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Abstract 
The linear fractional bi-level problems are strongly NP-hard and non-convex, which 

results in high computational complexity to find the optimal solution. In this paper, we 

propose an efficient algorithm for solving a class of non-linear bi-level optimization 

problems, where the upper and lower objectives are linear fractional. The main idea 

behind the proposed algorithm is to obtain a single objective optimization problem via 

Taylor approximation. The proposed algorithm is composed of four steps. In the first, 

the lower level of the problem is converted into the convex optimization problem by 

using auxiliary variables and approximation techniques. Next, a single objective 

optimization problem is obtained by adopting the dual Lagrange method and Karush-

Kuhn-Tucker (KKT) conditions. The obtained problem is non-convex with high 

computational complexity challenging to solve. Hence, the Fischer-Burmeister function 

is applied to smooth the problem. Finally, the first-order Taylor approximation is 

adopted to transform the non-linear problem into the linear one. Numerical results 

confirm the effectiveness of the proposed algorithm in comparison with Estimation of 

Distribution Algorithm (EDA) in terms of convergence performance. 

Keywords: Bi-level programming, linear fractional bi-level problem, Taylor 

approximation, dual Lagrange method, Fischer-Burmeister 

 

1-Introduction 
   A bi-level programming problem (BLP) involves two types of decision makers which the constraints 

region of one is determined implicitly by the solution of the second. The application of BLP includes 

transportation, management, planning and optimal design. For more information see the literature (Dempe, 

2002), (Dempe, 2003), (Colson et al, 2007), (Vicente and Calamai, 1994), (Aghapour and Osgooei, 2022) 

and (Zhang et al, 2016). 

 

1-1-Related works 
   In this sub-section, the related works are provided in two categories: 1) Linear/non-linear bi-level 

problems and 2) Linear fractional bi-level problems. 

1) Linear/non-linear bi-level problems: In recent decades, bi-level optimization problems have been widely 

studied at the point of theoretical and computational complexity. In Lv et al., (2007) the linear bi-level 

problem was transformed into a single objective optimization problem using Karush-Kuhn-Tucker (KKT) 

optimality conditions. In White and Anandalingam (1993), the authors proposed a duality gap-penalty 

function to obtain the global solution of linear bi-level programming. An approximation method for solving 

the non-linear bi-level optimization problems was addressed in Colson (2005).  
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   In Colson (2005) the upper level and constraints were approximated as linear functions, as well as a 

quadratic approximation was provided for the lower level. In Marcotte (2001) a trust region approach was 

proposed to solve the non-linear bi-level problems, where a linear program was implemented at the upper 

level, and a linear variational inequality function was proposed at the lower level. In Angelo (2013, June), 

the authors proposed an algorithm to solve the bi-level optimization problems, which employed differential 

evolution as an efficient candidate. A heuristic algorithm based on the scatter search was considered in 

Camacho-Vallejo (2015) to solve the bi-level problem of planning the production and distribution in a 

supply chain. In Li and Wang, (2007, August ) a hybrid Genetic Algorithm (GA) was adopted for solving 

the non-linear bi-level optimization problems in which the simplex method was considered for designing a 

new crossover operator. In Hejazi et al, (2002) an efficient method based on the GA was proposed to solve 

the linear bi-level problems. In Wan et al, (2013) a hybrid algorithm involving Particle Swarm Optimization 

(PSO) and Chaos Searching Technique (CST) was presented for solving the non-linear bi-level optimization 

problems. In Wang et al, (2011) an effective meta-heuristic algorithm was proposed for obtaining the local 

solution of the non-linear bi-level problems, where a new fitness function was considered for the upper 

level. In Watada et al, (2020) an efficient method based on an improved artificial bee colony, Hopfield 

network, and Boltzmann machine was proposed to solve the non-linear bi-level programming problem. A 

Stackelberg game framework was proposed in Zhou et al, (2022) to solve the non-linear bi-level problems 

and coordinate the decision-making process. 

2) Linear fractional bi-level problems: the linear fractional bi-level problems are strongly non-convex and 

NP-hard, and thus finding the optimal solution is complicated and computationally complex. In recent 

years, some algorithms are developed to obtain the optimal solution. In Li (2015) a GA algorithm with 

global convergence was proposed for solving the linear fractional bi-level problems. In Chen (2019) the 

authors considered a modified enumerative searching method to solve a class of bi-level programming 

problems where the lower level is linear fractional. Then, the Charnes-Cooper transformation was used for 

dealing with non-linearity of the lower level. A new two-level vertex-searching algorithm for solving the 

continuous linear fractional bi-level problems was proposed in Chen (2020) to find the optimal solution. In 

Nayak and Ojha (2020) a new method based on interval coefficients of decision variables was developed 

for determining the optimal solution of the linear fractional bi-level problems. In Toksarı (2010) the authors 

proposed a solution for linear fractional bi-level problems by adopting Taylor series. In this method, the 

levels of the problem were classified as upper and lower, and then they were weighted based on their classes. 

Finally, Taylor series was used to convert the problem into single objective. In Chen et al, (2018, August) 

a novel approach based on Estimation of Distribution Algorithm (EDA) and heuristic algorithms was 

proposed to solve the linear fractional bi-level problems. A weighting method was developed in Mishra 

(2005) where a non-dominated solution set was obtained. In Roghanian et al, (2008) a new method by 

integrating goal programming, KKT optimality conditions, and penalty functions was presented. In Alessa 

(2021) an interactive approach was introduced to solve the linear fractional bi-level problems so that the 

minimal adequate level can be updated at upper level. 

 

1-2-Contributions and organization 
   In the above-mentioned papers, the main goal is to solve the linear fractional bi-level problems and obtain 

the optimum solution. However, developing an efficient algorithm with low computational complexity 

remains scarce in the studied works. To address this issue, in this paper, a new algorithm for solving the 

linear fractional bi-level problems via the first-order Taylor approximation technique is proposed with low 

computational complexity. To this end, a four-step alternative method is presented. First, the lower level of 

the problem is transformed into the convex by adopting the auxiliary variables and other approximation 

techniques. Next, the lower level, which is converted into the convex, is added to the upper-level problem. 

With this, the bi-level problem is converted into a single objective optimization problem. Then, the Fischer-

Burmeister function is applied to smooth the problem and cope with computational complexity. Finally, the 

problem is converted into a linear one by adopting the first-order Taylor approximation technique. The 

CVX optimizer in MATLAB is used to obtain the optimal solution of the linear problem. The performance 

of the proposed method is evaluated by two numerical examples and compared with EDA method presented 
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in Chen et al, (2018, August). The results illustrate that the proposed method can obtain the optimal solution 

and provide fast convergence with low computational complexity in comparison to the EDA approach. 

   The remainder of this paper is organized as follows. In section 2, some Theorems and definitions are 

presented. Section 3 presents the proposed algorithm for solving linear fractional bi-level problems. In 

section 4, the numerical evaluations are provided to confirm the effectiveness of the proposed algorithm in 

comparison with estimation of distribution algorithm in terms of convergence performance. Finally, section 

5 concludes the paper. 

2-Preliminaries 
   In this section, some necessary theorems and definitions are provided. 

 

Definition 2.1 Denote 𝑚 ≥ 0 and 𝑛 ≥ 0 as the two functions (or values) (Hussein and Kamalabadi, 2014). 

The Fischer-Burmeister function can be defined as 

ϕ(𝑚, 𝑛, 𝜀) = 𝑚 + 𝑛 − √𝑚2 + 𝑛2 + 𝜀 

Where 𝜀 ≪ 1 and 

𝑚 ≥ 0, 𝑛 ≥ 0, ϕ(𝑚, 𝑛, 𝜀) = 0 ↔ 𝑚𝑛 = 0, 𝑚 ≥ 0, 𝑛 ≥ 0 

Theorem 2.1 Assume 𝑠(𝑥) = 𝑥1𝑥2. It is easy to prove that the function 𝑆(𝑥, 𝜑) =
𝜑

2
𝑥1

2 +
1

2𝜑
𝑥2

2 is convex 

and provides an upper-bound of 𝑠(𝑥) for any value of 𝜑 > 0, namely 𝑆(𝑥, 𝜑) ≥ 𝑠(𝑥), ∀ 𝜑 > 0. Also, by 

substituting 𝜑 =
𝑥2

𝑥1
 into 𝑆(𝑥, 𝜑), the following equation is satisfied 

𝑆(𝑥, 𝜑) = 𝑠(𝑥) 
 

Proof. Please refer to Tran et al, (2012) and Beck et al, (2010). 

 

3-Proposed method for solving linear fractional bi-level problems 
   In this section, the mathematical model of the proposed method for solving the linear fractional bi-level 

problems is provided. Let us consider a linear fractional bi-level problem where the upper level controls 

the decision variable 𝑥 and the lower level controls the decision variable 𝑦. The optimization problem is 

formulated as follows. 

 

max
𝑥

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 

where 𝑦 solves: 

max
𝑦

𝑓2(𝑥, 𝑦) =
𝛼2 + 𝑐21𝑥 + 𝑐22𝑦

𝛽2 + 𝑑21𝑥 + 𝑑22𝑦
 

s.t.: 

C1: 𝑔𝑖(𝑥, 𝑦) ≤ 0, 𝑖 = 1, … , 𝑚 

C2: 𝑥, 𝑦 ≥ 0 

(1) 

 

   Where 𝑥 and 𝑦 are optimization variables; 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦) denote the upper and lower levels of the 

problem (1), respectively, and finally C1 represents the linear constraints of the problem. 

The aim of this paper is to propose an efficient solution to solve the linear fractional bi-level problems 

based on the first-order Taylor approximation. Hence, the following steps are presented to describe the 

proposed method. 

 

Step 1: Convert the lower level of the problem (1) into convex one 

In this step, the lower level of problem (1) is converted into the convex one. To this end, an auxiliary 

variable 𝜂1 is introduced. Hence, the problem in (1) is transformed into 

max
𝑥

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 (2) 
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Where 𝑦 and 𝜂1 solve: 

max
𝑦

𝜂1 

s.t.: 

C1, 

C2:
𝛼2 + 𝑐21𝑥 + 𝑐22𝑦

𝛽2 + 𝑑21𝑥 + 𝑑22𝑦
≥ 𝜂1 

C3: 𝑥, 𝑦, 𝜂1 ≥ 0 
 

   With auxiliary variable, the objective function of the lower level is linear with respect to 𝜂1. However, 

the left side of constraint C2 is non-concave with respect to 𝑦. To cope with the non-linearity and non-

convexity, the constraint C2 is replaced with the following two constraints. 

 

C4: 𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 ≥ 𝜂1𝜉1 

C5: 𝜉1 ≥ 𝛽2 + 𝑑21𝑥 + 𝑑22𝑦 
 

   Where 𝜉1 > 0 denotes a new additional auxiliary variable. By inspecting C4, it is observed that it is not 

a convex constraint due to the term 𝑞(𝜂1, 𝜉1)=𝜂1𝜉1 and this the right side of C4 is approximated with the 

following function via theorem 2.1. 

 

𝑞̃(𝜂1, 𝜉1) =
1

2𝜑(𝑧−1)
(𝜂1)2 +

𝜑(𝑧−1)

2
(𝜉1)2 (3) 

 

   Where 𝜑(𝑧−1) =
𝜂1

𝜉1
 and 𝑧 denotes the iterative index. As stated in theorem 2.1, (3) is convex with respect 

to 𝜂1 and 𝜉1. Therefore, the problem in (2) is transformed into 

max
𝑥

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 

where 𝑦, 𝜂1, and 𝜉1 solve: 

 

max
𝑦,𝜂1,𝜉1

𝜂1 

s.to: 

C1, C3, C5 

C6: 𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 ≥ 𝑞̃(𝜂1, 𝜉1) 

C7: 𝜉1 > 0, 𝜂1 ≥ 0 

(4) 

 

   The lower level of the problem (4) is linear concerning y and convex with respect to 𝜂1 and 𝜉1. Thus, it 

is a convex optimization problem. 

 

Step 2: Convert the problem into a single objective problem 

Since the lower level of the problem (4) is convex, it can be added to the upper level of the problem by 

using KKT conditions and the dual Lagrange method. To this end, the Lagrangian function of the problem 

(4) can be written as follows. 

 

ℒ(𝑥, 𝑦, 𝜂1, 𝜉1) = 𝜂1 + 𝜆(𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1)) + 𝜇(𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦)

+ ∑ 𝜌𝑖(−𝑔𝑖(𝑥, 𝑦))

𝑚

𝑖=1

 
(5) 
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   Where 𝜌𝑖, ∀𝑖 = 1, … , 𝑚, 𝜇, and 𝜆 are the Lagrange multipliers associated with C1, C5, and C6, 

respectively. Now, the following problem is created by adopting the Lagrangian function and KKT 

conditions. 

 

max
𝑥,𝑦,𝜂1,𝜉1,𝜆,𝜇,𝜌

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 

s.t.: 

C1, C3, C5, C6, C7 

C8: ∇𝑦ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = 0 

C9: ∇𝜂1
ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = 0 

C10: ∇𝜉1
ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = 0 

C11: 𝜆(𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1)) = 0 

C12: 𝜇(𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦) = 0 

C13: 𝜌𝑖𝑔𝑖(𝑥, 𝑦) = 0, ∀𝑖 = 1, … , 𝑚 

C14: 𝜆, 𝜇, 𝜌𝑖 ≥ 0, ∀𝑖 = 1, … , 𝑚 

(6) 

   Where ∇𝑦ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = 𝜆𝑐22 − 𝜇𝑑22 − ∑ 𝜌𝑖 (∇𝑦𝑔𝑖(𝑥, 𝑦))𝑚
𝑖=1 , ∇𝜂1

ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = 1 −
𝜆𝜂1

𝜑(𝑧−1), and ∇𝜉1
ℒ(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌) = −𝜆𝜉1𝜑(𝑧−1) + 𝜇. It is observed that the constraints C9 and C10 are 

non-linear since 𝜆𝜂1 and 𝜆𝜉1 are non-linear functions. We define 𝑘(𝜆, 𝜂1) = 𝜆𝜂1 and ℎ(𝜆, 𝜉1) = 𝜆𝜉1. Now, 

based on theorem 2.1. 

 

𝑘̃(𝜆, 𝜂1) =
1

2𝜑1
(𝑧−1)

(𝜆)2 +
𝜑1

(𝑧−1)

2
(𝜂1)2 (7) 

ℎ̃(𝜆, 𝜉1) =
1

2𝜑2
(𝑧−1)

(𝜆)2 +
𝜑2

(𝑧−1)

2
(𝜉1)2 (8) 

 

Where 𝜑1
(𝑧−1) =

𝜆

𝜂1
, 𝜑2

(𝑧−1) =
𝜆

𝜉1
, and 𝑧 represents the iterative index.  

Then, the optimization problem is converted into 

 

max
𝑥,𝑦,𝜂1,𝜉1,𝜆,𝜇,𝜌

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 

s.t.: 

C1, C3, C5, C6, C7, C11 − C14 

C15: 𝑐22 − 𝜇𝑑22 − ∑ 𝜌𝑖 (∇𝑦𝑔𝑖(𝑥, 𝑦))

𝑚

𝑖=1

= 0 

C16: 𝑘̃(𝜆, 𝜂1) = 𝜑(𝑧−1) 

C17: ℎ̃(𝜆, 𝜉1)𝜑(𝑧−1) = 𝜇 

(9) 

 

Step 3: Smoothing the problem using Fischer-Burmeister Function. 

    In this step, the Fischer-Burmeister function presented in definition 2.1 is applied to smooth the problem 

and deal with computational complexity. In the problem (9), constraints C1, C5, C6, and C11-C13 have 

high computational complexity, and thus the aforementioned constraints can be replaced with the following 

constraints. 

 

C18: 𝜆 + 𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1) − √𝜆2 + (𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1))
2

+ 𝜀 = 0  

C19: 𝜇 + 𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦 − √𝜇2 + (𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦)2 + 𝜀 = 0  
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C20: 𝜌𝑖 − 𝑔𝑖(𝑥, 𝑦) − √𝜌𝑖
2 + (𝑔𝑖(𝑥, 𝑦))

2
+ 𝜀 = 0, ∀𝑖 = 1, … , 𝑚  

 

Hence, the optimization problem is transformed into 

max
𝑥,𝑦,𝜂1,𝜉1,𝜆,𝜇,𝜌

𝑓1(𝑥, 𝑦) =
𝛼1 + 𝑐11𝑥 + 𝑐12𝑦

𝛽1 + 𝑑11𝑥 + 𝑑12𝑦
 

s.t.: 

C1, C7, C15 − C20 

(10) 

 

   The problem in (10) has still non-linear form due to the fractional objective function and non-convex 

constraints. Hence, similar to step 1, an auxiliary variable 𝜂2 is introduced, where 
𝛼1+𝑐11𝑥+𝑐12𝑦

𝛽1+𝑑11𝑥+𝑑12𝑦
≥ 𝜂2. As 

seen, the aforementioned constraint can be replaced with the following two constraint. 

 

C21: 𝛼1 + 𝑐11𝑥 + 𝑐12𝑦 ≥ 𝜂2𝜉2 

C22: 𝜉2 ≥ 𝛽1 + 𝑑11𝑥 + 𝑑12𝑦 
 

   Where 𝜉2 > 0 is a new additional auxiliary variable. Also, based on theorem 2.1, the right side of 

constraint C21 is approximated as  

 

𝑣̃(𝜂2, 𝜉2) =
1

2𝜑3
(𝑧−1)

(𝜂2)2 +
𝜑3

(𝑧−1)

2
(𝜉2)2 (11) 

 

Where 𝜑3
(𝑧−1) =

𝜂2

𝜉2
.  

Thus, the optimization problem is 

 

max
𝑥,𝑦,𝜂1,𝜉1,𝜆,𝜇,𝜌,𝜂2,𝜉2

   𝜂2 

s.t.: 

C15 − C20, C22 

C23: 𝛼1 + 𝑐11𝑥 + 𝑐12𝑦 ≥ 𝑣̃(𝜂2, 𝜉2) 

(12) 

 

Step 4: Convert the optimization problem into linear problem via first-order Taylor approximation 

   To convert the problem into linear, the objective and its constraints must be linear. To this end, the first-

order Taylor approximation is applied for non-linear constraints. Let 𝑡 = (𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) be the 

set of optimization variables. Also, for simplicity, the constraints C16-C20 and C23 are respectively re-

written as below. 

 

𝑅(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝑘̃(𝜆, 𝜂1) − 1 (13) 

𝑈(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = ℎ̃(𝜆, 𝜉1)𝜑(𝑧−1) − 𝜇 (14) 

𝐻(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)
= 𝜆 + 𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1)

− √𝜆2 + (𝛼2 + 𝑐21𝑥 + 𝑐22𝑦 − 𝑞̃(𝜂1, 𝜉1))
2

+ 𝜀 

(15) 

𝐹(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)

= 𝜇 + 𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦 − √𝜇2 + (𝜉1 − 𝛽2 − 𝑑21𝑥 − 𝑑22𝑦)2 + 𝜀 
(16) 

𝐴𝑖(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝜌𝑖 − 𝑔𝑖(𝑥, 𝑦) − √𝜌𝑖
2 + (𝑔𝑖(𝑥, 𝑦))

2
+ 𝜀, ∀𝑖 = 1, … , 𝑚 (17) 

𝐵(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝛼1 + 𝑐11𝑥 + 𝑐12𝑦 − 𝑣̃(𝜂2, 𝜉2) (18) 
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   Now, based on the first-order Taylor approximation, the equations provided in (13)-(18) can be 

respectively approximated by (19)-(24).  

 

𝑅̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝑅(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝑅(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(19) 

𝑈̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝑈(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝑈(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(20) 

𝐻̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝐻(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝐻(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(21) 

𝐹̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝐹(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝐹(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(22) 

𝐴̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝐴(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝐴(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(23) 

𝐵̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 𝐵(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) + ∇𝑡𝐵(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2)(𝑡 − 𝑡𝑧−1) 
(24) 

Finally, the optimization problem is converted into: 

 

max
𝑥,𝑦,𝜂1,𝜉1,𝜆,𝜇,𝜌,𝜂2,𝜉2

   𝜂2 

s.t.: 

C1, C7C15, C22,  

C24: 𝑅̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 0 

C25: 𝑈̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 0 

C26: 𝐻̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 0 

C27: 𝐹̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 0 

C28: 𝐴̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) = 0 

C29: 𝐵̃(𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) ≥ 0 

(25) 

 

   The optimization problem in (25) is linear that can be optimally solved via CVX optimizer in MATLAB 

software. In table 1, the procedure of the proposed algorithm is presented, where 𝑍𝑚𝑎𝑥 denotes the 

maximum number of iterations. In this algorithm, the optimization variables are obtained, iteratively. 

 
Table 1. The procedure of the proposed algorithm 

Initialize: 𝑧 = 1 and 𝑡𝑧−1 = (𝑥, 𝑦, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌, 𝜂2, 𝜉2) 

Repeat 

 Solve the problem (25) by CVX to obtain the optimization variables, namely 𝑡 

 Update 𝑡𝑧−1 = 𝑡 

 Update 𝜑(𝑧−1) =
𝜂1

𝜉1
, 𝜑1

(𝑧−1) =
𝜆

𝜂1
, 𝜑2

(𝑧−1) =
𝜆

𝜉1
, and 𝜑3

(𝑧−1) =
𝜂2

𝜉2
 

 𝑧 = 𝑧 + 1 

Until the convergence occurs or 𝑧 = 𝑍𝑚𝑎𝑥 

 

4- Numerical results 
   In this section, the performance of the proposed algorithm presented in table 1 is investigated via 

numerical optimization problems. To this end, two linear fractional bi-level problems are solved by the 

proposed method. To verify the results, the proposed method is compared with EDA method presented in 

Chen et al, (2018, August) and the method in Chen (2020). The final linear problem is solved by CVX 

optimizer in MATLAB, which is a powerful tool for solving convex and linear optimization problems. 
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Example 1: consider the following problem. 

 

max
𝑥1

𝑓1(𝑥1, 𝑥2) =
𝑥1 + 2𝑥2

𝑥1 + 𝑥2 + 1
 

where 𝑥2 solves: 

max
𝑥2

𝑓2(𝑥1, 𝑥2) =
2𝑥1 + 𝑥2

2𝑥1 + 3𝑥2 + 1
 

s.t.: 

−𝑥1 + 2𝑥2 ≤ 3 

2𝑥1 − 𝑥2 ≤ 3 

𝑥1 + 𝑥2 ≥ 3 

𝑥1 ≥ 0, 𝑥2 ≥ 0 

 

 

The following steps are followed to obtain the optimal solution. 

 

Step 1: 

In step 1, the following problem is obtained by applying the mentioned stages in section 3. 

max
𝑥1

𝑓1(𝑥1, 𝑥2) =
𝑥1 + 2𝑥2

𝑥1 + 𝑥2 + 1
 

 

Where 𝑥2, 𝜂1, and 𝜉1 solve: 

 

max
𝑥2,𝜂1,𝜉1

𝜂1  

s.t.: 

2𝑥1 + 𝑥2 ≥ 𝑞̃(𝜂1, 𝜉1) =
1

2𝜑(𝑧−1)
(𝜂1)2 +

𝜑(𝑧−1)

2
(𝜉1)2 

𝜉1 ≥ 2𝑥1 + 3𝑥2 + 1 

−𝑥1 + 2𝑥2 ≤ 3 

2𝑥1 − 𝑥2 ≤ 3 

𝑥1 + 𝑥2 ≥ 3 

𝑥1 ≥ 0, 𝑥2 ≥ 0 
 

Where 𝜂1 and 𝜉1 are new auxiliary variables and 𝜑(𝑧−1) =
𝜂1

𝜉1
.  

Step 2: 

In this step, the following optimization problem can be obtained by using the KKT condition as. 

 

max
𝑥1,𝑥2,𝜂1,𝜉1,𝜆,𝜇,𝜌1,𝜌2,𝜌3

𝑓1(𝑥1, 𝑥2) =
𝑥1 + 2𝑥2

𝑥1 + 𝑥2 + 1
 

s.t.: 

𝜆 − 3𝜇 − 2𝜌1 + 𝜌2 + 𝜌3 = 0 

𝑘̃(𝜆, 𝜂1) = 𝜑(𝑧−1) 

ℎ̃(𝜆, 𝜉1) = 𝜇 

𝜆(2𝑥1 + 𝑥2 − 𝑞̃(𝜂1, 𝜉1)) = 0 

𝜇(𝜉1 − 2𝑥1 − 3𝑥2 − 1) = 0 

𝜌1(𝑥1 − 2𝑥2 + 3) = 0 

𝜌2(−2𝑥1 + 𝑥2 + 3) = 0 

𝜌3(𝑥1 + 𝑥2 − 3) = 0 
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2𝑥1 + 𝑥2 ≥ 𝑞̃(𝜂1, 𝜉1) =
1

2𝜑(𝑧−1)
(𝜂1)2 +

𝜑(𝑧−1)

2
(𝜉1)2 

𝜉1 ≥ 2𝑥1 + 3𝑥2 + 1 

−𝑥1 + 2𝑥2 ≤ 3 

2𝑥1 − 𝑥2 ≤ 3 

𝑥1 + 𝑥2 ≥ 3 

𝑥1 ≥ 0, 𝑥2 ≥ 0 
 

Where 𝜆, 𝜇, 𝜌1, 𝜌2, and 𝜌3 are Lagrange multipliers associated with constraints of the optimization problem;  

 

𝑘̃(𝜆, 𝜂1) =
1

2𝜑1
(𝑧−1) (𝜆)2 +

𝜑1
(𝑧−1)

2
(𝜂1)2, ℎ̃(𝜆, 𝜉1) = (

1

2𝜑2
(𝑧−1) (𝜆)2 +

𝜑2
(𝑧−1)

2
(𝜉1)2) 𝜑(𝑧−1), 𝜑1

(𝑧−1) =
𝜆

𝜂1
, 

and 𝜑2
(𝑧−1) =

𝜆

𝜉1
. 

 

Step 3: 

In this step, the following optimization problem is obtained by using Fischer-Burmeister function.  

 

max
𝑥1,𝑥2,𝜂1,𝜉1,𝜆,𝜇,𝜌1,𝜌2,𝜌3,𝜂2

𝜂2 

s.t.: 

𝑥1 + 2𝑥2 ≥ 𝑣̃(𝜂2, 𝜉2) =
1

2𝜑3
(𝑧−1)

(𝜂2)2 +
𝜑3

(𝑧−1)

2
(𝜉2)2 

𝜉2 ≥ 𝑥1 + 𝑥2 + 1 

𝜆 − 3𝜇 − 2𝜌1 + 𝜌2 + 𝜌3 = 0 

𝑘̃(𝜆, 𝜂1) = 𝜑(𝑧−1) 

ℎ̃(𝜆, 𝜉1) = 𝜇 

𝜆 + 2𝑥1 + 𝑥2 − 𝑞̃(𝜂1, 𝜉1) − √𝜆2 + (2𝑥1 + 𝑥2 − 𝑞̃(𝜂1, 𝜉1))
2

+ 𝜀 = 0 

𝜇 + 𝜉1 − 2𝑥1 − 3𝑥2 − 1 − √𝜇2 + (𝜉1 − 2𝑥1 − 3𝑥2 − 1)2 + 𝜀 = 0 

𝜌1 + 𝑥1 − 2𝑥2 + 3 − √𝜌1
2 + (𝑥1 − 2𝑥2 + 3)2 + 𝜀 = 0 

𝜌2 − 2𝑥1 + 𝑥2 + 3 − √𝜌2
2 + (−2𝑥1 + 𝑥2 + 3)2 + 𝜀 = 0 

𝜌3 + 𝑥1 + 𝑥2 − 3 − √𝜌3
2 + (𝑥1 + 𝑥2 − 3)2 + 𝜀 = 0 

𝑥1 ≥ 0, 𝑥2 ≥ 0 
 

Step 4: 

In this step, the non-linear optimization problem is converted into the linear one via the first-order Taylor 

approximation. Hence, we have: 

 

𝐴1(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝑥1 + 2𝑥2 − 𝑣̃(𝜂2, 𝜉2) 

𝐴2(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝑘̃(𝜆, 𝜂1) − 𝜑(𝑧−1) 

𝐴3(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = ℎ̃(𝜆, 𝜉1) − 𝜇 

𝐴4(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2)

= 𝜆 + 2𝑥1 + 𝑥2 − 𝑞̃(𝜂1, 𝜉1) − √𝜆2 + (2𝑥1 + 𝑥2 − 𝑞̃(𝜂1, 𝜉1))
2

+ 𝜀 

𝐴5(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝜇 + 𝜉1 − 2𝑥1 − 3𝑥2 − 1 − √𝜇2 + (𝜉1 − 2𝑥1 − 3𝑥2 − 1)2 + 𝜀 
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𝐴6(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝜌1 + 𝑥1 − 2𝑥2 + 3 − √𝜌1
2 + (𝑥1 − 2𝑥2 + 3)2 + 𝜀 

𝐴7(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝜌2 − 2𝑥1 + 𝑥2 + 3 − √𝜌2
2 + (−2𝑥1 + 𝑥2 + 3)2 + 𝜀 

𝐴8(𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) = 𝜌3 + 𝑥1 + 𝑥2 − 3 − √𝜌3
2 + (𝑥1 + 𝑥2 − 3)2 + 𝜀 

 

Where 𝑡 = (𝑥1, 𝑥2, 𝜂1, 𝜉1, 𝜆, 𝜇, 𝜌1, 𝜌2, 𝜌3, 𝜂2, 𝜉2) is the set of the optimization variables. 

   Now, we can obtain a linear optimization problem by applying the first-order Taylor approximation. This 

procedure is performed in MATLAB. Then, the linear problem is solved by CVX optimizer. The results 

are obtained by Core i5 CPU 4200M and 8.00 GB RAM. The results of the proposed method, EDA Chen 

et al, (2018, August) and the method in Chen (2020) are provided in table 2. These results indicate that the 

proposed method obtains the optimal solution and provides low computational complexity compared to the 

EDA and the method in Chen (2020). 

   Also, in figure 1, we investigate the convergence behavior of the proposed method and EDA method 

versus the number of iterations. As can be seen, the proposed method needs six iterations to coverage, 

which provides fast convergence in comparison of EDA method. 

 

Table 2. The obtained results of example 1 

method Obtained solution 𝑓1(𝑥1, 𝑥2) 𝑓2(𝑥1, 𝑥2) Run time 

Proposed method 
𝑥1 = 3 

𝑥2 = 3 
1.28571 0.20673 5.2 sec 

EDA method 

(Chen et al, 2018 

August) 

𝑥1 = 3 

𝑥2 = 3 
1.28571 0.20673 30.3 sec 

The method in 

(Chen, 2020) 

𝑥1 = 3 

𝑥2 = 3 
1.28571 0.20673 9.4 sec 

 

 

Fig. 1. The convergence behavior of the proposed method and EDA method for example 1 
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Example 2: Consider the following problem 

max
0≤𝑥≤8

𝑓1(𝑥, 𝑦) =
𝑥

𝑦1 + 𝑦2 + 1
 

where 𝑦1 and 𝑦2 solve: 

max
𝑦≥0

𝑓2(𝑥, 𝑦) =
𝑦1

𝑦2 + 1
 

s.t.: 

𝑦1 + 𝑦2 + 𝑥 ≤ 10 

𝑦1 ≤ 9 

𝑦2 ≤ 7 

   Similar to example 1, the mentioned steps presented in section 3 are followed and the optimal solution is 

obtained by CVX optimizer.  

   The optimal solutions of the proposed method, EDA, and the method in Chen (2020), are provided in 

table 3. The results show that the proposed method obtains the optimal solution and provides low 

computational complexity in comparison to the benchmark methods. 
 

Table 3. The obtained results of example 2 

method Obtained solution 𝑓1(𝑥1, 𝑥2) 𝑓2(𝑥1, 𝑥2) Run time 

Proposed method 
𝑥 = 8 

𝑦1 = 2, 𝑦2 = 0 
2.66667 2 4.8 sec 

EDA method (Chen 

et al, 2018 August) 

𝑥 = 8 

𝑦1 = 2, 𝑦2 = 0 
2.66667 2 28.3 sec 

The method in 

(Chen, 2020) 

𝑥 = 8 

𝑦1 = 2, 𝑦2 = 0 
2.66667 2 8.6 sec 

   In figure 2, the convergence behavior of the proposed method and EDA method is plotted over the number 

of iterations. We observe that the proposed method converges after five iterations, which is more effective 

than EDA method in terms of computational complexity. 
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Fig. 2. The convergence behavior of the proposed method for example 2 

Example 3: consider the following problem: 

max
𝑦1,𝑦2

𝑓1(𝑦) =
−𝑦1 + 𝑦2 − 2𝑦4 − 1

8 − 𝑦1 − 2𝑦3 + 𝑦4 + 5𝑦5
 

Where {𝑦3, … , 𝑦8} solves: 

max
𝑦3,…,𝑦8

𝑓1(𝑦) =
−𝑦1 + 𝑦2 − 2𝑦4 − 1

8 − 𝑦1 − 2𝑦3 + 𝑦4 + 5𝑦5
 

s.t.: 

−𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 = 1, 

2𝑦1 − 𝑦3 + 2𝑦4 − 0.5𝑦5 + 𝑦7 = 1, 

2𝑦2 + 2𝑦3 − 𝑦4 − 0.5𝑦5 + 𝑦8 = 1, 

𝑦𝑖 ≥ 0, 𝑖 = 1, … ,8 

Similar to examples 1 and 2, the mentioned steps presented in section 3 are followed and the optimal 

solution is obtained by CVX optimizer. 

   The optimal solutions of the proposed method, EDA, and the method in Chen (2020) are provided in table 

4. The results show that the proposed method obtains the optimal solution and provides low computational 

complexity in comparison to the benchmark methods. 

Table 4. The obtained results of example 3 

Method 
Obtained solution 

(𝑦1, … , 𝑦8) 
𝑓1(𝑦) 𝑓2(𝑦) Run time 

Proposed method (0.75,0.75,0,0,1,0,0,0) −0.0816 −0.7778 5.4 sec 

EDA method (Chen 

et al, 2018 August) 
(0.75,0.75,0,0,1,0,0,0) −0.0816 −0.7778 35.3 sec 

The method in 

(Chen, 2020) 
(0.75,0.75,0,0,1,0,0,0) −0.0816 −0.7778 9.5 sec 
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5-Conclusion 
    This paper proposed a new method for solving the linear fractional bi-level problems based on the first-

order Taylor approximation. The proposed method was formed in four steps. First, the lower level of the 

original problem was converted into convex by using the auxiliary variables and approximation techniques. 

Second, the convex lower level was added to the upper level by the dual Lagrange method and KKT 

conditions, and thus a single optimization problem was obtained. Third, the problem was smoothed by 

applying Fischer-Burmeister. Finally, the first-order Taylor approximation was applied to convert the 

problem into a linear optimization. The CVX optimizer was used to obtain the optimal solution. Numerical 

examples verified the effectiveness of the proposed method in comparison with EDA method in terms of 

convergence performance. For future work, we will develop an algorithm to solve the non-linear fractional 

bi-level problems via the Taylor approach. 
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