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Abstract 
One of the most important subjects in designing the large scale logistics network in 
crisis time is providing a timely quick reaction for treating injured people and rapid 
distribution of medicines and medical equipment. In this paper, a multi-objective model 
is presented that aims to determine the location of transfer points and hospitals to 
provide timely quick reaction for treating injured people as well as to determine 
unreliable and reliable depots for the distribution of medicines and medical equipment. 
Because the dynamic nature of great crises, the parameters of the model are uncertain 
and dynamic. To solve the model, a hybrid meta-heuristic algorithm is proposed which 
is composed of simulated annealing algorithm and CPLEX. By comparing the results, 
the proposed meta-heuristic hybrid algorithm shows a good and efficient performance. 

Keywords: Location-allocation, emergency medical services logistics, hybrid meta-
heuristic algorithm, major crises 

 

1- Introduction 
Large scale emergencies event such as man-made or natural inflict tremendous damages on human, for 

instance in 2015, 341 natural disasters happened which have left 213 million victims and 8421 deaths and 
billions of loss in assets (Guha-Sapir et al., 2015). In the same year, 152 man-made disasters are happened 
which killed more than 10000 people (Swiss, R., 2015). In the light of such events and their impacts on 
human life, it is necessary that decision makers of disaster management prevent casualties and 
destructions using scientific methods. Relief logistics is an essential part of operation research which is 
recently being used as techniques and analytical tools to provide efficient relief to affected people who 
need help in affected areas with optimized functions and constraints. It is essential to consider the disaster 
characteristics for planning in time of disaster. One of the main characteristics of disasters is a large 
number of injured people who must be treated immediately. Therefore, for treating injured people a quick 
reaction has an important role in a disaster plan (Hashzemi et al., 2014). Regarding to aforementioned 
needs, relief logistics can help us for a good planning. One of the methods that can help us in relief 
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logistics is the transfer point location problem (TPLP) (Berman et al., 2005). In this problem, some transfer 
points are considered to improve casualties transfer time to hospitals. These points have to be located in a 
manner that ambulances pass the predefined routes through transfer points or directly.  

With regards to the fact that most fatalities occur in early hours of disasters, one of the most significant 
methods is accelerating the casualty transfer to hospitals, recognized as transfer point location. With 
respect to the fact that many injured people need medicine, drug and other medical equipments and 
usually these volumes of equipment do not exist at affected areas; another important characteristic in time 
of disaster is rapid distribution of drug and medicine to affected areas (Dessouky et al., 2006). For 
overcoming this problem, some medicine depots in or out of affected area must be considered. These 
depots distribute large amounts of medicine, drug and medical equipment during the disaster. For 
approaching to the real world, these depots are classified into two categories: 1) reliable depot.  

2) unreliable depot.  

The main contributions of this paper are as follows: 

• Presenting a model which contemplates the different sources of uncertainty.  

• Proposing a new bi-objective dynamic stochastic model to tackle the disaster relief problem. 

• Considering disruption in facility under disaster condition. 

• Considering good medicine distribution to certain affected areas in the relief distribution process. 

• Designing a hybrid metaheuristic algorithm for the proposed model. 

The rest of the paper is organized as follows: Section 2 shows a brief literature review on the topic. 
Section 3 describes the investigated problem and mathematical modeling. The solution method, numerical 
example and conclusion are stated in 3, 4 and 5 sections, respectively.  

 

2- Literature review 
Transfer point location problem is a new concept that is proposed in relief logistics area by Berman et 

al. (2005), investigated the location of a facility and several transfer points to serve as collector points for 
customers who need the services of this facility. They considered demand for emergency services, 
generated at a set of points that need the services of a central facility. In the next work, they (Berman et 
al., 2007a) introduced the transfer point location problem. In this problem, they assumed that the location 
of the facility is known and so, they sought the best location for one transfer point that can serve a set of 
demand points. Berman et al. (2007b) suggested a multiple location of transfer points while locating was 
allowed from several transfer points as an extension of transfer point location. Mahmudian et al., (2008) 
presented two heuristic algorithms for TPLP problem. The first algorithm clustered affected areas and the 
next one located transfer points places. Furuta et al., (2013) utilized mini-sum and mini-max methods in 
their model.  Casualties had to be carried by ambulances or helicopters which met each other in a place 
called Rendezvous Points. They selected japan for case study and acquired good results. Hosseinijou and 
Bashiri (2011) considered the case in which demand points were weighted and their coordinates had 
bivariate uniform distribution. Hence, they used a different conceptual view and different distance 
measures to make their models more applicable to real world situations. Kalantary et al., (2013) 
developed a new TPLP with weighted demand points and fuzzy coordinates. They developed their model 
as a fuzzy unconstrained nonlinear one where decision variables are fuzzy numbers. Mohamadi et al., 
(2015a) presented a model for mini-sum TPLP, which was different from former works. They had a 
comprehensive attitude to the problem and with combination of VRP and TPLP attempted for creating a 
new view in this topic. Their model was bi-objective and uncertain. Ebrahimi Zade and Lotfi (2015) 
proposed a facility and transfer point model considering uncertainty in parameters. This model is based on 
a given service time which targeted by a decision maker. They considered a soft capacity constraint for 
the facilities and a second objective to minimize the overtime in the facility with highest assigned demand 
proposed (Ebrahimi Zade et al., 2015). Mohmadi et al., (2015b) presented a model for blood products to 
respond the need for blood products in disaster situations. Their model was a bi-objective mixed integer 
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one and with respect to unstable conditions during the disaster, uncertain parameters are modeled by 
fuzzy numbers (Kohneh et al., 2016). Also, there exist other works in this topic such as Sasaki et al., 
(2008), Jabal Ameli et al., (2012), Araste et al., (2012). 

Considering transfer point, hospitals and medicine depots at the same time are an important 
contribution in this paper using this idea with regard to aforementioned characteristics arising during 
disaster. Also, we consider reliable depots and unreliable depots that can be disrupted in disaster. For 
approaching to the real world, we consider the probability of shortage occurrence in the model. With 
regard the literature, we focused on limitation of facility numbers and capacity of using facility. Also, 
another point that has not been attentive by researchers in the literature is lack of an efficiency 
optimization algorithm for large scale problems. Therefore, we proposed a hybrid metaheuristic algorithm 
for the proposed model. Uncertainty in various parameters is considered for more flexibility of the model. 
Also, disruption in the route is considered.  

3- Problem description 
The relief logistic system investigated in this study is based on characteristics arising during disaster 

which are: 1) Quick reaction for treating injured people. 2) Rapid distribution of drug and medicine to 
affected areas. Hospitals, transfer points and medicine depots must be located in optimal potential 
locations. Demand for emergency service is generated at a set of affected points which need the services 
of hospitals. Injured people are transferred to a transfer point at normal speed, and from there to the 
hospital at increased speed. With gathering the demand of hospitals, it is necessary that medicine depots 
satisfy these demands. With respect to the existing disruption in medicine depots, the demand can be 
satisfied from reliable or unreliable medicine depots. In the other hand, the shortage in satisfying the 
demand has considered. Whole the decisions on this network are based on the disruption on the routes 
between facilities. Also, due to the difference in nature disasters, we considered two objectives including 
1) minimization of the weighted distances between facilities considering disruption in routes, and 2) 
minimization of shortage cost. The model has formulated as a two stage stochastic approach that in its 
first stage, the strategic decisions are made (the model aims to select optimum location of facilities) and in 
its second stage, the tactical decisions must be made (transportation routes between facility locations and 
demand points are explored). Therefore, in this paper, a stochastic multi-objective model is proposed 
which considers vital needs in the time of disaster.  

 
3-1 Assumptions  

• The developed model is a p-median LTPT and multi-period. 
• Uncertainty on the model is assumed to be a two stage stochastic. 
• In this problem, several points are candidate for establishing hospitals and transfer points; also, 

several points are candidate for establishing reliable and unreliable depots. 
• Shortage is allowed.  
• Each affected area can be served by to several hospitals or transfer points.  
• Each transfer point has a limit capacity.  

• Each hospital has limited capacity. 
• Each reliable and unreliable facility has limited capacity. 
• Each facility has limited capacity. 
• Uncertainty on parameters id considered in the model. 

 
3-2 Sets and parameters and decision variables 

Sets, parameters and decision variables are as follows.  
 

Sets  
Set of demand points indexed by i :I  
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Set of transfer points indexed by j :J  
Set of hospitals indexed by k :K  
Set of unreliable depots indexed by h H : 
Set of reliable depots indexed by r :R  
Set of periods indexed by t :T  
Set of scenarios indexed by s :S  

 

Parameters  
Number of injured people at each demand points :id  

Number of hospitals which must be established :K  

Transportation time between demand point i and transfer point j :ijt  

Transportation time between transfer point j and hospital k :jkt  

Transportation time between demand point i and hospital k :ikt  

Transportation time between hospital k and unreliable depot h :kht  

Transportation time between hospital k and reliable depot r :krt  

The probability that the  route is reliable between demand point i and transfer point j :s
ijπ  

The probability that the route is unreliable between transfer point j and hospital k under scenario s :s
jkπ  

The probability that the  route is reliable between demand point i and hospital k under scenario s :s
ikπ  

Capacity of transfer point j :jCap  

Capacity of hospital k :kCap  

Capacity of unreliable medicine depot h :hCap  

Capacity of reliable medicine depot h :rCap  

Capacity of unreliable medicine depot h under scenario s :s
hη  

Number of transfer points which should be established :L  
Number of hospitals which should be established :M  
Number of unreliable medicine depots which should be established :N  
Number of reliable medicine depots which should be established :O  

Shortage cost at demand point i :iµ  

Shortage cost at hospital k :kλ  

The probability of occurrence of the scenario s  sp : 

 

Decision variables 

A binary variable equal 1 if new transfer point established in location j; 0, otherwise :jZ  

A binary variable equal 1 if new hospital established in location k; 0, otherwise :kW  
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A binary variable equal 1 if new unreliable medicine depot established in location h; 0, otherwise :hE  

A binary variable equal 1 if new reliable medicine depot established in location r; 0, otherwise :rQ  

Flow between demand point I and transfer point j in period t :st
ijφ  

Flow between transfer point j and hospital k in period t :jkψ  

Flow between demand point I and hospital k in period t :st
ikδ  

Flow between hospital k and unreliable medicine depot h in period t x :st
kh  

Flow  between hospital k and reliable medicine depot h in period t :st
krG  

Flow at demand point I which do not meet in period t :st
if  

Flow at hospital k which do not meet in period t :st
kq  

 

3-3- Mathematical modeling  
With regard to notations mentioned in the previous section, mathematical model for designing the 

network logistics is as follows.  

(1) 

( )

s st s st s st
s ij ij ij jk jk jk ik ik ik

s i I j J t T j J k K t T i I k K t T

st s s st s
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k K h H s S t T k K r R s S t T
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(18) { }k j h rW ,Z ,E ,Q 0,1 k, j,h, r∈ ∀  

Objective function Error! Reference source not found. shows the minimization of the total demand-
weighted time transportation between facilities considering disruption on routes. This term includes travel 
time between demand point to transfer point or hospital, travel time between hospitals to medicine depots. 
Objective function (2) shows the cost of lost demand in demand points and hospitals. Equation (3) is the 
flow conservation constraint at transfer point j. Equation (4) shows the requirement that all demand must 
be satisfied considering shortage allowance. Equations (5) and (6) are capacity constraints of transfer 
points and hospitals.  Equation (7) ensures that no injured people travel to other transfer points and 
facilities. Equation (8) is the flow conservation constraint at hospital k.  Equations (9) and (10) are 
capacity constraints of unreliable and reliable medicine depots.  Equations (11) and (12) exhibit the 
number of established unreliable and reliable medicine depots. Equation (13) requires all hospital demand 
to satisfy considering allowed shortage. Equations (14) and (15) exhibit the number of established transfer 
points and hospitals. Equations (16) show how much flow should be met from reliable medicine depot. 
Equations (17) and (18) enforce the binary and non-negativity restrictions on the corresponding decision 
variables. 

 

4- Solution method 
In this section a multi objective approach in addition with a hybrid meta-heuristic algorithm is 

presented for solving the model. 
 

4-1- Compromise programming method  
The presented bi-objective model can be changed into a single-objective one using compromise 

programming method. With respect to the nature of the problem, in this paper, the method of compromise 
programming is used for changing of bi-objective problem to single- objective one. Minimization of the 
distance between the ideal solution and the expected solution is the important idea of current method. For 
this purpose, first the nadir and ideal value are calculated for every objective function (Cochrane and 
Zeleny, 1973). The best value is obtained through optimizing model along each of the objective functions 
regardless another function and nadir value is obtained through optimizing in the opposite direction of 
any objective function. The following equations show how to implement the calculations.  
Suppose that equation (19) is a linear programming with several objective functions as follows. 

(19) 
 

Using the compromise programming method we will have: 

[ ]1 3

i

Min Z ,..., Z

g ( x ) 0≥



 

 

4-2- A hybrid metaheuristic algorithm 
   In this section, a hybrid metaheuristic algorithm
approache is developed to solve the proposed 
applied to problems that are both difficult and important. 
a random initial solution. The iteration 
each iteration only one neighbor 
function �(�) is tested for each neighbor generation
variation, ∆ = �(�) − �(�) is obtained. If the value of 
automatically accepted to replace 
probability established by the Metropolis criteria, which is given by 
parameter, a key variable for the met

������	
����
 �

Figure 1 shows the simulated annealing 
 

Now, for decreasing solution time as well as increasing the accuracy and improvement of the 
solution, we applied a mechanism b
production of neighborhood solution. This approaches applied as follows

4-2-1- Solution Representation
To show the binary variables, we use

dimension is 1 I×  in which columns

matrix’s elements are zero and one in a way that zero and one
of the transfer point location. 

*
* i i
T i *

i m i

i

Z Z
Min Z

Z Z
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λ
  −
 =  −   

≥
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A hybrid metaheuristic algorithm  
In this section, a hybrid metaheuristic algorithm by combining Simulated Annealing (SA) and Cplex 

is developed to solve the proposed model. Simulated annealing is a technique w
applied to problems that are both difficult and important. The simulated annealing begins

The iteration loop that characterizes the main procedure randomly generates in 
each iteration only one neighbor �’ of the current solution �. The variation ∆ for the value of the objective 

for each neighbor generation (Hwang, 1988) and (Barzinpour
) is obtained. If the value of ∆ is less than zero, then the new solut

automatically accepted to replace �. Otherwise, accepting the new solution 
probability established by the Metropolis criteria, which is given by �∆/�, where 
parameter, a key variable for the method. Therefore we have: 


 �
�
∆�
�  

shows the simulated annealing pseudo code. 

Figure 1. Simulated annealing pseudo code 

solution time as well as increasing the accuracy and improvement of the 
solution, we applied a mechanism based on exact method in generation of the initial solutions and 

neighborhood solution. This approaches applied as follows. 

Solution Representation 
To show the binary variables, we use 8 matrices; the first matrix is related to transfer

columns are potential locations for establishing the transfer point.

matrix’s elements are zero and one in a way that zero and one correspond to inactiveness and activeness

1
r r  

  
   

(20) 

combining Simulated Annealing (SA) and Cplex 
Simulated annealing is a technique which has been 

The simulated annealing begins its search from 
loop that characterizes the main procedure randomly generates in 

for the value of the objective 
Barzinpour et al., 2014).  To test this 

 is less than zero, then the new solution �’ will be 
. Otherwise, accepting the new solution �’ will depend on the 

, where � is a temperature 

(21) 

 

solution time as well as increasing the accuracy and improvement of the 
ased on exact method in generation of the initial solutions and 

is related to transfer point location. Its 

potential locations for establishing the transfer point. This 

correspond to inactiveness and activeness 
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j 1 2 jZ Z Z .... Z =    

For example, the solution representation for this matric can be written as Figure 2 if four candidate 
locations’ exist for establishing the transfer points. 
 

Transfer point  

1  0  0  0  
Figure 2. Solution representation for initial solution 

As shown Figure 2, transfer point is not located at location 1, 2 and 3 and only located at location 4. 
Also, the matrices related to hospitals and depots location are as follows. 

[ ]k 1 2 kW W W .... W=  

[ ]h 1 2 hE E E .... E= 

[ ]r 1 2 rQ Q Q .... Q= 

Similarly, the allocation of variables can also be represented by the matrices. For example, the next 

matrix is related tost
ikδ  variable and to represent this, we use 4 dimension matrix in a way that the first 

index is the number of demand points and the second index is for hospitals and the third and fourth 
indexes are related to the scenarios and the periods, respectively.  
 
4-2-2- Generating Initial Population 

 After determining a technique to assign a chromosome to each solution, one can create an initial 
population. In this process, as shown in Figure 3, we generate a random number in the range (0, 1) then 
this number is multiplied by the number of elements. In Figure 3 and matrix before mutation, we know 
four transfer points, three hospitals and two reliable depots and two unreliable depots. It is assumed that 
the random number is 0.65, therefore, this number is multiplied by 11 and 6.05. So 7 is achieved by 
round off of 6.05. Then, the 7th column which is related to hospital is changed from 0 to 1. With respect to 
the limitation of numbers in establishing each facility, two columns related to hospital should be changed 
from 1 to 0 randomly. According to this approach, we generate a feasible neighborhood solution. 
 

Reliable depots  depots  hospitals  Transfer points  

1  0  0  1  0  1  1  1  0  1  0  
Before mutation  

Reliable depots  depots  hospitals  Transfer points  

1  0  0  1  1  1  0  1  0  1  0  
After mutation  

Figure 3. Mutation operator 

4-3- Tuned values of the Hybrid-SA algorithm parameters 
The proposed hybrid algorithm includes parameters that affect the proper functioning and final results 

and algorithm efficiency. With regard to merits of the Taguchi method, it is used for the configuration of 
parameters. 

 
4-3-1- Taguchi method 

Before calibration of the proposed algorithm, some preliminary tests are used to obtain appropriate 
parameter levels. The four following configuration parameters are considered in the presented algorithm 
for achieving more accurate results: A (initial temperature), B (cooling rate), C (number of repetitions in 
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each temperature), and D (final temperature). The parameters and their levels are shown in Tables 1 and 
2. Also, for using Taguchi method, we used the square matrix with 4 parameters in 3 levels which are L9. 
In this method, we have two output results which are 1) the variation of the output results measured by 
means of signal-to-noise (�/�) ratio where the value of �/� ratio is computed as the following. 

(22)  
 

And mean of means.   
   It is noted that the larger value of �/� ratio leads to the smaller variation of the response variable. 
The �/� ratio and mean of means have calculated and has shown as Figures 4 and 5. Also, the 
characteristics of sample problems that have been used for Taguchi method has obtained as Table 3. 
 
 

Table 1. Proposed Hybrid-SA algorithm parameters and their levels 
 

 

 

 

 

 

 

 

 

Table 2. Orthogonal array �9  

Factor D Factor C Factor B Factor A Experiments  Factor D Factor C Factor B Factor A Experiments  

D(2) C(1) B(3) A(2) 6 D(1) C(1) B(1) A(1) 1 

D(2) C(3) B(1) A(3) 7 D(2) C(2) B(2) A(1) 2 

D(3) C(1) B(2) A(3) 8 D(3) C(3) B(3) A(1) 3 

D(1) C(2) B(3) A(2) 9 D(3) C(3) B(1) A(2) 4 

        D(1) C(3) B(2) A(2) 5 

 

2
10

1

1
10log

n

i
i

S ratio yN n =

 = −  
 
∑

Final 
temperature 

(D) 

Number of 
repetitions in 

each 
temperature 

(C) 

Cooling rate 
(B) 

Initial 
temperature 

(A) 

Levels 

Problem 
size  

0.00001 40 0.95 2000 1 
Large scale 0.0001 50 0.96 3000 2 

0.005 60 0.97 4000 3 
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Figure 5. Diagram of mean effect of the �/� ratio for 

large problem in hybrid-SA algorithm  

 

 

 

Figure 4. Diagram of mean effect of means for large 
problem in hybrid-SA algorithm 

 

 

 

Table 3. Characteristics of sample problems that have been used for Taguchi method 

Factor D Factor C Factor B Factor A  Algorithm  

0.0001  40  0.96  2000  Hybrid-SA  

 

4-4- Stopping criterion 

We consider a maximum number of iterations for stopping the algorithm. In addition, another stopping 
criterion is considered as the maximum number of iterations with no improvement for the increasing the 
efficiency and decreasing waste time. 

5- Numerical Results 
In this section, 12 numerical examples in accordance with the proposed model are presented to 

validate the model and algorithm. Computational results and analysis of the developed model are 
presented. All of numerical examples include 50 demand points, 15 hospitals, 15 transfer points, 25 
unreliable medicine depots and 5 reliable medicine depots. At the same time, the number of periods and 
scenarios are changed. For sensitivity analysis, the number of depots that should be established is changed 
between 8 and 12 and the number of periods is changed among 6, 9 and 12, also, the number of scenarios 
is changed between 6 and 12. To examine efficiency of this algorithm and model, the value objective 
function is compared between Hybrid-SA and CPLEX. The results are shown in Table (4) and Table (5) 
The parameters of the numerical example are considered as follows: 
The distance between each demand point from the others is assumed to have uniform distribution (1000, 
1500). The speed of vehicles between the transfer points and hospitals has uniform distribution between 
(50, 60). The speed of vehicles to go to the hospital has uniform distribution between (20, 30).  
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Table 4. The result for first case 

Scenarios Depots Periods 

Objective function The 
diversion 
between 
HAS and 

Cplex 

Time (second) 

Cplex Hybrid-SA 
Best 

solution 
Cplex HSA 

6 8 6 210839852 

212354148 

212336814 0.71 274.463 223.280 

212342147 
212364123 

212347820 
212336814 

6 8 9 226910100 

229784235 

229769167 1.26 840.760 317.624 

229770413 
229767167 
229769412 
229776472 

6 8 12 25314923 

257347845 

257343062 1.47 2450.610 547.327 

257350471 
257349872 
257352423 
257343062 

6 14 6 169526619 

171935672 

171933897 1.42 6845.123 913.266 

171937412 
171938452 
171933897 
171942537 

6 15 9 179277978 

182214727 

18200209 1.63 17923.292 1505.795 

182200209 
182224203 
182251237 
182209754 

6 14 12 19999291.7 

207552650 

207552650 3.78 52468.601 2360.735 

207567412 
207570145 
207561423 
207564123 

 
    The times are calculated by dividing the distance and speed. The time between hospitals and unreliable 
depots has uniform distribution between (10, 30). The time between hospitals and reliable depots has 
uniform distribution between (40 and 50). The number of injured people is conserved between (1000 and 
4000) uniformly. 
   To compare the results between the Hybrid-SA and CPLEX, the proposed algorithm is performed in 5 
times and the best answer among them is compared with the exact solution. As shown table 5, the value 
of objective functions in the case of 6 scenarios, 8 depots and 6 periods have been increased compared 
with case of 6 scenarios, 8 depots and 9 periods. It is why the dimension and volume of the parameters 
such as the number of injured people and disruptions have been increased. Increasing the number of 
scenarios leads to increasing the size of the problem and thus increasing the value of the objective 
function. If the number of depots increases, with regard to the fact that the solution space is wider, this 
can cause a variety of allocation and, therefore, the answer will not be worse even better. 
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Table 5. The result for second case 

Scenarios Depots Periods 

Objective function The 
diversion 
between 
HSA and 

Cplex 

Time (second) 

Cplex Hybrid-SA 
Best 

solution 
Cplex HSA 

12 8 6 272159633.4 

279872485 

279861751 2.83 113404.487 2723.573 

279861751 
279869741 
279868752 

279864752 

12 8 9 * 

284965472 

284956318 * * 3274.689 

284969412 
284967412 
284962741 
284956318 

12 8 12 * 

304754713 

304748015 * * 3582.983 

304757412 
304749875 
304749872 
305758015 

12 14 6 * 

255087412 

255073193 * * 4386.439 

255081472 
255073193 
255083472 
255074123 

12 14 9 * 

267145741 

267142179 * * 5205.695 

267149975 
267142179 
267144120 

267151403 

12 14 12 * 

279864721 

279861751 * * 6439.943 

279867412 
278972310 
279861751 

279882163 

 
   If the number of facilities increase, it can be realized that the value of objective function intend to a 
fixed measure. As can be seen in the tables (4) and (5), improvement occurs in solutions obtained by the 
exact algorithm in comparison with Hybrid-SA. But the solution time in Hybrid-SA is better than exact 
approach in all these cases. 
   By examining the time in the exact algorithm, the results show that the solution time increases 
exponentially with increasing size. With regard to the very high solution time, the exact approach has 
been stopped in gap 31, 73% in case of 12 scenarios, 8 unreliable depots and 9 periods in time of 49 
hours. But, based on the results in Table (4) and (5), the Hybrid-SA is reached to near optimal solution in 
less time than the exact approach. 
   Also due to the consideration of the shortage costs, the model in the normal state is not willing to allow 
shortage, this causes an increasing in total cost, but when demand increases suddenly, hospitals and 
medicine depots in case of cost-effectiveness will allow shortage. It is noted that the proposed hybrid 
algorithm is widely used generally for problems with large size and in the case of small-scale loses its 
effectiveness. 
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It can be realized from Tables (4) and (5) that both the methods are much more sensitive to the number of 
scenarios than the number of depots and periods. We can illustrate the iteration process in figure 6. The 
value of the objective function is obtained and drawn versus iterations.  
 

 
Figure 6. Convergence diagram 

 

6- Conclusion  
In this paper, a relief logistics network is considered including transfer points, hospitals and medicine 

depots. Also, disruption in routes and facilities was applied. The proposed model was multi-period, bi-
objective and uncertain. Due to the difference in nature of disasters, we considered two objectives 
including 1) minimization of the weighted distances between facilities considering disruption in routes 
and 2) minimization of shortage cost. The decisions were consisted of locating the facility and allocations 
among them. Also, another point that has not been attentive by researchers in the literature is lack of an 
efficiency optimization algorithm for the large scale problems. Therefore, we propose a hybrid-SA 
algorithm for the proposed model. And to examine the efficiency of this algorithm and the model, the 
value of the objective function is compared between Hybrid-SA and CPLEX. The results show that 
Hybrid-SA obtains a near optimal solution in shorter time than the exact method. Also due to the shortage 
costs, the model in the normal state is not willing to allow shortage. This cause increase the total cost, but 
when demand increases suddenly, hospitals and medicine depots in the case of cost-effectiveness will 
allow shortage. In this paper, we try to approach real world conditions, for example the large scale 
emergencies such as man-made and natural disasters. When these disasters happens, we are faced a large 
number of injured people who need quick help. Therefore, this model can help the DM for reduction the 
consequences of such events. Future research could investigate the application of the model and solution 
method presented in this paper to manage actual relief supply chain challenges. Also, robust optimization 
can enhance the proposed model.  

 
Acknowledgment 

 
The authors would like to thank the anonymous referees and associate editor for their helpful suggestions 
that have substantially improved the content. 

 
 

 



98 

 

References 

Araste, K., Jabal Ameli, S., Bozorgi Amiri, A .The location of the transfer point. MScs thesis, Iran 
University of Science and Technology. (2012). 

Barzinpour, F., Saffarian, M., Makoui, A., & Teimoury, E. (2014). Metaheuristic Algorithm for Solving 
Biobjective Possibility Planning Model of Location-Allocation in Disaster Relief Logistics. Journal of 
Applied Mathematics, 2014. 

Berman, O., Drezner, Z., & Wesolowsky, G. O. (2005).The facility and transfer points’ location 
problem. International Transactions in Operational Research, 12(4), 387-402.  
 
Berman, O., Drezner, Z., Wesolowsky, G.O., (2007a) “The multiple location of transfer points,” Journal 
of the Operational Research Society, 59, 6, 805–811.  
 
Berman, O., Drezner, Z., Wesolowsky, G.O., (2007b) “The transfer point location problem,” European 
Journal of Operational Research, 179, 978–989.  

Cochrane, J. L., & Zeleny, M. (1973). Multiple criteria decision making. Univ of South Carolina Pr. 

Dessouky, M., Ordonez, F., Jia, H., & Shen, Z. (2006). Rapid distribution of medical supplies. In Patient 
Flow: Reducing Delay in Healthcare Delivery (pp. 309-338). Springer US.  
 
Ebrahimi Zade, A., & Lotfi, M. M. (2015). Stochastic facility and transfer point covering problem with a 
soft capacity constraint. International Transactions in Operational Research. 

Furuta, T. and Tanaka,K,. (2013)"Minisum and minimax location models for helicopter emergency 
medical service systems" Journal of the Operations Research Society of Japan Vol. 56, No. 3, pp. 221–
242. 

Guha-Sapir, D. Hoyois Ph, Below R (2015). Annual Disaster Statistical Review 2014: The Numbers and 
Trends. Brussels: CRED.  
 

Hashzemi, S., Shokri A, Amin Naseri, M. R & Akbaripour, H. (2014). Designing an Expert System for 
Management of Crowding and Overcrowding in Emergency Departments. J. of Industrial Engineering. 
48(2) 281-292  
 

Hosseinijou, S.A., Bashiri, M., (2011) “Stochastic models for transfer point location problem,” The 
International Journal of Advanced Manufacturing Technology, 58, 1–4, 211–225.  

Hwang, C. R. (1988). Simulated annealing: theory and applications. Acta Applicandae 
Mathematicae, 12(1), 108-111. 

Jabal Ameli, S., Araste, K., Bozorgi Amiri, A (2012).The location of facilities and transfer points in the 
network. First international conference on nonlinear optimization.  

Kalantari, H., Yousefli, A., Ghazanfari, M. (2013) “Fuzzy transfer point location problem : a probabilistic 
unconstrained nonlinear programming approach,” The International Journal of Advanced Manufacturing 
Technology, 70, 1043–1051.  

Kohneh, J. N., Teymoury, E., & Pishvaee, M. S. (2016). Blood products supply chain design considering 
disaster circumstances (Case study: earthquake disaster in Tehran). Journal of Industrial and Systems 
Engineering, 9, 51-72. 



99 

 

Mahmudian, M., Keivani, A., Davoudpour, H and Ardestani Jaafari, A. (2010)"Two Iterative Algorithms 
for Transfer Point Location Problem" Journal of American Science, vol 9:pp.827-830.  

Mohamadi, A., Yaghoubi, S., & Derikvand, H. (2015a).A credibility-based chance-constrained transfer 
point location model for the relief logistics design (Case Study: earthquake disaster on region 1 of Tehran 
city).International Journal of Supply and Operations Management, 1(4), 466-488.  

Mohamadi, A., Yaghoubi, S., & Nahofti, K. J. (2015b). Two Objective Mathematical Modelling of the 
Relief Logistic Considering Transfer Points and Backup Facilities (Case Study: An Earthquake Disaster 
in 1St District of Tehran). 
 

Sasaki, M., Furuta, T. and Suzuki, A., (2008). "Exact optimal solutions of the minisum facility and 
transfer points location problems on a network," International Transactions in Operational Research, vol. 
15, pp. 295-306.  

Swiss, R. Natural catastrophes and man-made disasters in 2014: convective and winter storms generate 
most losses. Sigma, (2). (2015) 
 

 

 


