviation of results from 20 individual executions 

of algorithms are presented in table 4. The best solution for each problem is highlighted in tables 3 and 

4. 
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Table 3. Average and standard deviation of IGD after running each algorithm 20 times 

Function τt 
DMOQEFO 

(mean (std.)) 

DMOEA/D 

(mean (std.)) 

DMOPSO 

(mean (std.)) 

DNSGAII-A 

(mean (std.)) 

DNSGAII-B 

(mean (std.)) 

DF1 10 0.0193 (0.0156) 0.1001 (0.0716) 0.0687 (0.0480) 0.1170 (0.1260) 0.1197 (0.1137) 

 30 0.0115 (0.0113) 0.0908 (0.0805) 0.0393 (0.0410) 0.0780 (0.0704) 0.0831 (0.0679) 

DF2 10 0.0176 (0.0092) 0.0884 (0.0386) 0.0543 (0.0324) 0.0627 (0.0691) 0.0708 (0.0735) 

 30 0.0089 (0.0037) 0.0657 (0.0436) 0.0290 (0.0260) 0.0509 (0.0544) 0.0566 (0.0570) 

DF3 10 0.2506 (0.0956) 0.4338 (0.1600) 0.3407 (0.1852) 0.2753 (0.1653) 0.2690 (0.1674) 

 30 0.2977 (0.0769) 0.3674 (0.1406) 0.4152 (0.1153) 0.3285 (0.0748) 0.3023 (0.0654) 

DF4 10 0.1532 (0.0954) 0.3073 (0.3534) 0.3836 (0.4394) 0.3449 (0.2382) 0.3104 (0.2046) 

 30 0.1493 (0.1092) 0.1793 (0.1408) 0.2138 (0.1621) 0.6503 (0.3822) 0.7429 (0.4659) 

DF5 10 0.0211 (0.0190) 0.1351 (0.0261) 0.1266 (0.0794) 0.4710 (0.9031) 0.4565 (0.8388) 

 30 0.0116 (0.0035) 0.0700 (0.0475) 0.0473 (0.0267) 0.2746 (0.4097) 0.3505 (0.5489) 

DF6 10 0.4227 (0.8073) 2.5311 (3.8942) 6.7757 (6.2990) 2.9801 (3.6601) 2.6937 (3.1918) 

 30 0.5407 (0.8903) 5.2430 (4.6225) 2.2969 (2.2698) 0.8859 (0.3483) 0.8925 (0.4762) 

DF7 10 0.4067 (0.2446) 0.3640 (0.2765) 0.4560 (0.2744) 0.6765 (0.1930) 0.6776 (0.1970) 

 30 0.4976 (0.2166) 0.3118 (0.2688) 0.1567 (0.0454) 0.6409 (0.1098) 0.6452 (0.1160) 

DF8 10 0.0766 (0.0244) 0.2011 (0.0720) 0.1261 (0.0472) 0.1307 (0.0803) 0.1291 (0.0818) 

 30 0.0690 (0.0300) 0.1847 (0.0854) 0.0930 (0.0366) 0.1589 (0.1152) 0.1532 (0.1100) 

DF9 10 0.1543 (0.1582) 0.2204 (0.0568) 0.3988 (0.3256) 0.2086 (0.0954) 0.2189 (0.1031) 

 30 0.0441 (0.0140) 0.1598 (0.0530) 0.1349 (0.0365) 0.0622 (0.0231) 0.0693 (0.0273) 

Table 4. Average and standard deviation of HV after running each algorithm 20 times 

Function τt 
DMOQEFO 

(mean (std.)) 

DMOEA/D 

(mean (std.)) 

DMOPSO 

(mean (std.)) 

DNSGAII-A 

(mean (std.)) 

DNSGAII-B 

(mean (std.)) 

DF1 10 0.4997 (0.0898) 0.4097 (0.0745) 0.4283 (0.1138) 0.3976 (0.1201) 0.3944 (0.1138) 

 30 0.4669 (0.0315) 0.4207 (0.0690) 0.4233 (0.0439) 0.4193 (0.0741) 0.4129 (0.0676) 

DF2 10 0.6876 (0.0137) 0.5890 (0.0427) 0.6327 (0.0447) 0.6336 (0.0771) 0.6246 (0.0809) 

 30 0.7013 (0.0061) 0.6302 (0.0508) 0.6710 (0.0379) 0.6549 (0.0570) 0.6481 (0.0556) 

DF3 10 0.2754 (0.1312) 0.1451 (0.0819) 0.2020 (0.1636) 0.2554 (0.1577) 0.2620 (0.1618) 

 30 0.1824 (0.0245) 0.1549 (0.0370) 0.1055 (0.0496) 0.2124 (0.0486) 0.2257 (0.0473) 

DF4 10 0.8370 (0.0574) 0.8227 (0.1575) 0.7026 (0.2148) 0.7647 (0.1057) 0.7732 (0.1020) 

 30 0.8340 (0.0486) 0.8118 (0.0905) 0.7842 (0.1289) 0.6723 (0.0475) 0.6596 (0.0606) 

DF5 10 0.5561 (0.0298) 0.3965 (0.0303) 0.4047 (0.0957) 0.3552 (0.1682) 0.3483 (0.1774) 

 30 0.5726 (0.0074) 0.4963 (0.0538) 0.5129 (0.0412) 0.4543 (0.1060) 0.4433 (0.1208) 

DF6 10 0.5376 (0.3042) 0.1514 (0.1051) 0.0013 (0.0049) 0.0566 (0.0834) 0.0562 (0.0855) 

 30 0.5062 (0.3114) 0.0580 (0.1037) 0.0275 (0.0576) 0.0667 (0.1054) 0.0906 (0.1267) 

DF7 10 0.3465 (0.0458) 0.3643 (0.0604) 0.3022 (0.0576) 0.3065 (0.0292) 0.3081 (0.0308) 

 30 0.3343 (0.0427) 0.3656 (0.0682) 0.3738 (0.0221) 0.3048 (0.0142) 0.3023 (0.0152) 

DF8 10 0.5775 (0.1564) 0.6394 (0.0609) 0.5074 (0.1634) 0.7011 (0.0195) 0.7039 (0.0208) 

 30 0.5853 (0.1659) 0.7005 (0.0297) 0.5566 (0.1596) 0.6985 (0.0467) 0.7012 (0.0406) 

DF9 10 0.4061 (0.1016) 0.3056 (0.0552) 0.1997 (0.1203) 0.3131 (0.1033) 0.3036 (0.1113) 

 30 0.4960 (0.0352) 0.3688 (0.0537) 0.3738 (0.0646) 0.4685 (0.0500) 0.4606 (0.0523) 
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   Table 3 presents the comparison of experimental results of MIGD on functions DF1 to DF9 with a 

severity of 10 and frequency of 10 and 30. At frequency 10, regarding MIGD, the most proximity to 

the Pareto front is related to the proposed algorithm in all functions except DF7. Also, for DF7, 

algorithm DMOEA/D exhibits the most closeness to the Pareto front. At frequency 30, the proposed 

algorithm shows the most closeness to the Pareto front in all functions except DF7. For DF7, algorithm 

DMOPSO records the most proximity to the Pareto front. 

   Table 4 compares the experimental results of MHV on functions DF1 to DF9 with a severity of 10 

and frequency of 10 and 30. At frequency 10, based on MHV, the most covered volume is attributed to 

the proposed algorithm in all functions except DF7 and DF8. Also, algorithms DMOEA/D and DNSGA 

II-B covered the largest volume in DF7 and DF8, respectively. At frequency 30, the proposed algorithm 

indicates the largest covered volume in all functions other than DF7, DF3, and DF8. Also, algorithms 

DNSGA II-B, DMOPSO, and DNSGA II-B cover the largest volumes in DF3, DF7, and DF8, 

respectively. 

   Figure 3 shows the evolution of average IGD during 20 individual runs at different iterations for test 

algorithms in DF problems at frequency 30. A good agreement is observed between the diagrams and 

results presented in table 3. 

 

Fig 3. Evolution diagram of average IGD during 20 individual runs at different iterations for test algorithms.  

   Moreover, figure 4 illustrates the evolution of HV during 20 individual runs at different iterations for 

test algorithms in DF problems at frequency 30. There is good agreement between the diagrams and 

results of table 4. 
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Fig 4. Evolution diagram of average HV during 20 individual runs at different iterations for test algorithms 

 

   For statistical analysis, the results obtained from 20 individual runs of the proposed algorithm on each 

benchmark function with different frequencies are compared to the results of test algorithms in the same 

conditions. For comparison of results, the Wilcoxon Rank-Sum non-parametric test at a significance 

level of 5% is used because there is no sufficient knowledge about datasets, and algorithm runs are 

independent of each other. The results of the Wilcoxon Rank-Sum test on different algorithms are 

reported in table 5. A given algorithm can be significantly better (+) or significantly worse (-) than the 

proposed algorithms; the sign = also shows no significant difference between the two algorithms. 
 

Table 5. Summary of Wilcoxon Rank-Sum test results at a significance level of 5%. 

Compared to the proposed algorithm MIGD MHV 

τt = 10 τt =30 τt = 10 τt =30 

DMOEA/D better (+) 1 1 2 2 

 worse (-) 8 8 7 7 

 no significant difference (=) 0 0 0 0 

DMOPSO better (+) 0 1 0 1 

 worse (-) 8 8 9 8 

 no significant difference (=) 1 0 0 0 

DNSGA II_A better (+) 0 0 1 2 

 worse (-) 8 8 8 7 

 no significant difference (=) 1 1 0 0 

DNSGA II_B better (+) 0 0 1 2 

 worse (-) 8 8 7 7 

 no significant difference (=) 1 1 1 0 
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   As table 5 demonstrates, the average MIGD of the proposed algorithm from 20 runs on nine 

benchmark functions with a variation frequency of 10 indicates better performance in about 88.9%, 

worse performance in about 2.8%, and no significant difference in about 8.3% of comparisons with test 

algorithms. Also, the MIGD of the proposed algorithm from 20 runs on nine benchmark functions with 

a variation frequency of 30 shows better performance in about 88.9%, worse performance in about 

5.5%, and no significant difference in about 5.5% of comparisons with test algorithms. 

   According to MHV of the proposed algorithm from 20 runs on nine benchmark functions with a 

variation frequency of 10, the proposed algorithm shows better performance in about 86.1%, worse 

performance in about 11.1%, and no significant difference in about 2.7% of comparisons with test 

algorithms. Also, based on the MHV of the proposed algorithm from 20 runs on nine benchmark 

functions with a variation frequency of 30, the proposed algorithm has better performance at about 

80.5%, worse performance at about 19.4%, and no significant difference at about 0% of comparisons 

with test algorithms. 

    In general, the proposed algorithm gains a significant superiority in metrics MIGA and MHV in more 

than 85% of experiments. The simultaneously great results of these two metrics indicate a fine balance 

between exploration and exploitation in the proposed algorithm, which results in a superior distribution 

and approximation of the Pareto front. This balanced is provided through the interaction and 

competition between the introduced electromagnetic particles in the quantum delta potential well model 

between the neighbors within the MOEA/D and based on the decomposition technique to determine the 

position of new particles, which results in a relatively good combination of convergence and diversity. 

Furthermore, the strategy of new location prediction based on the mean of the two latest changes is 

markedly compatible with the ambient dynamics. 

 

4-Conclusions 
   The performance of optimization algorithms is a challenging and important issue; in the presence of 

factors like the complexity of optimization problems, even a slight improvement in the algorithm 

performance can be highly valuable. Most optimization problems have inconsistent objectives in the 

real world. Also, environmental changes and different dynamic features can cause different issues for 

optimization algorithms. 

   This study aimed to present a dynamic multi-objective optimization algorithm with improved 

performance. In this study, EFO was extended to solve dynamic multi-objective optimization problems. 

The proposed algorithm utilized decomposition and crowding distance strategies. Inspired by the 

quantum delta-potential well model, the nonlinear motion of quantum-behaved particles, the 

interactions between electromagnetic particles introduced from positive and negative fields, and the 

collaboration of neighbours’, the proposed algorithm developed a better search approach in the problem 

space to determine the position of particles. For further extension of the proposed algorithm to deal with 

dynamic problems, the average displacement of particles' centre of gravity in two last changes was used 

to predict the level of new change. 

   In order to visualize the performance of the proposed algorithm and its comparison with mentioned 

algorithms, including DNSGA-II-A, DNSGA-II-B, dynamic MOEA/D, and dynamic MOPSO, some 

experiments were conducted on nine various benchmark problems selected from DF functions. The 

obtained results for IGD and HV metrics after 20 individual runs were gathered, and the standard 

deviations of obtained values were calculated and listed in related tables. The Wilcoxon Rank-Sum test 

was performed at a significance level of 5% for statistical analysis of the gathered results. The test's 

results confirmed the proposed algorithm's superior performance compared to others at a 5% 

significance level.  

   The following topics can be investigated in the future: 

1) Presenting an effective method to generate a set of weight vectors in the proposed algorithm. 

2) Developing an effective method to determine and control different parameters of the proposed 

algorithm. 

3) Using other quantum models to improve the exploration and exploitation capabilities of the proposed 

algorithm. 
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