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                                                                   Abstract 
Process capability indices (PCIs) are developed to assess process performance based on 

the specification limits (SLs) provided by customer. Sometimes the quality of a process 

or product is characterized by a regression relationship between a response variable and 

one or more independent variables referred to as "profile". On the other hand, modern 

production systems often involve multistage manufacturing processes, in which the 

output of one stage is the input of the next stage. This property is known as the cascade 

property. Due to this property, the capability in each stage is dependent on the capability 

of the preceding stages. This study provides an approach to assess PCIs in a multistage 

process when the quality characteristics of interest are represented by multivariate linear 

profiles. Process performance is specified based on profile intercept and slope 

parameters. In other word, in addition to PCIs of the response variable in each stage, the 

PCIs of profile parameters are also investigated. By using the SLs of the response 

variable and considering in-control profile, the SLs for intercept and slope can be 

obtained. Therefore, PCIs for profile parameters can be computed. The results indicate 

that the proposed method eliminates the effect of the cascade property for different 

autocorrelation values. Simulation results reveal satisfactory performance of the 

proposed method for a two-stage process. 

                    Keywords: Process capability index, multivariate simple linear profile, multistage 

process,   cascade property, specification limits 
 

1-Introduction 
    Process capability indices (PCIs) have become popular and widely used tools in assessing process 

performance when a process is statistically in-control. PCIs quantify the relationship between the actual 

process performance and the specification limits (SLs) of the manufactured products. A process is called 

capable if the product meets customer expectations. The first process capability index introduced by 

Kane (1986), 𝐶𝑝, is defined as 

𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎
 (1) 

Where 𝜎 is the process standard deviation and USL and LSL are the upper and the lower SLs, 

respectively which reflect the costumer's quality requirements. 
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   Profuse studies are conducted on process capability estimations. Kotz and Johnson (2002) 

summarized 170 studies on PCIs published during 1992 to 2000. Wu, Pearn and Kotz (2009) discussed 

the developments of PCIs between years 2002 and 2006. Yum and Kim (2011) provided a bibliography 

of the literature on PCIs for period 2000 to 2009. de-Felipe and Benedito (2017) described, clustered, 

and discussed univariate and multivariate PCIs. 

   According to the literature, multivariate PCIs may be classified into two groups. PCIs in the first 

group are defined without using correlation structure between variables. In this case, multivariate PCIs 

are obtained based on univariate PCIs. An example of these types of PCIs is the multivariate PCI 

presented by Hubele, Montgomery and Chih (1991). PCIs in the second group are defined based on the 

assumption that the output quality can be modeled using p correlated quality characteristics.  The 

literature indicates that most of the studies on multivariate PCIs belong to the second group. In the 

literature, three approaches are applied to compute multivariate PCIs that do take into account the 

correlation structure between quality characteristics (de-Felipe and Benedito, 2017): 

- Multivariate PCIs based on principal component analysis 

- Multivariate PCIs based on the relation between tolerance and process regions 

- Multivariate PCIs based on the inverse function of the cumulative distribution function 

   Although in most process capability analysis studies, the quality characteristic of interest is modeled 

using a continuous or discrete random variable, sometimes the quality characteristics of interest can be 

modeled by linear relationships between response variables and one or more independent variables. 

This relationship that is often called ‘profile’ can be represented by a simple linear, a multiple linear, a 

multivariate linear or a polynomial regression or even by a more complicated relationship such as 

nonlinear regression. According to Woodall et al. (2004) and others, Phase I and Phase II are two phases 

for constructing control charts to monitor a process. In Phase I, the main goal is to assess the stability 

of the process, recognizing and eliminating assignable causes of variation and to estimate the in-control 

values of the process parameters. The aim of the Phase II is quick detection of any changes in the 

process parameters. Noorossana, Saghaei and Amiri (2011) addressed the fundamental concepts, 

methods, and issues related to statistical profile monitoring. 

   Process capability assessment of linear profiles has been partially studied in recent years. Hosseinifard 

and Abbasi (2012a) developed a PCI for linear profiles using the proportion of nonconforming items. 

In another study, Hosseinifard and Abbasi (2012b) investigated and compared five methods to estimate 

non-normal PCIs for linear profiles. Keshteli et al. (2014) explained a functional approach for 

measuring PCI for simple linear profiles. Pakzad, Razavi and Sadeghpour Gildeh (2021) proposed a 

functional approach for a simple linear profile based on fuzzy set theory for the situations in which the 

specification limits and target values of the response variable are not precisely specified. Pakzad and 

Basiri (2022) introduced a new functional incapability index for dealing with asymmetric tolerances for 

simple linear profile. In the study of Mehri et al. (2021), two robust PCIs for multiple linear profiles are 

proposed. In their study, the process capability is estimated using the M-estimator and the Fast-τ-

estimator. For more discussion on this issue, see (Ebadi and Shahriari, 2013; F.-K. Wang, 2014; F. 

Wang, 2014; and Wang and Tamirat, 2015). 

   In the area of PCI for multivariate profiles, few studies have been conducted. Ebadi and Amiri (2012) 

proposed three new methods to measure process capability when process output could be modeled by 

multivariate simple linear profiles (MVSLP). Wang (2016) presented a new process yield index to 

evaluate the process yield for multivariate linear profiles in manufacturing processes. Also, Wang and 

Tamirat (2016) presented two indices to measure the process capability for multivariate linear profiles 

with one-sided SLs under mutually independent normality. Additionally, they proposed two indices to 

measure the process capability for multivariate linear profiles with one-sided SLs under multivariate 

normality assumption. Guevara G and Alejandra López (2022) proposed a two-phase methodology 

based on the concept of depth to measure the capability of processes characterized by the functional 

relationship of multivariate nonlinear profile data, treated as multivariate functional observations. 

   In recent years, studies on other types of profiles have been of interest. See references (Wang and 

Guo, 2014; Guevara, Vargas and Castagliola, 2016; Rezaye Abbasi Charkhi, Aminnayeri and Amiri, 

2016; Mohammad Pour Larimi, Nemati Keshteli and Safaei, 2018; Alevizakos, Koukouvinos and 

Castagliola, 2019; and Alevizakos and Koukouvinos, 2022) for more details. 
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   In the existing studies, PCIs are generally computed based on response values. However, use of 

estimated values of profile parameters to measure the capability of process has rarely been studied. 

Karimi Ghartemani, Noorossana and Niaki (2016), Wu (2016) and, Chiang, Lio and Tsai (2017) 

introduced PCIs to measure the process capability for simple linear profiles based on profile intercept 

and slope. Despite these few studies, we believe that an important issue has been overlooked in the 

proposed PCIs based on profile intercept and slope. This issue is the lack of using the in-control profiles 

to obtain accurate SLs for the parameters. It is well known that PCIs are based on predefined SLs. 

Considering  the available literature, it seems that in all studies the SLs for  intercept and  slope are  

determined based on the profile SLs, which are not necessarily in-control. Since one of the main 

assumptions of capability analysis is the stability of the process, by considering profile SLs as well as 

the in-control profile, accurate SLs for parameters could be obtained. 

   On the other hand, in practice, manufacturing operations are often involved with multistage processes. 

In a multistage process, the output of each stage is affected by two main factors: the activities at current 

stage and the performance of the previous stage(s). This dependence that is referred to as the cascade 

property is of great importance when a multistage process is monitored. To solve this issue, some 

approaches such as cause selecting chart (CSC), regression adjusted charts, and state-space models were 

developed over time. 

   To the best of the authors' knowledge, no attempt has been devoted in the literature to establish process 

capability for MVSLP in multistage processes. Therefore, the main purpose of this study is to propose 

an approach to assess the process capability for multivariate linear profile in a multistage process. 

Besides, a new method to compute PCIs for profile parameters is utilized. Note that even when the PCIs 

related to response values indicate the process is capable; analyzing the PCIs of profile parameters is 

still recommended. 

   This paper is organized as follows. Multistage process and profile modeling in multistage processes 

along with the proposed method for evaluating process capability are presented in sections 2 and 3, 

respectively. A brief explanation of the multivariate PCI used in this study is provided in section 4. The 

PCIs of profile parameters is introduced in section 5. A simulation study to evaluate the performance 

of the proposed method is presented in section 6 and finally, in the last section conclusions and some 

recommendations for future research are provided. 

2-Multistage process 
   In real world manufacturing systems, many processes consist of several dependent stages. This 

implies that the output of one stage is the input of its subsequent stage and a change in a quality 

characteristic may affect some or all output variables in successive stages. This property is called 

cascade property and is the main feature of multistage processes. As an example, the quality 

characteristic of interest in a piston machining process is the piston diameter that is measured at different 

heights from the bottom of the pistons in each of the four series operations involved (Fong and Lawless, 

1998). In this multistage process, the authors considered the relationship between the diameter and the 

height of pistons, as a profile, and analyzed the profile after each stage. 

   Copious studies about the applications of multistage processes have been done. In recent years, 

researchers have developed various control charts in multistage processes. However, capability analysis 

in multistage processes has not been studied as much. Zhang (1990) introduced two kinds of PCIs for 

multistage processes. The first PCI was total PCI that computes the process capability when the quality 

characteristic in the present stage is affected by quality characteristics of previous stages. The second 

one was the specific PCI that indicates the capability of a stage when the effects of precedent stages are 

excluded. Linn, Au and Tsung (2002) addressed how to prioritize the process variation reduction to 

enhance the overall process capability in multistage processes. Based on Taguchi loss function, Chen 

et al. (2012) presented a method to calculate PCI for complex product machining process as a multistage 

process. Nikzad, Amiri and Abbasi (2017) estimated the process capability of the second stage of two-

stage process while the effect of cascade property is removed by using residuals analysis. In another 

study by Nikzad, Amiri and Amirkhani (2018), the effects of measurement errors on the specific and 

total PCIs in the second and third stages of a three-stage process are statistically analyzed. 

   Due to the cascade property, using usual statistical quality control methods in a multistage process 

may lead to inaccurate results. One way to overcome this problem is the cause-selecting chart (CSC), 

proposed by Zhang (1984). The advantage of this method is that once a signal is given, it is easy to 
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determine the stage associated with the signal. Therefore, it is more practical and beneficial for 

analyzing multistage processes by considering the cascade property. This idea is discussed in section 3. 

   While most of the studies in the area of multistage processes deal with univariate or multivariate 

quality characteristic, in some situations, profiles are streamed in the stages of a multistage process. 

Ghahyazi, Niaki and Soleimani (2014) were the first researchers who considered the quality 

characteristic in a multistage process as a profile. They proposed an approach to monitor simple linear 

profile in Phase II in the presence of cascade property. Khedmati and Niaki (2017) addressed the 

problem of monitoring general linear profiles in multistage processes in Phase I. Khedmati and Niaki 

(2016) also proposed an approach for monitoring simple linear profiles in multistage processes in Phase 

II. Bahrami, Niaki and Khedmati (2021) introduced a method to monitor MVSLP in a multistage 

process in Phase II. 

3-Modeling 
   To model a MVSLP in a multistage process, it is assumed that m samples of size n are collected for p 

response variables at each of k stages of a multistage process from historical data. At each stage of the 

process, for sample j, there are n fixed values for the explanatory variable, and, the observations 

(𝑥𝑖𝑗𝑠, 𝑌𝑖𝑗1𝑠, 𝑌𝑖𝑗2𝑠, … , 𝑌𝑖𝑗𝑝𝑠), 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2, … ,𝑚 and 𝑠 = 1. 2. … , 𝑘 are available. It is also 

assumed that the explanatory variable is fixed from sample to sample for all stages. Consequently 𝑥𝑖𝑗𝑠 

= 𝑥𝑖 for all values of j and s. The multivariate profile model in a multistage process considering the 

cascade property can be written as: 

𝐘𝐣𝟏 = 𝐗𝐀𝐣𝟏 + 𝐄𝐣𝟏 

𝐘𝐣𝐬 = 𝐘𝐣(𝐬−𝟏)𝚽+ 𝐗𝐀𝐣𝐬 + 𝐄𝐣𝐬         𝑠 > 1 
(2) 

Where 𝐘𝐣𝟏 refers to the response variables, 𝐀𝐣𝟏 indicates the parameters, and 𝐄𝐣𝟏 refers to the error terms 

in the first stage, respectively. Also, 𝐗 is the matrix of explanatory variables.  

For stage s, we can equivalently state: 

[
 
 
 
𝑌1𝑗1𝑠 𝑌1𝑗2𝑠 ⋯ 𝑌1𝑗𝑝𝑠
𝑌2𝑗1𝑠 𝑌2𝑗2𝑠 ⋯ 𝑌2𝑗𝑝𝑠
⋮ ⋮ ⋱ ⋮

𝑌𝑛𝑗1𝑠 𝑌𝑛𝑗2𝑠 ⋯ 𝑌𝑛𝑗𝑝𝑠]
 
 
 

=

[
 
 
 
𝑌1𝑗1(𝑠−1) 𝑌1𝑗2(𝑠−1) ⋯ 𝑌1𝑗𝑝(𝑠−1)
𝑌2𝑗1(𝑠−1) 𝑌2𝑗2(𝑠−1) ⋯ 𝑌2𝑗𝑝(𝑠−1)

⋮ ⋮ ⋱ ⋮
𝑌𝑛𝑗1(𝑠−1) 𝑌𝑛𝑗2(𝑠−1) ⋯ 𝑌𝑛𝑗𝑝(𝑠−1)]

 
 
 

[

𝜑11 𝜑12 ⋯ 𝜑1𝑝
𝜑21 𝜑22 ⋯ 𝜑2𝑝
⋮ ⋮ ⋱ ⋮
𝜑𝑝1 𝜑𝑝2 ⋯ 𝜑𝑝𝑝

] 

+[

1 𝑥11
1 𝑥12
⋮ ⋮
1 𝑥1𝑛

] [
𝑎01𝑗𝑠 𝑎02𝑗𝑠 ⋯ 𝑎0𝑝𝑗𝑠
𝑎11𝑗𝑠 𝑎12𝑗𝑠 ⋯ 𝑎1𝑝𝑗𝑠

] + [

𝜀1𝑗1𝑠 𝜀1𝑗2𝑠 ⋯ 𝜀1𝑗𝑝𝑠
𝜀2𝑗1𝑠 𝜀2𝑗2𝑠 ⋯ 𝜀2𝑗𝑝𝑠
⋮ ⋮ ⋱ ⋮

𝜀𝑛𝑗1𝑠 𝜀𝑛𝑗2𝑠 ⋯ 𝜀𝑛𝑗𝑝𝑠

] 

(3) 

   Where 𝐘𝐣𝐬 is a 𝑛 × 𝑝 matrix of response variables for the jth sample in sth stage, 𝑿 = [𝟏 𝐱] is a 𝑛 × 2 

matrix of explanatory variables, in which 𝟏 = (1, 1, … , 1)𝑇, and 𝐱 = (𝑥11, 𝑥12, … , 𝑥1𝑛)
𝑇. 𝐀𝐣𝐬 =

(𝐚𝟎𝐣𝐬, 𝐚𝟏𝐣𝐬)
𝑇 is a 2 × 𝑝 matrix of known parameters, in which 𝐚𝟎𝐣𝐬 = (𝑎01𝑗𝑠, 𝑎02𝑗𝑠, … , 𝑎0𝑝𝑗𝑠)

𝑇, and 

𝐚𝟏𝐣𝐬 = (𝑎11𝑗𝑠, 𝑎12𝑗𝑠, … , 𝑎1𝑝𝑗𝑠)
𝑇. The autocorrelation values are given by matrix 𝚽. To further explain 

matrix 𝚽, we consider a two-variate profile in a two-stage process. For the jth random sample, quality 

characteristics in the first stage are defined by 𝑦𝑗11 and 𝑦𝑗21 (s = 1), and quality characteristics in the 

second stage are defined by 𝑦𝑗12 and 𝑦𝑗22 (s = 2), respectively. Based on the nature of a process, 𝑦𝑗12 
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can be correlated with only 𝑦𝑗11 or both 𝑦𝑗11 and 𝑦𝑗21. Similarly, 𝑦𝑗22 can be correlated with only 𝑦𝑗21 

or both 𝑦𝑗11 and 𝑦𝑗21. So, a general form of matrix 𝚽 is considered in equation (3). Also 𝐄𝐣𝐬 is a 𝑛 × 𝑝 

matrix of error terms. It is assumed that in each stage, the vector of error terms follows multivariate 

normal distribution with mean vector zero and known covariance matrix 𝚺, which can be shown by 

𝚺 = [

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

] (4) 

Where 𝜎ℎ𝑙 indicates the covariance between hth and lth (ℎ = 1, 2,… , 𝑝, 𝑙 = 1, 2,… , 𝑝) error terms at 

each observation. 

Figure 1 presents a graphical display of the proposed multistage model. 

 
Fig 1. A graphical representation of a multistage process 

   After specifying the profile model in a multistage process, SLs are defined. Generally, SLs can be 

considered as fixed values or a function of explanatory variables. For each variable and stage, it is 

assumed that the SLs associated with the response variables are linear functions of the explanatory 

variable as shown in equation (5) 

𝑈𝑆𝐿𝑖ℎ𝑠 = 𝑎0ℎ𝑠
ˊ + 𝑎1ℎ𝑠

ˊ 𝑋𝑖 

𝐿𝑆𝐿𝑖ℎ𝑠 = 𝑎0ℎ𝑠
˶ + 𝑎1ℎ𝑠

˶ 𝑋𝑖 

𝑖 = 1,2, … , 𝑛,      ℎ = 1, 2, … , 𝑝,      𝑠 = 1. 2. … , 𝑘 

(5) 

   Where 𝑈𝑆𝐿𝑖ℎ𝑠 and 𝐿𝑆𝐿𝑖ℎ𝑠 are the upper and the lower SLs for the ith level of hth response variable in 

sth stage. Also, 𝑎0ℎ𝑠
ˊ , 𝑎1ℎ𝑠

ˊ , 𝑎0ℎ𝑠
˶ , and 𝑎1ℎ𝑠

˶  are the intercepts and slopes for 𝑈𝑆𝐿𝑖ℎ𝑠 and 𝐿𝑆𝐿𝑖ℎ𝑠, 
respectively. Note that the SLs are not necessarily parallel to each other as well as to the profile line. 

However, in this article it is assumed that the SLs are parallel. 

   Due to the cascade effect, using common PCIs to assess the capability of intermediate stages (𝑠 > 1) 

may lead to misleading results. To deal with this issue, PCI for the residuals is considered. Residual 

analysis is the main idea of CSC, as one of the most popular approaches in multistage studies. Under 

this condition, residuals are not affected by previous stages. Thus, the PCIs for the residuals indicate 

the specific process capability of the process in each stage. The residual for the ith level of hth response 

variable is computed as 

𝑒𝑖𝑗ℎ𝑠 = 𝑌𝑖𝑗ℎ𝑠 − �̂�𝑖𝑗ℎ𝑠 (6) 

Where �̂�𝑖𝑗ℎ𝑠 is the fitted value for 𝑌𝑖𝑗ℎ𝑠. The fitted value �̂�𝑖𝑗ℎ𝑠 can be obtained using equations (7) 

�̂�𝑖𝑗ℎ𝑠 = 𝑌𝑖𝑗ℎ(𝑠−1)Φ+ 𝑋𝐴𝑖𝑗ℎ𝑠 (7) 
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The variance of the residuals is calculated by 

𝜎𝑒𝑖ℎ𝑠
2 =

∑ (𝑌𝑖𝑗ℎ𝑠 − �̂�𝑖𝑗ℎ𝑠)
2𝑚

𝑗=1

𝑚 − 2
=
∑ 𝑒𝑖𝑗ℎ𝑠

2𝑚
𝑗=1

𝑚− 2
 (8) 

   To assess the PCI for residuals, SLs of residuals have to be obtained. Nikzad, Amiri and Abbasi (2017) 

proposed a method to calculate the SLs for residuals using process yield. According to F.-K. Wang 

(2014), process yield has been recognized as a common criterion for measuring process performance. 

It measures the performance of process by computing the percentage of conforming items based on the 

SLs of process. Under the assumptions that the mean of residuals is equal to zero, which is considered 

as the target value, then the process yield of residuals is 0.9973. Thus, the SLs of residuals are acquired 

as follows. 

Process Yield = 𝑃{𝐿𝑆𝐿𝑒 ≤ 𝜀 ≤ 𝑈𝑆𝐿𝑒} = 0.9973 (9) 

𝑃 {
𝐿𝑆𝐿𝑒 − 𝜇𝑒

𝜎𝑒
≤ 𝑧 ≤

𝑈𝑆𝐿𝑒 − 𝜇𝑒
𝜎𝑒

} = 0.9973      ,      𝜇𝑒 = 0 (10) 

𝑈𝑆𝐿𝑒 = 𝜎𝑒𝜙
−1(0.99865)     ,     𝐿𝑆𝐿𝑒 = 𝜎𝑒𝜙

−1(0.00135) (11) 

Where 𝜇𝑒 is the residuals mean, 𝜎𝑒 is the residuals standard deviation, 𝑈𝑆𝐿𝑒 and 𝐿𝑆𝐿𝑒 are the upper 

and the lower SLs of the residuals, respectively, and 𝜙−1(. ) is the inverse cumulative distribution 

function of standard normal distribution. 

4-Multivariate PCI 
   Many authors have introduced multivariate PCIs under different assumptions over past few years. 

Among the introduced approaches to assess multivariate PCIs, the ratio of tolerance region to process 

region has been of interest to some researchers. Chan, Cheng and Spiring (1991), Taam, Subbaiah and 

Liddy (1993), Shahriari, Hubele and Lawrence (1995), Grau (2007), Pan and Lee (2010), Niavarani, 

Noorossana and Abbasi (2012), Wang et al. (2013), Ciupke (2015), Pan, Li and Shih (2015), Abbasi 

Ganji and Sadeghpour Gildeh (2016, 2017), Abbasi Ganji (2019), and Govinda Khadse and Kailas 

Khadse (2020) are some of the authors who used the relation between tolerance and process regions to 

compute the preferred PCIs. 

   In this study, we consider the multivariate PCI referred to as 𝑁𝑀𝐶𝑃𝑀which was introduced by 

Niavarani, Noorossana and Abbasi (2012). This process capability index is a modified version of 𝑀𝐶𝑃𝑀 

index proposed by Taam, Subbaiah and Liddy (1993) and it measures the ratio of modified tolerance 

region to a scaled 99.73% process region. Process region and modified tolerance region in two 

dimensions is shown in figure 2. 

 
Fig 2. Modified tolerance region vs. tolerance region 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Khadse%2C+Kailas+Govinda
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Khadse%2C+Aditya+Kailas
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Khadse%2C+Aditya+Kailas
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   Based on figure 2, Niavarani, Noorossana and Abbasi (2012) declared that if the modified tolerance 

region is ellipse, then the area of the original tolerance region is underestimated by the modified 

tolerance region; and consequently 𝑀𝐶𝑃𝑀would be underestimated. This concept can be expanded to 

higher dimensions as well. To eliminate the error in the estimation of the tolerance region, a new 𝑀𝐶𝑃𝑀 

referred to as 𝑁𝑀𝐶𝑃𝑀is proposed as follows.  

𝑁𝑀𝐶𝑃𝑀 =
𝑁𝐶𝑃
𝐷

 (12) 

Where 

𝑁𝐶𝑃 =
𝑉𝑜𝑙. (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)

𝑉𝑜𝑙. (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 99.73% 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛)
=

∏ [𝑈𝑆𝐿ℎ − 𝐿𝑆𝐿ℎ]
𝑝
ℎ

|𝑆|0.5(𝜋𝑅)
𝑝
2⁄ [Γ(

𝑝
2
+ 1)]−1

 (13) 

and 

𝐷 = [1 +
𝑚

𝑚+ 1
(�̅� − 𝑇0)

ˊ𝑆−1(�̅� − 𝑇0)]
1
2⁄  (14) 

 

   In above equations, Vol (.) is the volume of the region, p is the number of response variables, S 

contains the unbiased sample variance-covariance of the observations, R is the 99.73% quantile of a 𝜒2 

distribution with p degrees of freedom, Γ denotes gamma function, |.| denotes the determinant, 𝑚 is the 

number of observations, and 𝑇0 denotes the p-vector target values for the p response variables. The 

quantity 𝑁𝐶𝑃 focuses on variation. If 𝑁𝐶𝑃 is larger than 1, it indicates that the process variation is lower 

than the acceptance variation criteria. The quantity 
1

𝐷
 measures the closeness between the process mean 

and the target and a larger 
1

𝐷
 indicates that the mean is closer to target. By determining the SLs of 

residuals, considering the profile model in multistage processes, and employing 𝑁𝑀𝐶𝑃𝑀 as the 

multivariate PCI, the PCI for each stage can be assessed. 

5-PCIs for parameters 
   Along with the PCIs for each stage that is calculated based on the response variable, the performance 

of the stages can be inspected through the PCIs for the parameters. This helps to detect the parameter 

which contributes to low performance of the process. To assess the PCIs for profile parameters, it is 

required to determine the SLs for the intercept and slope. Pakzad (2021) provided a new method to 

measure PCI for a SLP based on its parameters. She considered profile SLs as well as the in-control 

profile to obtain accurate SLs for parameters. To assess the in-control profile, control chart limits for 

monitoring each parameter was considered. Her method is based on Kim, Mahmoud and Woodall 

(2003) study, which uses coded 𝑋-values to make the intercept estimator and the slope estimator of each 

profile independent. 

   Kim, Mahmoud and Woodall (2003) introduced a method for Phase I profile monitoring that monitors 

the intercept and slope individually by using a separate control chart. In this method, coded 𝑋-values 

are used which make the intercept estimator and the slope estimator of each profile independent. The 

transformed form of the model is obtained by equation (15). 

𝑦𝑖𝑗 = 𝑏0𝑗 + 𝑏1𝑗𝑥𝑖
′ + 𝜀𝑖𝑗          𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2,… ,𝑚. (15) 
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Where 𝑏0𝑗 = 𝑎0𝑗 + 𝑎1𝑗�̅�, 𝑏1𝑗 = 𝑎1𝑗 and 𝑥𝑖
′ = 𝑥𝑖 − �̅�. In this situation the least-square estimators of 

coefficients are calculated by 𝑏0𝑗 = �̅�𝑗 and 𝑏1𝑗 = 𝑎1𝑗 =
 𝑠𝑥𝑦(𝑗)

 𝑠𝑥𝑥
. Also, �̅�𝑗 = 

∑ 𝑦𝑖𝑗
𝑛
𝑖=1

𝑛
, �̅� =  

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
, 

 𝑠𝑥𝑦(𝑗) = ∑ (𝑥𝑖 − �̅�)𝑦𝑖𝑗
𝑛
𝑖=1 , and  𝑠𝑥𝑥 = ∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1 . 

It is well known that when process is in-control, 𝑏0𝑗 and 𝑏1𝑗 are independent and follow normal 

distributions as 𝑏0𝑗~𝑁(𝐵0,
𝜎𝜀
2

𝑛
) and 𝑏1𝑗~𝑁(𝐵1,

𝜎𝜀
2

𝑆𝑋𝑋
). A separate Shewhart control chart for monitoring 

intercept and slope are given in equations (16) to (19). 

𝐿𝐶𝐿𝑏0 = �̅�0 − 𝑡𝑚(𝑛−2),𝛼2
2

√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑛
 (16) 

𝑈𝐶𝐿𝑏0 = �̅�0 + 𝑡𝑚(𝑛−2),𝛼2
2

√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑛
 (17) 

𝐿𝐶𝐿𝑏1 = �̅�1 − 𝑡𝑚(𝑛−2),𝛼2
2
√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑆𝑋𝑋
 (18) 

𝑈𝐶𝐿𝑏1 = �̅�1 + 𝑡𝑚(𝑛−2),𝛼2
2
√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑆𝑋𝑋
 (19) 

Where �̅�0 =
∑ 𝑏0𝑗
𝑚
𝑗=1

𝑚
, �̅�1 =

∑ 𝑏1𝑗
𝑚
𝑗=1

𝑚
, 𝑀𝑆𝐸 =

∑ 𝑀𝑆𝐸𝑗
𝑚
𝑗=1

𝑚
 and 𝑡𝑚(𝑛−2),𝛼2

2
 is a 100(1 −

𝛼2

2
) percentile of t 

distribution with 𝑚(𝑛 − 2) degrees of freedom. Note that 𝛼2 = √(1 − 𝛼1)
𝑚

 is the marginal probability 

of signal for each control chart and 𝛼1 = √(1 − 𝛼)
3

 specifies the overall probability of false alarm by 

each chart. 

   Pakzad (2021) assumed that the SLs for response variable for each level of the explanatory variable 

(𝑖 = 1, 2, … , 𝑛) are linear functions of the explanatory variable as was stated in equation (9).  According 

to separate control chart method, the transformed model for the SLs of hth profile in sth stage can be 

written as  

𝑈𝑆𝐿𝑖ℎ𝑠 = 𝑏0ℎ𝑠
ˊ + 𝑏1ℎ𝑠

ˊ 𝑋𝑖
′ 

𝐿𝑆𝐿𝑖ℎ𝑠 = 𝑏0ℎ𝑠
˶ + 𝑏1ℎ𝑠

˶ 𝑋𝑖
′ (20) 

   Where 𝑏0ℎ𝑠
ˊ , 𝑏1ℎ𝑠

ˊ , 𝑏0ℎ𝑠
˶ , and 𝑏1ℎ𝑠

˶  are the intercepts and slopes for 𝑈𝑆𝐿𝑖ℎ𝑠 and 𝐿𝑆𝐿𝑖ℎ𝑠, respectively. 

Note that the SLs are not necessarily parallel to each other as well as to the profile line. However, in 

this study, it is assumed that the SLs are parallel, so 𝑏1ℎ𝑠
˶ = 𝑏1ℎ𝑠

ˊ = 𝑏. A process is called “capable” if 

the response variable falls within the profile SLs. Hence, equation (21) may be stated as 

𝑏0ℎ𝑠
˶ + 𝑏𝑥𝑖

′   ≤ 𝑏0ℎ𝑠 + 𝑏1ℎ𝑠𝑥𝑖
′ ≤ 𝑏0ℎ𝑠

ˊ + 𝑏𝑥𝑖
′ 

(21) 

According to Pakzad (2021), SLs for the intercept and slope can be calculated using equations (22) and 

(23). 

𝑏0ℎ𝑠
˶ + (𝑏 − 𝑏1ℎ𝑠)𝑥𝑖

′   ≤ 𝑏0ℎ𝑠 ≤ 𝑏0ℎ𝑠
ˊ + (𝑏 − 𝑏1ℎ𝑠)𝑥𝑖

′ (22) 
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{
 
 

 
 𝑏 +

(𝑏0ℎ𝑠
˶ − 𝑏0ℎ𝑠)

𝑥𝑖
′  

≤ 𝑏1ℎ𝑠 ≤ 𝑏 +
(𝑏0ℎ𝑠

ˊ − 𝑏0ℎ𝑠)

𝑥𝑖
′  

, 𝑥𝑖
′ > 0

𝑏 +
(𝑏0ℎ𝑠

ˊ − 𝑏0ℎ𝑠)

𝑥𝑖
′  

≤ 𝑏1ℎ𝑠 ≤ 𝑏 +
(𝑏0ℎ𝑠
˶ − 𝑏0ℎ𝑠)

𝑥𝑖
′  

, 𝑥𝑖
′ < 0

 (23) 

   It must be noted that although all profiles in equation (21) are within the SLs of the response variable, 

they are not necessarily in-control. Thus, all intercepts and slopes in equations (22) and (23) are not 

necessarily in-control either. To determine correct SLs for profile parameters, (Pakzad, 2021) 

considered both conforming and statistically in-control profiles in equation (21). As a result, the SLs 

for the intercept and slope parameters are given by equations (24) and (25). 

𝑏0
˶ + (𝑏 − 𝐿𝐶𝐿𝑏1)𝑥𝐿

′ ≤ 𝑏0 ≤ 𝑏0
ˊ + (𝑏 − 𝑈𝐶𝐿𝑏1)𝑥𝐿

′  (24) 

𝑀𝑖𝑛 {𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑙𝑜𝑝𝑒𝑠} ≤ 𝑏1 ≤ 

𝑀𝑎𝑥 {𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑙𝑜𝑝𝑒𝑠 } (25) 

Where 𝑋𝐿
′  is the minimum value of  𝑋𝑖

′s, 𝑋𝑈
′  is the maximum value of 𝑋𝑖

′s, and 𝑏 +
(𝑏0
˶−𝐿𝐶𝐿𝑏0)

𝑋𝑈
′ , 𝑏 +

(𝑏0
ˊ −𝑈𝐶𝐿𝑏0)

𝑋𝑈
′ , 𝑏 +

(𝑏0
ˊ −𝑈𝐶𝐿𝑏0)

𝑋𝐿
′  and 𝑏 +

(𝑏0
˶−𝐿𝐶𝐿𝑏0)

𝑋𝐿
′  are all conforming and in-control slopes. 

   Once the SLs for intercept and slope parameters are determined using equations (24) and (25), a 

univariate PCI for each parameter should be applied. Among univariate PCIs, 𝐶𝑝𝑚𝑘 is considered in 

this study. This index provides indications of both process variability and proximity to the target. The 

index 𝐶𝑝𝑚𝑘 for 𝑏0ℎ𝑠 and 𝑏1ℎ𝑠 can be written as in equations (26) and (27). 

𝐶𝑝𝑚𝑘𝑏0ℎ𝑠
= 𝑚𝑖𝑛 

{
 

 𝑈𝑆𝐿𝑏0ℎ𝑠 − 𝜇𝑏0ℎ𝑠

3√𝜎𝑏0ℎ𝑠
2 + (𝜇𝑏0ℎ𝑠 − 𝑇𝑏0ℎ𝑠)

2
,

𝜇𝑏0ℎ𝑠 − 𝐿𝑆𝐿𝑏0ℎ𝑠

3√𝜎𝑏0ℎ𝑠
2 + (𝜇𝑏0ℎ𝑠 − 𝑇𝑏0ℎ𝑠)

2

}
 

 

 (26) 

𝐶𝑝𝑚𝑘𝑏1ℎ𝑠
= 𝑚𝑖𝑛 

{
 

 𝑈𝑆𝐿𝑏1ℎ𝑠 − 𝜇𝑏1ℎ𝑠

3√𝜎𝑏1ℎ𝑠
2 + (𝜇𝑏1ℎ𝑠 − 𝑇𝑏1ℎ𝑠)

2
,

𝜇𝑏1ℎ𝑠 − 𝐿𝑆𝐿𝑏1ℎ𝑠

3√𝜎𝑏1ℎ𝑠
2 + (𝜇𝑏1ℎ𝑠 − 𝑇𝑏1ℎ𝑠)

2

}
 

 

 (27) 

   Where 𝜇𝑏0ℎ𝑠  and 𝜎𝑏0ℎ𝑠
2   are the mean and variance of the sample mean of intercept of hth profile in sth 

stage, which follows 𝑁(𝐵0,
𝜎𝜀
2

𝑚𝑛
). Similarly, 𝜇𝑏1ℎ𝑠  and 𝜎𝑏ℎ𝑠1

2   are the mean and variance of the sample 

mean of slope of hth profile in the sth stage, which follows 𝑁(𝐵1,
𝜎𝜀
2

𝑚𝑆𝑋𝑋
).The specifications 𝑈𝑆𝐿𝑏0ℎ𝑠 

,𝐿𝑆𝐿𝑏0ℎ𝑠, 𝑈𝑆𝐿𝑏1ℎ𝑠, and 𝐿𝑆𝐿𝑏1ℎ𝑠 are the upper and lower SLs of intercept and slope, respectively. Also, 

𝑇𝑏0ℎ𝑠  and 𝑇𝑏1ℎ𝑠  are assumed to be the target value of the intercept and slope, respectively. 

Using the SLs of response variable and considering the in-control profile, the SLs for intercept and 

slope can be obtained. Therefore, 𝐶𝑝𝑚𝑘 index for profile parameters can be computed. It is worth 

mentioning that both indices 𝐶𝑝𝑚𝑘𝑏0  and 𝐶𝑝𝑚𝑘𝑏1are used simultaneously and the process is deemed 

“incapable” if at least one of the indices indicates a low process performance. 
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6-Simulation study 
   In this section, a simulation study in MATLAB environment is carried out to investigate the 

performance of the proposed method. The MVSLP is considered which was stated in the study of 

Bahrami, Niaki and Khedmati (2021). The underlying model in the first and the second stage of a two-

stage process, respectively, is defined as 

[𝑦𝑖𝑗11 𝑦𝑖𝑗21] = [1 𝑥𝑖] [
3 4
2 1

] + [𝜀𝑖𝑗11 𝜀𝑖𝑗21] (34) 

[𝑦𝑖𝑗12 𝑦𝑖𝑗22] = [𝑦𝑖𝑗11 𝑦𝑖𝑗21] [
𝜑11 0
0 𝜑22

] + [1 𝑥𝑖] [
2 1
1 2

] + [𝜀𝑖𝑗12 𝜀𝑖𝑗22] (35) 

Where 𝑛 = 4, 𝜀𝑖𝑗𝑝1~𝑀𝑉𝑁 ([
0
0
] , [

1 0.5
0.5 1

]), and 𝜀𝑖𝑗𝑝2~𝑀𝑉𝑁([
0
0
] , [

1 0.5
0.5 1

]). The explanatory 

variable with four fixed 𝑋𝑖-values of 2, 4, 6, and 8 is used in the simulation study. In the proposed 

method, by coding 𝑋𝑖-values, the transformed model is obtained as 

[𝑦𝑖𝑗11 𝑦𝑖𝑗21] = [1 𝑥𝑖
′] [
13 9
2 1

] + [𝜀𝑖𝑗11 𝜀𝑖𝑗21] (36) 

[𝑦𝑖𝑗12 𝑦𝑖𝑗22] = [𝑦𝑖𝑗11 𝑦𝑖𝑗21] [
𝜑11 0
0 𝜑22

] + [1 𝑥𝑖
′] [
7 16
1 2

] + [𝜀𝑖𝑗12 𝜀𝑖𝑗22] (37) 

Where 𝑋𝑖
′-values are -3, -1, 1 and 3.  

The regression lines associated with the SLs in each stage for the transformed model are provided in 

table 1. 

Table 1. SLs of response variable in each stage 

Stage Variable Transformed model 

Stage 1 

𝑦𝑖𝑗11 
𝐿𝑆𝐿11 = 10.0012 + 2𝑥𝑖

′ 

𝑈𝑆𝐿11 = 16.02 + 2𝑥𝑖
′ 

𝑦𝑖𝑗21 
𝐿𝑆𝐿21 = 6.03 + 𝑥𝑖

′ 

𝑈𝑆𝐿21 = 11.99 + 𝑥𝑖
′ 

Stage 2 

𝑦𝑖𝑗12 
𝐿𝑆𝐿12 = 14.683 + 2.8𝑥𝑖

′ 

𝑈𝑆𝐿12 = 22.73 + 2.8𝑥𝑖
′ 

𝑦𝑖𝑗22 
𝐿𝑆𝐿22 = 15.095 + 2.9𝑥𝑖

′ 

𝑈𝑆𝐿22 = 23.13 + 2.9𝑥𝑖
′ 

   Now we investigate the PCIs associated with the response variables and parameters. As mentioned 

earlier, it is better to evaluate the PCIs for profile parameters. It must be noted again that the specified 

PCI for stage 2 is calculated based on the residuals. Thus, the performance of stage 1 is related to the 

parameters of the profiles in the first stage, while total performance is affected by the parameters of 

profiles in all stages. 
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   The effect of different values of sample size on the capability of each stage using 10,000 simulation 

replications for both weak and strong autocorrelation coefficients (𝜑11 = 𝜑22 = 0.1 , 0.9) is presented 

in table 2. It must be noted that in the following tables, 𝑏0−ℎ𝑠 and 𝑏1−ℎ𝑠 (ℎ = 1, 2 𝑎𝑛𝑑 𝑠 = 1, 2) refer 

to intercept and slope of the hth profile in stage s, respectively. 

Table 2. Capability of each stage and parameter under different values of 𝜑 and m  

 
m 

25 50 100 200 

𝝋 = 𝟎. 𝟗 𝑁𝑀𝐶𝑃𝑀−Stage1 1.1437 1.1286 1.1218 1.1192 

𝑁𝑀𝐶𝑃𝑀−Stage2 1.1242 1.0858 1.0700 1.0606 

𝑁𝑀𝐶𝑃𝑀−Total 1.1416 1.1241 1.1158 1.1136 

𝐶𝑝𝑚𝑘−𝑏0−11 3.5852 3.6404 3.7029 3.7690 

𝐶𝑝𝑚𝑘−𝑏1−11 0.6191 0.5884 0.5537 0.5170 

𝐶𝑝𝑚𝑘−𝑏0−21 3.5661 3.6213 3.6838 3.7499 

𝐶𝑝𝑚𝑘−𝑏1−21 0.6042 0.5735 0.5388 0.5021 

𝐶𝑝𝑚𝑘−𝑏0−12 3.5772 3.6324 3.6949 3.7610 

𝐶𝑝𝑚𝑘−𝑏1−12 0.6149 0.5782 0.5345 0.5013 

𝐶𝑝𝑚𝑘−𝑏0−22 3.5708 3.6260 3.6885 3.7546 

𝐶𝑝𝑚𝑘−𝑏1−22 0.6069 0.5762 0.5415 0.5048 

𝝋 = 𝟎. 𝟏 𝑁𝑀𝐶𝑃𝑀−Stage1 1.1452 1.1324 1.1206 1.1184 

𝑁𝑀𝐶𝑃𝑀−Stage2 1.1283 1.0879 1.0701 1.0603 

𝑁𝑀𝐶𝑃𝑀−Total 0.1531 0.1524 0.1522 0.1964 

𝐶𝑝𝑚𝑘−𝑏0−11 3.5852 3.6404 3.7029 3.7690 

𝐶𝑝𝑚𝑘−𝑏1−11 0.6191 0.5884 0.5537 0.5170 

𝐶𝑝𝑚𝑘−𝑏0−21 3.5661 3.6213 3.6838 3.7499 

𝐶𝑝𝑚𝑘−𝑏1−21 0.6042 0.5735 0.5388 0.5021 

𝐶𝑝𝑚𝑘−𝑏0−12 0.0479 0.0528 0.0584 0.0643 

𝐶𝑝𝑚𝑘−𝑏1−12 0.5396 0.5354 0.5388 0.5254 

𝐶𝑝𝑚𝑘−𝑏0−22 0.0474 0.0538 0.0591 0.0637 

𝐶𝑝𝑚𝑘−𝑏1−22 0.5493 0.5364 0.5281 0.5225 

    

   From table 2, different values of the autocorrelation coefficient do not affect the process performance 

in stage 1 and stage 2 (when the cascade property is removed). However, the total index is strongly 

correlated to this coefficient. Higher values of autocorrelation coefficients result in higher values of the 

total 𝑁𝑀𝐶𝑃𝑀. The performance of parameters in stage 1 is not correlated to the autocorrelation 

coefficient either. As can be seen in table 2, the values of 𝐶𝑝𝑚𝑘 for 𝑏0−ℎ1 and 𝑏1−ℎ1 (ℎ = 1, 2) are not 

affected by different values of 𝜑; while the capability of parameters in stage 2 are highly affected by 

the value of 𝜑. On the other hand, it is clear from table 2 that different values of sample size do not 

have a noticeable effect on the capability values.  

   The other issue which should be investigated is the effect of variance of error terms on the capability 

values. It should be noted that the index 𝑁𝑀𝐶𝑃𝑀 considers the correlation between variables for 

computing process capability. Besides, in this example, we deal with four variances of error terms which 

are relating to the four mentioned profiles. 𝜎11
2  and 𝜎21

2  refer to the profiles in the first stage and 𝜎12
2  and 

𝜎22
2  refer to the profiles in the second stage, respectively. To investigate the effect of variances of error 

terms along with the correlation coefficient, there will be many different cases. In table 3, we present 

the effect of different variances of the error terms relating to the profiles in stage 1 (𝜎11
2  and 𝜎21

2 ) and 
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the correlation coefficient (𝜌) on capability values in each stage and related parameters, while 𝜑 = 0.9 

and the sample size equals 25. 

Table 3. Capability of each stage and parameter under different values of 𝜎11
2  and 𝜎21

2  

𝝈𝟐𝟏
𝟐  

Capability  𝝈𝟏𝟏
𝟐 = 𝟎. 𝟕 

 

𝝈𝟏𝟏
𝟐 = 𝟏  𝝈𝟏𝟏

𝟐 = 𝟏. 𝟑 

𝜌  0.1 0.5 0.9 

 

0.1 0.5 0.9  0.1 0.5 0.9 

0.7 𝑁𝑀𝐶𝑃𝑀−Stage1  2.0389 2.3282 4.6082  1.4236 1.6363 3.2501  1.0931 1.2508 2.4988 

𝑁𝑀𝐶𝑃𝑀−Stage2  1.0375 1.1307 1.5105  1.0396 1.1515 1.6956  1.0394 1.1685 1.8996 

𝑁𝑀𝐶𝑃𝑀−Total  1.2857 1.4820 2.9274  1.1327 1.2859 2.4247  0.9894 1.1069 1.9116 

𝐶𝑝𝑚𝑘−𝑏0−11  3.9751 3.9751 3.9751  3.5852 3.5852 3.5852  3.3397 3.3397 3.3397 

𝐶𝑝𝑚𝑘−𝑏1−11  0.9120 0.9120 0.9120  0.6191 0.6191 0.6191  0.4346 0.4346 0.4346 

𝐶𝑝𝑚𝑘−𝑏0−21  3.9523 3.9523 3.9523  3.6521 3.6521 3.6521  3.3419 3.3419 3.3419 

𝐶𝑝𝑚𝑘−𝑏1−21  0.8942 0.8942 0.8942  0.6932 0.6932 0.6932  0.4143 0.4143 0.4143 

𝐶𝑝𝑚𝑘−𝑏0−12  3.7260 3.7260 3.7260  3.5772 3.5772 3.5772  3.4557 3.4557 3.4557 

𝐶𝑝𝑚𝑘−𝑏1−12  0.7181 0.7181 0.7181  0.6069 0.6069 0.6069  0.5160 0.5160 0.5160 

𝐶𝑝𝑚𝑘−𝑏0−22  3.7190 3.7190 3.7190  3.5122 3.5122 3.5122  3.3189 3.3189 3.3189 

𝐶𝑝𝑚𝑘−𝑏1−22  0.7278 0.7278 0.7278  0.6181 0.6181 0.6181  0.4691 0.4691 0.4691 

1 𝑁𝑀𝐶𝑃𝑀−Stage1  1.4157 1.6331 3.2392  0.9957 1.1437 2.2814  0.7667 0.8889 1.7495 

𝑁𝑀𝐶𝑃𝑀−Stage2  1.0359 1.1007 1.3274  1.0375 1.1242 1.4632  1.0405 1.1483 1.6152 

𝑁𝑀𝐶𝑃𝑀−Total  1.1196 1.2930 2.4336  0.9920 1.1416 2.2699  0.8637 0.9936 1.9089 

𝐶𝑝𝑚𝑘−𝑏0−11  3.9751 3.9751 3.9751  3.5852 3.5852 3.5852  3.3397 3.3397 3.3397 

𝐶𝑝𝑚𝑘−𝑏1−11  0.9120 0.9120 0.9120  0.6191 0.6191 0.6191  0.4346 0.4346 0.4346 

𝐶𝑝𝑚𝑘−𝑏0−21  3.5661 3.5661 3.5661  3.5661 3.5661 3.5661  3.2171 3.2171 3.2171 

𝐶𝑝𝑚𝑘−𝑏1−21  0.7452 0.7452 0.7452  0.6042 0.6042 0.6042  0.4673 0.4673 0.4673 

𝐶𝑝𝑚𝑘−𝑏0−12  3.7260 3.7260 3.7260  3.5772 3.5772 3.5772  3.4557 3.4557 3.4557 

𝐶𝑝𝑚𝑘−𝑏1−12  0.7181 0.7181 0.7181  0.6149 0.6149 0.6149  0.5160 0.5160 0.5160 

𝐶𝑝𝑚𝑘−𝑏0−22  3.6852 3.6852 3.6852  3.5708 3.5708 3.5708  3.3267 3.3267 3.3267 

𝐶𝑝𝑚𝑘−𝑏1−22  0.6768 0.6768 0.6768  0.6069 0.6069 0.6069  0.4949 0.4949 0.4949 

1.3 𝑁𝑀𝐶𝑃𝑀−Stage1  1.0963 1.2533 2.5005  0.7648 0.8782 1.7495  0.5884 0.6740 1.3445 

𝑁𝑀𝐶𝑃𝑀−Stage2  1.0362 1.0834 1.2351  1.0377 1.1061 1.3351  1.0411 1.1252 1.4641 

𝑁𝑀𝐶𝑃𝑀−Total  0.9869 1.1175 1.9123  0.8636 0.9861 1.9063  0.7606 0.8689 1.7330 

𝐶𝑝𝑚𝑘−𝑏0−11  3.9751 3.9751 3.9751  3.5852 3.5852 3.5852  3.3397 3.3397 3.3397 

𝐶𝑝𝑚𝑘−𝑏1−11  0.9120 0.9120 0.9120  0.6191 0.6191 0.6191  0.4346 0.4346 0.4346 

𝐶𝑝𝑚𝑘−𝑏0−21  3.3229 3.3229 3.3229  3.0247 3.0247 3.0247  2.8456 2.8456 2.8456 

𝐶𝑝𝑚𝑘−𝑏1−21  0.4215 0.4215 0.4215  0.2843 0.2843 0.2843  0.1124 0.1124 0.1124 

𝐶𝑝𝑚𝑘−𝑏0−12  3.7260 3.7260 3.7260  3.5772 3.5772 3.5772  3.4557 3.4557 3.4557 

𝐶𝑝𝑚𝑘−𝑏1−12  0.7181 0.7181 0.7181  0.6069 0.6069 0.6069  0.5160 0.5160 0.5160 

𝐶𝑝𝑚𝑘−𝑏0−22  3.4498 3.4498 3.4498  3.3125 3.3125 3.3125  3.0234 3.0234 3.0234 

𝐶𝑝𝑚𝑘−𝑏1−22  0.5160 0.5160 0.5160  0.3912 0.3912 0.3912  0.2123 0.2123 0.2123 

   It is inferred from table 3 that variances of error terms and the correlation coefficient have a 

remarkable effect on the capability values. Generally, as the correlation coefficient increases, the 

capability of each stage and the total capability also increase. However, it does not affect the capability 

of the parameters when 𝜎11
2  and 𝜎21

2  are fixed. On the other hand, different values of 𝜎11
2  and 𝜎21

2  results 
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in different values of capability for all stages and parameters. As we find in table 3, when 𝜎11
2 = 𝜎21

2 =
0.7 we achieve better capabilities in comparison to the case when 𝜎11

2  and 𝜎21
2  are equal to 1.3. Similarly, 

simultaneous changes of all the variance terms can be explained too. For example, when 𝜎ℎ𝑠
2 = 0.7 (ℎ =

1, 2 𝑎𝑛𝑑 𝑠 = 1, 2), the capability values of Stage1, Stage2, total, 𝑏0−11, 𝑏1−11, 𝑏0−21, 𝑏1−21, 𝑏0−12, 

𝑏1−12, 𝑏0−22, and 𝑏1−22 are obtained as 2.3264, 1.1260, 2.3224, 3.9751, 0.9120, 3.9523, 0.8942, 

3.9657, 0.8975, 3.9579 and 0.9157, respectively which shows better performance. As expected, the 

lower values of the variance terms result in better performance of the process. The effect of different 

values of variances of the error terms relating to the profiles in Stage 2 (𝜎12
2  and 𝜎22

2 ) on capability 

values in each stage and parameters can be analyzed in the same way. 

7-Conclusion 
   In this study, an approach was presented to assess process capability in a multistage process when 

quality outputs are characterized by a MVSLP. Moreover, a method was developed to specify the 

performance of a profile based on its parameters. The capability of an in-control process was evaluated 

by new independent PCIs for profile intercept and slope. The SLs of profile parameters were obtained 

based on SLs of the response variable by considering the in-control profiles. The results of a two-stage 

process showed that total capability is strongly correlated to the autocorrelation coefficient, while 

different values of this coefficient do not affect the process performance in Stage 1 and Stage 2. The 

other important result was the remarkable effect of variance of error terms on the capability values. 

Generally, the lower values of the variance terms result in better performance of the process.  This study 

focused on evaluating the performance of a MVSLP process based on profile parameters. The proposed 

approach can be extended for more complex profile models such as polynomial and nonlinear. Also, 

future studies may include calculation of PCIs in the presence of contamination.  
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