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Abstract 
Data envelopment analysis (DEA) is a data-oriented approach to assess the 

performance of a set of entities known as decision-making units (DMUs), which 

transform multiple inputs into multiple outputs. On the other hand, the 

transplantation of organs is one of the most complex and challenging treatments 

in medicine, and organ allocation is the most important decision throughout the 

organ transplantation operation. Due to the enormous disparity between organ 

availability and demand, many individuals die while waiting for organ transplants 

despite major medical and technological improvements. Furthermore, kidney is 

the most commonly transplanted organ in the transplantation supply chain all 

over the world which is investigated in this paper. This research presents a two-

stage network DEA model for assessing the efficiency of related DMUs. The 

main advantage of this study is considering network DEA with internal structures 

instead of black box DEA models in organ allocation problems. It should be noted 

that black box DEA models fail to present sufficient data for identifying the 

inefficiency of DMUs. In addition, it is unclear what occurs within the black box 

DEA models, and internal relations are not investigated. Finally, a real case study 

related to the organ allocation problem is presented, and the findings indicate that 

the proposed method in this study is strongly effective and outperforms the 

current kidney allocation system in Iran. 

                 Keywords:  Data envelopment analysis, organ transplantation, organ allocation, 

two-stage network DEA, supply chain 

 
 

1- Introduction  
   Organ transplantation is one of the most challenging medical procedures in medicine. This surgery 

involves a recipient receiving an organ from a donor to replace a damaged or missing organ with a new one 

(WHO, 2022). In the past 50 years, technological and medical developments have made organ 

transplantation one of the most effective treatment alternatives. It is considered the only treatment for end-

stage organ failure, including the kidneys, heart, lungs, and liver (Bouwman et al., 2013). The fundamental 

difference between this therapy and others is that organ transplantation requires both a donor and a receiver. 

The transplantation procedure has successfully transplanted the liver, kidney, heart, thymus, and intestine. 

In the organ transplantation supply chain, kidney is the most often transplanted organ, followed by the liver 

and the heart (Bartling et al., 2020). Consequently, in this research, kidney has been investigated as the 

most demanding organ worldwide.  
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   Besides, the matching process in the organ transplantation supply chain is the most significant and 

challenging procurement choice since it determines who lives and who dies. The need for an effective 

matching procedure has motivated academic researchers to focus on designing and evaluating allocation 

methods (Zenios, 2006). 

   DEA models can be one of the most appropriate models for evaluating the organ-patient efficiencies (Kao, 

2017; Marinho & Araújo, 2021). DEA is a data-driven method to evaluate the performance of a set of 

entities known as decision-making units (DMUs), which transform multiple inputs into multiple outputs 

(Cooper et al., 2011; Omrani et al., 2022; Peykani et al., 2022; Sadjadi et al., 2011). DEA is a non-

parametric approach for measuring the efficiency of DMUs that does not need a production function 

(Apornak et al., 2021; Hamid et al., 2018; Liu et al., 2016; Moazeni et al., 2022; Peykani et al., 2018). 

Regarding the related literature, organ allocation systems especially in DEA models, have been considered 

as a whole unit or black box with no information about internal components. Black boxes DEA models fail 

to present sufficient data for identifying the inefficiency of DMUs (Henriques et al., 2020). Moreover, it is 

unclear what occurs within the black box DEA models, and internal relations are not investigated (Tavana 

et al., 2018). For instance, according to (Ahmadvand & Pishvaee, 2018a), by examining the kidney 

allocation system, each organ-patient pair was considered as a DMU, and all procedures were considered 

in only one step. But in reality, the kidney allocation system consists of internal structures. It should be 

mentioned that in this study, internal structures are carefully investigated, and the entire organ allocation 

structures are not considered in black box mode. This structure is known as the two-stage DEA network 

(Cook & Zhu, 2014). To the best of our knowledge, this structure has not been used in the organ allocation 

system, which is one of the contributions of this study. 

   For the first time, Farrel (1957) presented a non-parametric approach for efficiency measurement, which 

included one input and one output. After that, Charnes et al. (1978) proposed a mathematical model to 

evaluate the relative efficiency of a homogeneous group of DMUs such as hospitals, schools, and shopping 

centers. The model presented in their study was the first DEA model, which was named as CCR model. 

Ahmadvand and Pishvaee (2018a) developed a credibility-based fuzzy common weights DEA model for 

kidney allocation problem, and utilized the common weight approach for all decision-making units. The 

developed model was capable of dealing with uncertainty associated with transplantation factors in the Iran 

kidney allocation system and all processes were considered in only one step as a black box DEA model. 

Marinho and Araújo (2021) provided a DEA considering the bootstrap technique to assess organ 

transplantation efficiency. The bootstrap approaches utilized provide for calculating a confidence interval 

related to DEA scores and allow higher robustness. The importance of randomness, bias in DEA models, 

and measurement errors were considered, and they found that correcting DEA conventional scores is 

important.  

   For managing related activities in the organ transplantation procedure, various national and international 

organizations have been established in several countries. Eurotransplant in Europe (De Boer et al., 2021), 

United Network for Organ Sharing (UNOS) in the USA (UNOS, 2022), and Iranian Network for Organ 

Procurement and Transplantation (IRNOPT) in Iran (Kargar et al., 2020) are examples of organ 

transplantation organizations. These non-profit organizations are responsible for identifying and assessing 

brain death situations, obtaining donor permission, and procuring organs (UNOS, 2022). In this study, 

initial qualified organ-patient pairs are indicated by IRNOPT experts, and after that DEA model is used to 

calculate the organ-patient pairs’ efficiencies. 

   Moreover, despite the fact that organ transplantation can save hundreds of lives and improve quality of 

life, it faces numerous obstacles. The significant mismatch between organ supply and demand is a 

challenging obstacle that must be overcome (UNOS, 2022). Unfortunately, in the United States, about 8,000 

people die annually because they do not receive the organs they need in time. (OPTN, 2022). In Iran, 7 to 

10 people die each day because of the lack of suitable organs (IRNOPT, 2022). By examining data from 

other nations, it is evident that the number of organs in the global organ transplant system will not be 

sufficient to meet the demand from patients on waiting lists (Aubert et al., 2021). This demonstrates that 

the organ allocation procedure requires careful planning and analysis. 

   On the other side, there are two organizational approaches for organs and recipients, namely centralized 

and hierarchical (Kargar et al., 2020). The first method includes conducting a centralized search of a 
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national waitlist by organ type. In the second method, candidates from the same location have higher organ 

donation priority than other candidates. When an organ becomes accessible under these circumstances, it 

is first distributed locally, then regionally, and finally nationally. It should be emphasized that the process 

for organ allocation in this study is based on a centralized system. 

   The main motivation of the presented article is to propose a novel method utilizing the DEA approach for 

evaluating the efficiency of organ-patient pairs and considering internal structures based on a centralized 

system for the kidney allocation system. According to the literature (Ahmadvand & Pishvaee, 2018b; 

Marinho & Araújo, 2021), organ allocation systems (especially in DEA models) have been considered as a 

black box or whole unit, with no information about internal components. It should be mentioned that the 

black boxes DEA models fail to present sufficient data for identifying inefficiency. Furthermore, it is 

unclear what occurs within the black box DEA models and internal relations and structures are not 

investigated. On the other hand, investigating a real case study to indicate the proposed approach’s 

applicability is also considered in this paper. 

   To summarize, a novel two-stage network DEA model in kidney allocation problem by considering 

internal structures is developed in this study to evaluate the efficiency of organ-patient pairs. The rest of 

this paper is organized as follows: In section 2, a comprehensive literature review is presented. Problem 

description and formulations for kidney allocation problem are provided in section 3. In section 4, results 

and case study are described. In section 5, managerial insights are provided. Finally, conclusions and future 

research directions are given in section 6. 

 

2- Literature review 
   Organ transplantation network design involves long-term, mid-term, and short-term planning level 

decisions (Ahmadvand & Pishvaee, 2018b). Long-term decisions include the location and allocation of 

facilities (Bruni et al., 2006; Savaşer et al., 2019; Zahiri, Tavakkoli-Moghaddam, Mohammadi, et al., 2014), 

the interaction between transplant centers, facilities, and transplantation organizations (Beliën et al., 2013), 

and the local design of organ transplantation networks (Demirci et al., 2012; Kong et al., 2010; Stahl et al., 

2005). Moreover, mid-term and short-term decisions are related to transportation planning for patients, 

organs, staff scheduling, and organ allocation (Ahmadvand & Pishvaee, 2018a). Regarding the 

controversies surrounding the availability of numerous alternatives and the optimal allocation system, organ 

allocation approaches and their related strategies have developed significantly in recent years (Alagoz et 

al., 2009). 

   Akan (2008) provided a multiclass fluid model for the liver allocation problem. The model considered 

that patients might reject some organs, and overloaded queues were also involved. Organs wasted because 

of patients’ rejection and overall quality-adjusted life years (QALY) was optimized for analyzing the 

efficiency. In another study, Akan et al. (2012) developed a multiclass fluid model for the liver organ 

transplantation waiting list, which includes the patient’s health situation by permitting them to change 

between classes. The main purpose was to maximize total QALY and minimize overall patient deaths 

number. Results indicated that the model’s performance was better than the UNOS organ allocation system. 

   Alagoz et al. (2004) presented a Markov decision procedure for the optimal transplant time for a live 

donor. Along with the quality-adjusted life expectancy measure, researchers optimized the patients’ overall 

reward, and patient health status described the state of the process. They utilized a value iteration approach 

for solving the problem. In another research, Alagoz et al. (2007) examined the possibility of accepting a 

provided liver organ of a specific quality. They developed a model with a discrete time situation and an 

unlimited horizon that the process is determined by the patient’s health condition. Lastly, a policy iteration 

approach was utilized to solve the Markov decision process.  

   Beliën et al. (2013) suggested a mixed-integer linear programming model for minimizing the waiting time 

between when an organ becomes available in hospitals as supply points and when it is transplanted in 

transplant centers as demand points. Zahiri et al. (2014) presented a multi-period location-allocation model 

for organ transplantation centers. A bi-objective stochastic optimization method was used to minimize the 

overall time and cost, as well as the organ transplantation operation waiting time, while identifying the 

objectives for organs and solving medium and small-sized problems. Gentry et al. (2015) proposed a binary 

integer programming model to reduce the differences in liver availability among regions by dividing donor 
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service districts into four and eight shared areas. Al-Ebbini et al. (2016) proposed a fuzzy logic model for 

a lung allocation system. The main goal was to identify suitable patients for lung transplantation. Their 

system represents a more accurate and time-efficient tool for lung allocation problem.  

   Zenios et al. (2000) presented a dynamic resource kidney allocation problem with objective of minimizing 

waiting times, and transplantation’s likelihood linear function for different types of patients and maximizing 

the quality-adjusted life expectancy. Besides, a simulation model was utilized, and findings indicated that 

a dynamic approach could decrease average waiting time and increase the quality-adjusted life expectancy. 

Su and Zenios (2005) developed a sequential stochastic assignment model for kidney allocation problem. 

The main goal was to maximize the total expected reward by selecting an optimal organ allocation policy. 

One year later, Su and Zenios (2006) presented a model with transplantation queues for kidney allocation 

problem to examine the impact of information asymmetries on the allocation system. In their developed 

model, each kidney would be allocated to only one recipient based on its particular type. Bertsimas et al. 

(2013) provided a method for determining the optimal scoring weights utilized in the kidney allocation 

problem.  Their method creates a point system based upon the chosen scoring components that promote 

medical efficiency, for instance, life years gained from transplant, while enforcing chosen fairness limits. 

They input fairness criteria, various score components, and transplantation data toward a mixed integer 

non-linear programming model and utilize linear regression to find weights of scoring. Their approach 

allows decision-makers to dynamically adjust the scoring rules and analyze the related results using a 

simulation model which is utilized by organ procurement and transplantation network in the USA. 

   Savaşer et al. (2019) investigated Turkey’s organ transplantation system and developed mixed-integer 

programming models for maximizing potential-weighted intra-regional organ transplantation flow by 

analyzing various transportation modes and taking clustering structures for the matchmaking process into 

account. Further, to deal with uncertainty, a simulation model was utilized to evaluate the performance of 

the results. At last, findings revealed that re-clustering could enhance the organ allocation system in Turkey. 

   Kargar et al. (2020) investigated the organ transplantation problem considering epistemic uncertainty. 

Their model was a mixed-integer non-linear possibilistic programming for the liver allocation problem, and 

triangular possibility distribution was applied. The developed model minimized the time and transportation 

cost and maximized the survival rate. Results showed that the suggested model performed much better than 

the IRNOPT allocation system. Rouhani and Amin (2022) utilized a novel robust convex optimization 

method for designing an efficient organ transplantation network. They presented a multi-objective model, 

and the main goal was to maximize the geographical parity in the demand and supply uncertainty situation 

and minimize costs and total time. Furthermore, the augmented ε-constraint method was utilized to solve 

the model, and a real case study in Iran showed the model’s performance. Goli et al. (2022) developed a 

possibilistic programming model and simulation-oriented solution approach for organ transplantation, 

allocation, location, and distribution. The presented model involving the fuzzy uncertainty of transportation 

time and demand, minimizes total costs. Additionally, findings demonstrated that the viability rate in the 

developed organ transplantation supply chain is lower than the satisfaction rate of patients. 

   The summary of reviewed papers can be seen in Table 1. The main contributions of this research 

compared to previous studies are summarized as follows: 

 Proposing a two-stage network DEA model in kidney allocation problem by investigating internal organ 

allocation system structure and relationships. 

 Utilizing an additive decomposition approach for the developed two-stage structure. 

 Investigating a real case study for evaluating the applicability of the presented approach. 
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Table 1. Organ allocation problem related articles 

Author Organ Modeling approach Solution approach Objective Function Case study Internal 

structures 

Zenios et al. (2000) Kidney Fluid Model Policy Improvement Algorithm WT, LT, QALY USA  

Alagoz et al. (2004) Liver Markov Decision Process Value Iteration Algorithm QALE USA  

Su and Zenios (2005) Kidney Sequential Assignment Match Process Dynamic Programming TER USA  

Bruni et al. (2006) Liver Mixed Integer Linear Programming Exact WT, TD Italy  

Su and Zenios (2006) Kidney Sequential Assignment Match Process Achievable Region QALY, EQ, TTT USA  

Alagoz et al. (2007) Liver Markov Decision Process Policy Iteration Algorithm TEDR USA  

Akan et al. (2008) Liver Fluid Model Heuristic NWO, QALY USA  

Kong et al. (2010) Liver Mixed Integer Linear Programming Heuristic TE, GP USA  

Akan et al. (2012) Liver Fluid Model Heuristic QALY, NPDWT USA  

Beliën et al. (2013)  Multiple Mixed Integer Linear Programming Exact TTT Belgium  

Bertsimas et al. (2013) Kidney Mixed Integer Non-Linear Programming Linear Regression LYFT USA  

Zahiri et al. (2014) Multiple Mixed Integer Non-Linear Programming Meta Heuristic TTC Iran  

Gentry et al. (2015) Liver Integer Programming Exact NML USA  

Ahmadvand and Pishvaee (2018) Kidney DEA Credibility Common Weight DEA LYFT, WT, TTT Iran  

Savaşer et al. (2018) Multiple Integer Programming Exact PWIRF Turkey  

Kargar et al. (2020) Liver Mixed Integer Non-Linear Programming Fuzzy Goal Programming TTCO, SR Iran  

Marinho and Araújo (2021) Multiple DEA Bootstrap Bias-Corrected  TE Brazil  

Rouhani and Amin (2022) Multiple Mixed Integer Linear Programming Exact TTT, TTCO, GP  Iran  

Goli et al. (2022) Multiple Mixed Integer Linear Programming Robust Possibilistic Programming TC -  

This study (2023) Kidney DEA Exact WT, QALY, LYFT Iran  

Objective Function: WT: Minimize Waiting Time, LT: Minimize Likelihood of Transplantation, QALY: Maximize Quality Adjusted Life Years, QALE: Maximize Quality Adjusted 

Life Expectancy, TER: Maximize Total Expected Reward, TE: Maximize Transplant Efficiency, GP: Maximize Geographic Parity, TD: Minimize Travel Distance, EQ: Maximize 

Equity, TTT: Minimize Total Transportation Time, TEDR: Maximize Total Expected Discounted Reward, NOW: Minimize Number of Wasted Organs, NPDWT: Minimize Number 

of Patients Deaths while Waiting for Transplantation, LYFT: Maximize Life Years From Transplant, TTC: Minimize Total Time and Cost, NML: Minimize Number of Misdirected 

Livers, PWIRF: Maximize Potential Weighted Intra-Regional Flow, TTCO: Minimize Total Transportation Cost, SR: Maximize Survival Rate, TC: Minimize Total Cost, NML: 

Minimize Number of Misdirected Livers,  
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3- Problem description and formulation 
This section describes the kidney allocation problem and presents the network DEA model 

 3-1- Problem description 
   The matchmaking procedure is the process of finding the best organ-patient pair for each kidney that 

appears in the organ transplantation supply chain. In other words, this process is the procedure of selecting 

the ideal recipient for an organ entering the organ transplantation network system (Kargar et al., 2020). In 

Iran, a non-profit organization is responsible for organ procurement (Ahmadvand & Pishvaee, 2018a). In a 

point-based allocation system, which is the current allocation system in Iran, compatible recipients are 

ordered in descending order depending on the total number of points received for a specific criterion. 

Consequently, various criteria are used to find which recipient is the best for each kidney in the system. 

Related criteria utilized in this study are as follows: 
 

 Waiting time (WT): This criterion relates to the length of time a patient has been on dialysis, on the 

waiting list, or attained end-stage kidney disease. The patient’s WT is regarded as the most important and 

key factor in the Iran organ allocation system. In addition, the WT for patients awaiting a kidney transplant 

who were getting dialysis prior to being listed on the waiting list is computed from the time dialysis 

treatment began (Ahmadvand & Pishvaee, 2018a). 

 Quality-adjusted life years (QALY): If a person has a choice between two or more treatments or 

interventions (e.g., different types of kidneys), he should choose the one that will result in the greatest 

number of years of quality life. In fact, the QALY was designed as an output metric that integrates both 

quality (i.e., illness rate) and quantity (i.e., mortality) (HLA Matching and Antibodies, 1998). 

 Life years from transplant (LYFT): This criterion is defined as the difference between a candidate’s 

median expected survival with a kidney donation from a specific donor and their median expected survival 

without a transplant. On the basis of each candidate’s medical and demographic information, projected 

lifespans with and without a kidney transplant are calculated. The donor kidney’s qualities are also 

factored into survival after a kidney transplant (Wolfe et al., 2008). 

   When a kidney enters the organ transplantation system, numerous patients will be considered for 

transplantation based on the initial recommendations of experts, and there will be multiple initial qualified 

organ-patient pairs for each kidney. Due to the unique qualities of each kidney, only a limited number of 

individuals will be eligible to receive it. In addition to the patient’s health situation, specialists at this stage 

also assess the patient’s perspective of pleasure in accepting or rejecting the proposed organ based on their 

medical history. Thus, considering transplant specialists’ experience, the initial qualifying organ-patient 

couples for each kidney have been identified, and the efficiency of each pair has been evaluated utilizing 

the presented two-stage network DEA model. It should be mentioned that the initial pairings are the only 

viable pairs for calculating efficiency. This does not indicate that the organ will be assigned to the patient 

before applying the developed DEA model. In summary, each of the qualified patient-organ pairs for each 

kidney which were identified by organ transplantation experts, are DMUs in the presented problem. 

   The existing kidney allocation mechanism in Iran has numerous flaws. First, the existing approach lacks 

post-transplant outcome measuring criteria such as LYFT and QALY. Therefore, some patients should not 

receive a kidney that will last as long as they need, and they have been returned to the waiting list (IRNOPT, 

2022). On the other side, the most significant criterion in Iran’s organ allocation system for assigning organs 

to the patient is WT which needs to be a better measure for evaluating the best possible organ-patient pair 

for each organ. Thus, in this study, to solve current issues in Iran’s organ allocation system, measures such 

as WT, QALY, and LYFT are investigated together in a two-stage data envelopment model, and internal 

structures are also considered. Regarding the assumptions in this study, WT measure is considered for the 

first stage, QALY measure as the intermediate measure from the first stage to the second stage, and LYFT 

as the system’s final output. In the following section, the structure of the two-stage network data 

envelopment analysis model is described in detail. 



144 

3-2- Model structure and formulation 
   The two-stage structure is a popular network structure that has received lots of attention in the  network 

DEA literature (Peykani et al., 2021). According to figure 1, there are 𝑛 homogeneous decision-making 

units 𝐷𝑀𝑈𝑗 (𝑗 = 1, … , 𝑛) which in the first stage 𝐼 inputs 𝑥𝑖𝑗  (𝑖 = 1, … , 𝐼) enter the system, and 𝐷 outputs 

𝑧𝑑𝑗 (𝑑 = 1, … , 𝐷) come out. The outputs of the first stage, which are known as intermediate criteria, are 

entered as input to the second stage, and finally 𝑅 outputs 𝑦𝑟𝑗  (𝑟 = 1, … , 𝑅) come out. In addition, the non-

negative weights 𝑢𝑖  (𝑖 = 1, … , 𝐼), 𝑣𝑑  (𝑑 = 1, … , 𝐷), and 𝜋𝑟 (𝑟 = 1, … , 𝑅) are assigned to the 

𝑥𝑖𝑗  (𝑖 = 1, … , 𝐼), 𝑧𝑑𝑗 (𝑑 = 1, … , 𝐷), and 𝑦𝑟𝑗  (𝑟 = 1, … , 𝑅), respectively. 

 

 

 
Fig. 1. Two-stage network DEA model structure for the organ allocation problem 

 

There are several modeling methodologies used in network DEA research, like additive decomposition 

(Chen et al., 2009), multiple decomposition (Kao & Hwang, 2008), and game theory (Liang et al., 2008). 

Regarding the popularity of the additive method for evaluating the performance of DMUs (Kao, 2017), and 

the capability of using this approach for a general two-stage network structure with intermediate criteria, 

this approach is used. Following is a description of the modeling process utilizing the additive 

decomposition approach for the presented two-stage structure. Considering figure 1, the efficiency value of 

the first stage for the investigated DMU (𝐷𝑀𝑈𝑘) can be determined by model (1): 

 

(1) 

𝜓𝑘
𝑠𝑡𝑎𝑔𝑒1

= 𝑀𝑎𝑥
∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1

  

𝑆. 𝑡. 

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑗
𝐼
𝑖=1

≤ 1,   ∀𝑗 

𝑢𝑖, 𝑣𝑑 ≥ 0,   ∀𝑖, 𝑑 

Subsequently, the efficiency value of the second stage for the investigated DMU (𝐷𝑀𝑈𝑘) can be determined 

by using model (2): 

𝑦𝑟𝑗  𝑧𝑑𝑗 𝑥𝑖𝑗  

Stage 1 Stage 2 

𝑑 = 1, … , 𝐷 𝑟 = 1, … , 𝑅 𝑖 = 1, … , 𝐼 

𝐷𝑀𝑈𝑗  , 𝑗 = 1, … , 𝑛 
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(2) 

𝜓𝑘
𝑠𝑡𝑎𝑔𝑒2

= 𝑀𝑎𝑥
∑ 𝜋𝑟𝑦𝑟𝑘

𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1

  

𝑆. 𝑡. 

∑ 𝜋𝑟𝑦𝑟𝑗
𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

≤ 1,   ∀𝑗 

𝜋𝑟, 𝑣𝑑 ≥ 0,   ∀𝑟, 𝑑 

 

According to the study by Chen et al. (2009), the total efficiency of the general two-stage procedure can be 

determined by using equation (3):  

 

(3) 

𝜓𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝜑1(𝜓𝑘

𝑠𝑡𝑎𝑔𝑒1
) + 𝜑2(𝜓𝑘

𝑠𝑡𝑎𝑔𝑒2
) 

             = 𝜑1 (
∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1

) + 𝜑2(
∑ 𝜋𝑟𝑦𝑟𝑘

𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1

) 

 

It should be mentioned that in equation (3), 𝜑1 and 𝜑2 are user-specified weights so that 𝜑1 + 𝜑2 = 1. 

To be more specific, 𝜑1 demonstrates the importance of the first stage performance, while 𝜑2 demonstrates 

the importance of the second stage performance in the total system performance. Consequently, the total 

efficiency value of 𝐷𝑀𝑈𝑘 is determined by using model (4): 

 

(4) 

𝜓𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑥 𝜑1 (

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1

) + 𝜑2 (
∑ 𝜋𝑟𝑦𝑟𝑘

𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1

)  

𝑆. 𝑡. 

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑗
𝐼
𝑖=1

≤ 1,   ∀𝑗 

∑ 𝜋𝑟𝑦𝑟𝑗
𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

≤ 1,   ∀𝑗 

𝑢𝑖, 𝑣𝑑 , 𝜋𝑟 ≥ 0,   ∀𝑖, 𝑑, 𝑟 
 

 

Accordingly, model (4) cannot be transformed to linear programming by using Charnes and Cooper  

(Peykani et al., 2021) transformation. Subsequently, according to Chen et al. (2009) research, the suggested 

𝜑1 and 𝜑2 are determined by equations (5) and (6), respectively: 

 

(5) 𝜑1 =
∑ 𝑢𝑖𝑥𝑖𝑘

𝐼
𝑖=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1 + ∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

 

 

(6) 𝜑2 =
∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1 + ∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1
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Therefore, by utilizing equations (5) and (6), model (4) will be transformed to model (7): 

(7) 

𝜓𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑥

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1 + ∑ 𝜋𝑟𝑦𝑟𝑘

𝑅
𝑟=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1 + ∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

 

𝑆. 𝑡. 

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑗
𝐼
𝑖=1

≤ 1,   ∀𝑗 

∑ 𝜋𝑟𝑦𝑟𝑗
𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

≤ 1,   ∀𝑗 

𝑢𝑖, 𝑣𝑑 , 𝜋𝑟 ≥ 0,   ∀𝑖, 𝑑, 𝑟 
 

 

Model (7) is now transformed into a linear programming model (8) using the transformation of Charnes 

and Cooper (Peykani et al., 2021): 

 

(8) 

𝜓𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑥 ∑ 𝜗𝑑𝑧𝑑𝑘

𝐷

𝑑=1

+ ∑ 𝜏𝑟𝑦𝑟𝑘

𝑅

𝑟=1

 

𝑆. 𝑡. 

∑ 𝜇𝑖𝑥𝑖𝑘

𝐼

𝑖=1

+ ∑ 𝜗𝑑𝑧𝑑𝑘

𝐷

𝑑=1

= 1 

∑ 𝜗𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝜇𝑖𝑥𝑖𝑗

𝐼

𝑖=1

≤ 0,   ∀𝑗 

∑ 𝜏𝑟𝑦𝑟𝑗

𝑅

𝑟=1

− ∑ 𝜗𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0,   ∀𝑗 

𝜇𝑖 , 𝜗𝑑 , 𝜏𝑟 ≥ 0,   ∀𝑖, 𝑑, 𝑟 
 

 

   It should be mentioned that optimal multipliers derived from model (8) may not be unique, so the total 

efficiency decomposition described in equation (3) could not be unique. Kao and Hwang (2009) presented 

an approach to find the set of multipliers that provides maximum efficiency for the first stage or second 

stage while remaining the total efficiency value constant. Thus, by assuming that in the organ allocation 

problem, the importance of the first stage has a higher priority than the second stage, 𝜓𝑘
𝑠𝑡𝑎𝑔𝑒1

 will be 

determined by utilizing model (9) while 𝜓𝑘
𝑡𝑜𝑡𝑎𝑙∗

 optimal value is derived from model (8): 
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(9) 

𝜓𝑘
𝑠𝑡𝑎𝑔𝑒1

= 𝑀𝑎𝑥
∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1

 

𝑆. 𝑡. 

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

∑ 𝑢𝑖𝑥𝑖𝑗
𝐼
𝑖=1

≤ 1,   ∀𝑗 

∑ 𝜋𝑟𝑦𝑟𝑗
𝑅
𝑟=1

∑ 𝑣𝑑𝑧𝑑𝑗
𝐷
𝑑=1

≤ 1,   ∀𝑗 

∑ 𝑣𝑑𝑧𝑑𝑘
𝐷
𝑑=1 + ∑ 𝜋𝑟𝑦𝑟𝑘

𝑅
𝑟=1

∑ 𝑢𝑖𝑥𝑖𝑘
𝐼
𝑖=1 + ∑ 𝑣𝑑𝑧𝑑𝑘

𝐷
𝑑=1

= 𝜓𝑘
𝑡𝑜𝑡𝑎𝑙∗

 

𝑢𝑖, 𝑣𝑑 , 𝜋𝑟 ≥ 0,   ∀𝑖, 𝑑, 𝑟 
 

Model (9) is a linear fractional programming model, so by utilizing Charnes and Cooper transformation, 

this model is equal to model (10) as follows: 

(10) 

𝜓𝑘
𝑠𝑡𝑎𝑔𝑒1

= 𝑀𝑎𝑥 ∑ 𝜗𝑑𝑧𝑑𝑘

𝐷

𝑑=1

 

𝑆. 𝑡. 

∑ 𝜇𝑖𝑥𝑖𝑘

𝐼

𝑖=1

= 1 

∑ 𝜗𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝜇𝑖𝑥𝑖𝑗

𝐼

𝑖=1

≤ 0,   ∀𝑗 

∑ 𝜏𝑟𝑦𝑟𝑗

𝑅

𝑟=1

− ∑ 𝜗𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0,   ∀𝑗 

∑ 𝜗𝑑𝑧𝑑𝑘

𝐷

𝑑=1

+ ∑ 𝜏𝑟𝑦𝑟𝑘

𝑅

𝑟=1

− 𝜓𝑘
𝑡𝑜𝑡𝑎𝑙∗

∑ 𝜗𝑑𝑧𝑑𝑘

𝐷

𝑑=1

= 𝜓𝑘
𝑡𝑜𝑡𝑎𝑙∗

 

𝜇𝑖 , 𝜗𝑑 , 𝜏𝑟 ≥ 0,   ∀𝑖, 𝑑, 𝑟 
 

Eventually, by using model (10) the value of 𝜓𝑘
𝑠𝑡𝑎𝑔𝑒1∗

 is calculated, and the efficiency value of the second 

stage is determined utilizing equation (11): 

 

(11) 𝜓
𝑘

𝑠𝑡𝑎𝑔𝑒2∗

=
𝜓

𝑘

𝑡𝑜𝑡𝑎𝑙∗

− 𝜑1
∗𝜓

𝑘

𝑠𝑡𝑎𝑔𝑒1∗

𝜑2
∗

 

It should be noted that 𝜑1
∗ and 𝜑2

∗ are in fact the optimal weights acquired from model (8) utilizing 

equations (5) and (6). 

 

4- Results and case study 
   In this section, a real case study is presented to demonstrate the performance of the DEA mathematical 

approach. As mentioned before, kidney is the most commonly transplanted organ all over the world, and in 

Iran, statistics also indicate that the great majority of annual transplants involve this organ. Notably, almost 

76% of all transplants performed in Iran through the end of 2021 are related to kidneys (IRNOPT, 2022). 
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Moreover, IRNOPT is responsible for organ allocation and related matters in Iran. It coordinates 

transplantation procedures using numerous local OPUs. A director is charged with interacting with 

IRNOPT on behalf of each unit. These non-profit organizations are responsible for diagnosing and 

identifying brain-dead patients, gaining consent for organ donation, and purchasing organs. In addition, 

when an organ appears available, the local OPU checks the waiting list for a suitable recipient. It should be 

noted that transplantation specialists gave the first qualified organ-patient pairs for each kidney in this study, 

and then the efficiency of each qualified pair had been determined utilizing the presented approach. 

   For each kidney entered into the organ transplantation system, the presented approach calculates the 

efficiency of the qualified organ-patient pairs provided by transplantation specialists. Required data for 

donated kidneys and patients were obtained from the Iran ministry of health and medical education, 

including 35 kidneys and 710 patients waiting to receive a suitable kidney. It should be considered that, 

DMUs are initial qualified organ-patient pairs in the developed model for each kidney. Therefore, Due to 

each organ-patient pair unique characteristics, the number of DMUs is different and varies between 10 and 

73. It means that for one specific kidney, there are only 10 qualified patients who can receive the kidney; 

for another specific kidney, this number is 73 patients and for other kidneys this number is between 10 and 

73 because of each organ-patient pair unique characteristics and features, this number is different for each 

of them. Besides, all calculations are conducted by GAMS 24.1 software on a COREi7 PC with 16 GB of 

RAM. The statistical information about input, intermediate, and output criteria used in the presented model 

are shown in table 2. 

 
 

Table 2. Statistical information about input, intermediate, and output criteria. 

Type Stage Variable Unit Min Max Average 

Input 1 WT years 0.5 13 5.31 

Intermediate from 1 to 2 QALY years 1.75 8.25 4.72 

Output 2 LYFT years 1.5 13.75 7.83 

 

  

  Finally, the presented DEA model is solved for all of the 35 kidneys. The values of efficiencies are 

assessed, and the related results for 5 kidneys are shown in table 3. It should be mentioned that for 

summarizing the findings, the results of only 5 kidneys are shown in table 3.  As can be seen in the presented 

table, the number of DMUs from the first kidney to the fifth kidney is 41, 73, 49, 10, and 44, respectively. 

On the other hand, the selected patient for each kidney is the one with all the efficiencies equal to 1. For 

example, for the first kidney, the selected patient is the one who is in the DMU17, or for the second kidney, 

DMU32 is the best organ-patient pair for that specific kidney.
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Table 3. The first, second and total stage efficiency scores of the presented approach  

(K-No.1 means Kidney Number 1, which is the first kidney investigated in DEA model) 
K-No.1 Efficiency Scores K-No.2 Efficiency Scores K-No.2 Efficiency Scores K-No.4 Efficiency Scores 

Stage 1 Stage 2 Total Stage 1 Stage 2 Total Stage 1 Stage 2 Total Stage 1 Stage 2 Total 

DMU1 0.496 0.763 0.701 DMU14 0.556 0.449 0.491 DMU69 0.762 1.000 0.913 DMU1 0.941 0.590 0.675 

DMU2 0.933 0.653 0.793 DMU15 0.736 0.921 0.801 DMU70 0.521 0.598 0.572 DMU2 1.000 1.000 1.000 

DMU3 0.459 0.763 0.612 DMU16 0.455 1.000 0.813 DMU71 0.662 0.796 0.707 DMU3 0.569 0.255 0.413 

DMU4 0.837 0.234 0.524 DMU17 0.567 0.715 0.671 DMU72 0.586 0.982 0.871 DMU4 0.851 0.236 0.741 

DMU5 0.322 0.445 0.347 DMU18 0.273 0.337 0.303 DMU73 0.631 0.936 0.901 DMU5 0.422 0.328 0.369 

DMU6 0.198 0.542 0.445 DMU19 0.836 0.643 0.712 K-No.3    DMU6 0.270 0.487 0.401 

DMU7 0.819 0.793 0.802 DMU20 0.588 0.643 0.602 DMU1 0.389 0.662 0.583 DMU7 0.065 0.718 0.589 

DMU8 0.419 0.286 0.376 DMU21 0.792 0.442 0.662 DMU2 0.862 0.483 0.671 DMU8 0.608 0.821 0.751 

DMU9 0.969 0.815 0.856 DMU22 0.231 0.575 0.401 DMU3 0.131 0.289 0.201 DMU9 0.356 0.581 0.519 

DMU10 0.731 0.603 0.658 DMU23 0.379 0.626 0.523 DMU4 0.022 0.696 0.430 DMU10 0.574 0.504 0.567 

DMU11 0.822 0.789 0.801 DMU24 0.450 0.631 0.600 DMU5 0.663 0.484 0.532 K-No.5    

DMU12 0.519 0.264 0.412 DMU25 0.495 0.253 0.354 DMU6 0.310 0.414 0.372 DMU1 0.896 0.755 0.822 

DMU13 0.189 0.820 0.669 DMU26 1.000 0.927 0.939 DMU7 0.568 0.549 0.555 DMU2 0.302 0.348 0.319 

DMU14 0.929 0.881 0.901 DMU27 0.969 0.958 0.960 DMU8 0.411 0.121 0.301 DMU3 0.195 0.375 0.283 

DMU15 0.125 0.634 0.471 DMU28 0.735 0.373 0.548 DMU9 0.983 0.881 0.899 DMU4 0.448 0.702 0.614 

DMU16 0.851 0.482 0.698 DMU29 0.818 0.856 0.835 DMU10 0.566 0.853 0.763 DMU5 0.578 0.170 0.492 

DMU17 1.000 1.000 1.000 DMU30 0.536 0.398 0.501 DMU11 0.533 0.684 0.579 DMU6 0.057 0.643 0.441 

DMU18 0.198 0.792 0.458 DMU31 0.254 0.292 0.272 DMU12 0.122 0.456 0.331 DMU7 0.715 0.694 0.706 

DMU19 0.833 0.206 0.672 DMU32 1.000 1.000 1.000 DMU13 0.323 0.735 0.654 DMU8 0.584 0.729 0.686 

DMU20 0.368 0.486 0.394 DMU33 0.739 0.057 0.433 DMU14 0.015 0.365 0.272 DMU9 0.767 0.112 0.620 

DMU21 0.896 0.441 0.698 DMU34 0.194 0.434 0.301 DMU15 0.450 0.585 0.592 DMU10 0.376 0.466 0.400 

DMU22 0.622 0.396 0.517 DMU35 0.403 0.050 0.335 DMU16 0.649 1.000 0.910 DMU11 0.592 0.482 0.518 

DMU23 0.352 0.602 0.512 DMU36 0.470 0.406 0.461 DMU17 0.167 0.418 0.312 DMU12 0.455 0.519 0.501 

DMU24 0.583 0.217 0.415 DMU37 0.766 0.325 0.548 DMU18 0.271 0.655 0.463 DMU13 0.317 0.991 0.710 

DMU25 0.672 0.122 0.463 DMU38 0.802 0.886 0.832 DMU19 0.360 0.087 0.264 DMU14 0.172 0.198 0.188 

DMU26 0.638 0.753 0.701 DMU39 0.204 0.738 0.513 DMU20 0.516 0.832 0.713 DMU15 0.551 0.980 0.901 

DMU27 0.274 0.486 0.375 DMU40 0.259 0.805 0.629 DMU21 0.921 1.000 0.963 DMU16 0.869 0.908 0.889 

DMU28 0.838 1.000 0.958 DMU41 0.133 0.708 0.541 DMU22 0.409 0.416 0.412 DMU17 0.334 0.145 0.270 

 

 



150 

 

Table 3. (Continued) 
K-No.1 Efficiency Scores K-No.2 Efficiency Scores K-No.3 Efficiency Scores K-No.5 Efficiency Scores 

Stage 1 Stage 2 Total Stage 1 Stage 2 Total Stage 1 Stage 2 Total Stage 1 Stage 2 Total 

DMU29 0.257 0.543 0.356 DMU42 0.938 0.413 0.632 DMU23 0.393 0.708 0.663 DMU18 0.547 0.384 0.417 

DMU30 0.188 0.443 0.314 DMU43 0.492 0.791 0.681 DMU24 1.000 1.000 1.000 DMU19 0.372 0.744 0.559 

DMU31 0.963 0.976 0.970 DMU44 0.348 0.214 0.296 DMU25 0.233 0.983 0.776 DMU20 1.000 1.000 1.000 

DMU32 0.277 0.404 0.317 DMU45 0.905 0.377 0.779 DMU26 0.524 0.943 0.823 DMU21 0.815 0.304 0.706 

DMU33 0.535 0.587 0.560 DMU46 0.104 0.864 0.523 DMU27 0.502 0.904 0.892 DMU22 0.963 1.000 0.979 

DMU34 0.343 0.578 0.498 DMU47 0.743 0.472 0.661 DMU28 0.795 0.657 0.733 DMU23 0.289 0.485 0.402 

DMU35 1.000 0.462 0.891 DMU48 0.477 0.511 0.491 DMU29 0.111 0.609 0.516 DMU24 0.436 0.032 0.312 

DMU36 0.916 0.612 0.781 DMU49 1.000 0.849 0.963 DMU30 0.266 0.074 0.156 DMU25 0.680 0.244 0.601 

DMU37 0.552 0.242 0.395 DMU50 0.662 0.724 0.692 DMU31 0.507 0.750 0.612 DMU26 0.384 0.264 0.307 

DMU38 0.334 0.771 0.573 DMU51 0.094 0.955 0.721 DMU32 0.315 0.197 0.266 DMU27 0.254 0.054 0.186 

DMU39 0.746 1.000 0.915 DMU52 0.855 0.830 0.850 DMU33 0.132 0.228 0.201 DMU28 0.524 0.977 0.789 

DMU40 0.885 0.493 0.695 DMU53 0.600 0.162 0.492 DMU34 0.700 0.560 0.623 DMU29 0.766 0.820 0.801 

DMU41 0.801 0.609 0.722 DMU54 0.365 0.988 0.815 DMU35 0.497 0.173 0.378 DMU30 1.000 0.519 0.823 

K-No.2    DMU55 0.464 0.911 0.802 DMU36 0.792 0.484 0.682 DMU31 0.952 0.273 0.702 

DMU1 0.679 0.816 0.751 DMU56 0.459 0.298 0.348 DMU37 0.646 0.882 0.702 DMU32 0.801 0.274 0.601 

DMU2 0.551 0.921 0.831 DMU57 0.703 0.124 0.661 DMU38 0.666 0.145 0.469 DMU33 0.581 0.418 0.506 

DMU3 0.556 0.980 0.846 DMU58 0.119 0.386 0.215 DMU39 0.114 0.917 0.795 DMU34 0.312 0.364 0.343 

DMU4 0.631 0.480 0.561 DMU59 0.863 1.000 0.924 DMU40 0.334 0.822 0.731 DMU35 0.610 0.665 0.630 

DMU5 0.525 0.454 0.501 DMU60 0.593 0.992 0.754 DMU41 0.475 0.407 0.463 DMU36 0.721 0.670 0.691 

DMU6 0.913 0.518 0.781 DMU61 0.696 0.089 0.216 DMU42 0.276 0.873 0.723 DMU37 0.892 0.524 0.710 

DMU7 0.833 0.404 0.706 DMU62 0.792 0.553 0.701 DMU43 0.157 0.009 0.101 DMU38 0.324 0.441 0.371 

DMU8 0.361 0.741 0.691 DMU63 0.421 0.756 0.614 DMU44 0.698 0.892 0.810 DMU39 0.440 0.921 0.886 

DMU9 0.258 0.801 0.645 DMU64 0.128 0.359 0.277 DMU45 0.507 0.600 0.569 DMU40 0.910 0.692 0.703 

DMU10 0.397 0.610 0.561 DMU65 0.157 0.664 0.442 DMU46 1.000 0.997 0.998 DMU41 0.210 0.392 0.361 

DMU11 0.464 0.495 0.482 DMU66 0.912 0.659 0.876 DMU47 0.304 0.984 0.796 DMU42 0.721 0.810 0.760 

DMU12 0.648 0.841 0.701 DMU67 0.564 0.821 0.789 DMU48 0.040 0.523 0.401 DMU43 0.660 0.412 0.520 

DMU13 0.518 0.384 0.441 DMU68 0.771 0.963 0.892 DMU49 0.607 0.763 0.706 DMU44 0.692 0.372 0.412 
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   It should be mentioned that for each of the kidneys, only one DMU had the efficiency of the first stage, 

the second stage, and the total efficiency with a value of 1. Finally, after running the model, the values of 

the input, intermediate and output parameters of the model in comparison to the IRNOPT system for each 

of the selected patients for 35 kidneys are shown in figure 2 to figure 4. As it can be seen in figure 2 for the 

presented approach compared to the IRNOPT method, the waiting time for all selected patients is shorter, 

meaning that patients will receive the organ they require sooner. 

 

Fig .2. Comparison of the WT parameters of the presented method with the current IRNOPT allocation system 

   

   In figure 3, for the developed method compared to the IRNOPT method, the QALY measure for all chosen 

patients is greater. It means that by using the presented approach in this study, patients will have more 

quality related to their life. 

 
Fig .3. Comparison of the QALY parameters of the presented method with the current IRNOPT allocation system. 
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   In figure 4, for the presented method compared to the IRNOPT method, the LYFT measure for all selected 

patients is greater. It means that by using developed approach in this study, patients will have more life 

years from their organ transplants. 

 

Fig .4. Comparison of the LYFT parameters of the presented method with the current IRNOPT allocation system. 

 

According to the results and the obtained parameters values for the selected organ-patient pairs, the 

presented DEA approach in this research by considering internal structures outperforms the current 

allocation system in Iran. Finally, in figure 5, the cumulative results of the WT, QALY, and LYFT measures 

for all of 35 kidneys are presented. It indicates that cumulative values of the WT, QALY, and LYFT 

measures have been improved by 36.88%, 39.77%, and 28.06% in the developed approach in this study. 

 

Fig .5. Comparison of the cumulative results of the WT, QALY, and LYFT measures for all of the 35 kidneys in the 

presented method with the current IRNOPT organ allocation system. 
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5- Managerial insights 
   This study provided a DEA approach with internal structures for organ allocation problem. Notably, 

managerial insights are as follows: (1) results in this study demonstrate that considering internal structures 

in kidney allocation DEA approach outperforms the black box DEA method (cumulative values of the WT, 

QALY, and LYFT measures have been improved by 36.88%, 39.77%, and 28.06% in the developed 

approach in comparison to the IRNOPT approach) because it can investigate more aspects of the organ 

allocation problem and it is closer to the problem’s reality, (2) initial qualified organ-patient pairs were 

indicated by IRNOPT experts, and after that DEA model was utilized to calculate the organ-patient pairs’ 

efficiencies. Furthermore, as a result of the outstanding performance of the presented model in all of the 

investigated measures, initial qualified organ-patient pairs can also be selected by the DEA models, (3) 

considering figure 5 and cumulative results show that the greatest improvement belongs to the QALY 

measure. It means that the presented approach in this study, in terms of quality, performs better than quantity 

and decision-makers can use this method if the quality is more important for them in kidney allocation 

problem and (4) the additive decomposition approach informs decision-makers that this method can be one 

of the best approaches to deal with network structures in DEA models. 

 

6- Conclusions and future research directions 
   In healthcare systems, organ transplantation is a complex treatment technique. This treatment differs from 

others in that it requires both a recipient (a patient who needs an organ to improve their quality of life or to 

survive) and a donor (a living or dead person who donates organs). Only particular tissues, such as skin, 

bones, heart, and valves, and specific organ types, such as kidneys, lungs, heart, and liver, are suitable for 

organ transplantation. Kidney is the most widely transplanted organ followed by liver and heart. In addition, 

one of the most significant procedures in organ transplantation processes is organ allocation. The procedure 

of finding the best recipient for the kidney that emerges into the transplantation supply chain system is 

called the matchmaking procedure or organ allocation. Despite the significant medical advances, due to the 

enormous disparity among organ supply and demand, a large number of patients die while waiting for organ 

transplants. Therefore, developing an efficient organ allocation method has a fundamental role in organizing 

organ demand and supply. 

   In this research, an organ allocation approach based on a two-stage network DEA model for kidney 

allocation problem was presented. This approach utilized input, intermediate, and output measures for 

evaluating efficiencies of qualified organ-patient pairs by considering internal structures instead of black 

box DEA models. To the best of our knowledge, this is the first study that uses two-stage network DEA 

models for kidney allocation problem. Finally, findings demonstrate that presented approach in this study 

outperforms the current organ allocation system in Iran. Finally, future research directions are as follows: 

 In this study, WT, QALY, and LYFT were considered as investigated measures in kidney allocation 

problem. Therefore, other measures or criteria can be investigated in the kidney allocation problem. 

 Considering internal structures in DEA models can clarify the relationship between problem parameters 

and other components in the problem, which can be utilized in other healthcare systems. 

 In this research, the two-stage network DEA model was used and as a future direction, other structures 

can be utilized to model this problem. 

 DEA approach showed that this method could have a suitable performance for ranking organ-patient pairs. 

Moreover, other methods for ranking these pairs can be utilized and compared to the DEA approach. 

 Additive decomposition approach in DEA models was used to model the organ allocation problem. Thus, 

other approaches like the multiplier method can be utilized. 
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