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Abstract 

Covering models have many applications in a wide variety of real-world problems. 
But some assumptions of covering models are not realistic enough. Accordingly, a 
general approach would not be able to answer the needs of encountering varied aspects 
of real-world considerations. Assumptions like the unavailability of servers, 
uncertainty, and evaluating more factors at the same time, are assumptions with which 
covering models are always faced; however, these models are not able to find any 
answers for them. Therefore, how to deal with these sorts of assumptions has been 
always a question. In this research, for facing unavailability and uncertainty in input 
data, backup covering and interval full-ranking models are addressed, respectively. 
Furthermore, by combining backup covering and interval full-ranking models (also 
conceptions), not only time is saved and more factors like efficiency and cost are 
simultaneously evaluated, but also covering considerations will be reachable in real 
aspects.  
The proposed model in this paper is searching for three assumptions to cover major 
features. Emergency services are harshly sensible to delay, so the problem of server’s 
unavailability should be solved by considering backup coverage. Moreover, inefficient 
facilities were absolutely neglected in covering literature despite their destructive role 
in serving customer demands. To overcome this problem, we have entered efficiency 
to our model by considering location of each facility as an input for a revised version 
of data envelopment analysis which is called full-ranking model. As many research 
have proved to believe in uncertainty, no one can neglect this feature in real-world, 
we have just defined data in intervals to consider this feature. In final, the evident 
absence of research in three mentioned key features in one frame has left covering 
literature in defect and brought about the proposed three-objective model in this paper 
which is called combined maximal covering with backup model (MCBM) and interval 
full-ranking. 
Keywords: Emergency service, Backup coverage, Interval full-ranking,  
Meta-heuristic algorithm, Multi-objective optimization. 
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1- Introduction 
    Hakimi (1965) for the first time introduced the concept of covering model and considered a vertex-
covering model in a graph. He assigned the same weights to all the branches of this graph. Toregas et al. 
(1971) defined set covering problems (SCP), which aimed to determine the minimum number of servers 
(and their locations) which was required for covering all demand nodes. Church and Revelle (1974) noted 
the fact that, in many practical applications, allocated resources are not sufficient for covering all the 
existing facilities with the desired level of coverage. Assumptions of set covering models were extended 
by Daskin and Stern (1981) who then introduced multi-coverage concept. In their proposed model, 
backup coverage was considered; but, one of the primary issues of this model was unbalanced distribution 
of services. 
   Backup coverage was defined by Hogan and Revelle (1986) as a case, in which an extra facility was able 
to cover a demand node. They could overcome the issue of unbalanced distribution of services through 
maximizing backup coverage. Also, Revelle and Hogan (1989) replaced deterministic parameters in set 
covering problem with probabilistic parameters and thus included uncertainty conception in their model. 
Pirkul and Schilling (1989) presented a model, in which each new facility was capacitated and primary and 
backup services were provided to each demand node.  
   Kolen and Tamir (1990) concentrated on the uncapacitated versions of the covering problems. Although, 
in most of the real-world applications of covering problems, considering capacitated facilities is more 
realistic, this model was important because of its different attitude toward cost functions. Daskin (1995) 
focused on the variants of the set covering location model in his book; and included secondary objectives 
that were important in the facility location. Owen and Daskin (1998) assumed that all the demand nodes 
were not similar and then presented an uncapacitated version of set covering problem. 
   Thomas et al. (2002) included data envelopment analysis (DEA) in location-allocation models. First, they 
solved location-allocation model and then considered the optimum location of facilities as input data in data 
envelopment analysis. Lannoni and Morabito (2007) considered a multi-dispatch model, in which 
emergency demands were assumed to be different kinds and servers were distinctive. Baron et al. (2009) 
developed a set covering problem for the general class of location problems with stochastic demand and 
congestion (LPSDC). Berman et al. (2009) considered a covering problem, in which covering radius was a 
variable, and attempted to find the optimum radii beside the number and location of facilities. 
   Erdemir et al. (2010) proposed two models for locating aero-medical and ground ambulance service 
which were based on SCP and maximal covering location problem (MCLP). They also defined coverage 
as a combination of both response time and total service time. Lee and Lee (2010) introduced hierarchical 
covering location model, in which if distance from demand node i to facility was less than a given threshold, 
node i was fully covered. On the other hand, if the distance was beyond the pre-specified range, it was 
partially covered.  
   Berman and Wang (2011) developed a gradual covering location model, in which the weights of demand 
nodes on a network were random variables following an unknown distribution. Wen and Kang (2011) 
presented several optimum models in location-allocation with random stochastic demands. Afterward, they 
combined simplex algorithm, genetic algorithm, and random fuzzy simulation to present a hybrid intelligent 
algorithm. Moheb-alizade et al. (2011) included DEA in location-allocation models as the second objective 
for evaluating the efficiency of facilities in potential sites. They then presented a solving process based on 
the revised fuzzy parametric programming and minimum deviation method.  
  Applications and solutions of different proposed models in the covering literature were considered by 
Zanjirani et al. (2012). Their paper was also rich in terms of future research. Ni (2012) evaluated vertex-
covering and arc-covering models in a network in a random environment. Shieh (2013) presented a new 
algorithm for solving covering models, which was able to solve fuzzy equations. Zarandi et al. (2013) 
focused on the dynamic aspects of covering models by infracting the assumption of single-period demands.  
    Vidyarthi and Jayaswal (2014) considered the assumptions of immobile servers, stochastic demands and 
congestions simultaneously. Their model aimed at minimizing total cost by locating facilities, equipping 
them with appropriate capacities and allocating user demands to facilities, but it didn’t address 
unavailability of servers. Hosseininezhad et al. (2014) presented continuous capacitated covering model as 
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risk management model and defined demands as fuzzy numbers. Their model took uncertainty to account 
but forgot about efficiency and unavailability in comparison with our proposed model. Martinez-Salazar et 
al (2014) presented a combinational location routing problem in order to reduce distribution cost and keep 
balance of workloads for drivers. This study was rich in evaluating the efficiency of solution methods by 
considering both local search and evolutionary approaches but unavailability and uncertainty were 
neglected. 
   Ghodratnama et al (2015) considered a multi-objective hub location-allocation problem with a supply 
chain overview in order to minimize transportation and installation cost. However, they addressed 
uncertainty by defining fuzzy parameters; unavailability and uncertainty were not mentioned. Pereira et al 
(2015) contributed to covering literature in terms of solution method. They proposed a hybrid algorithm 
which combined a meta-heuristic and an exact method to solve a probabilistic maximal covering problem. 
As they focused on solution method, many assumptions like unavailability had been left unconsidered.     
   As revealed by literature review, covering models have been subject of abundant studies but their wide 
variety doesn’t let researchers rely on a general approach to find a rational response for real-world problems. 
Accordingly, a practical approach would be taking all detailed characteristics to account and generalizing 
limited boundaries of classic models freely to include response to real-world challenges which are 
threatening us. A simple search in covering scope demonstrates that every model sets a framework for itself 
based on its target considerations. In this paper, we have focused on three fundamental features through 
which we can assure serving emergency services. 

   The proposed model in this paper is searching for three assumptions to cover major features. Emergency 
services are harshly sensible to delay, so the problem of server’s unavailability should be solved by 
considering backup coverage. Moreover, inefficient facilities were absolutely neglected in covering 
literature despite their destructive role in serving customer demands. To overcome this problem, we have 
entered efficiency to our model by considering location of each facility as an input for a revised version of 
data envelopment analysis which is called full-ranking model. As many research have proved to believe in 
uncertainty, no one can neglect this feature in real-world, we have just defined data in intervals to consider 
this feature. In final, the evident absence of research in three mentioned key features in one frame has left 
covering literature in defect and brought about the proposed three-objective model in this paper which is 
called combined maximal covering with backup model (MCBM) and interval full-ranking. 
   As we mentioned briefly, this model will be applicable in every condition which calls for emergency 
services such as hospitals in which serving demands should be performed as soon as possible, or else, 
serious issues will occur. This serious issue can differ from losing customers in private companies to leading 
someone to death in health centers. 
    The remaining of the paper is as follows: Section 2 defines interval full-ranking, MCBM, and combined 
MCBM and interval full-ranking model, respectively. In section 3, solution methods and parameter tuning 
are presented. Section 4 addresses the results and finally section 5 is devoted to conclusions and future 
works. 

2- Problem definition  
   In this section, after focusing on interval full-ranking and MCBM models more precisely, a three-
objective combinational model is proposed. Sets, parameters, and variables are also defined. 

 
2-1- Introducing interval full-ranking model 
   Data envelopment analysis (DEA) is a mathematical programming used for determining the relative 
efficiency of decision making units (DMU), each one of which consumes multiple inputs for providing 
multiple outputs. The approach that estimates the efficiency of each DMU is the maximization of the ratio 
of weighted outputs to weighted inputs. Consider that n DMUs, each one consuming w inputs (i=1,2,…..w), 
should be evaluated in order to produce s outputs (o=1,2,…..s), and then measure the efficiency of DMUj 
(j=1,…….,n) relative to other DMUs, Peijun (2009) applied the out-put oriented CCR model shown below: 
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Max Zp= ∑ uoBop
s
o=1   (1) 

∑ uoBoj- ∑ viDij≤ 0w
i=1

s
o=1            j=1,2,……,n                                                                                                             (2) 

∑ viDip
w
i=1  =1  (3) 

uo, vi  ≥ ε  (4) 

where DMUp denotes the evaluated DMU, the decision variables are weight vectors uo and vi, Doj and Bij 
are the input and output vectors for DMUj, and ε is a non-Archimedean infinitesimal equal to 0.0000001. 
The objective value Zp

*  denotes the relative efficiency of DMUp; if Zp
*  =1, the efficiency of unit p will be 1 

and this unit will be placed on an efficient frontier. However, if Zp
*  <1, the efficiency of unit p will be less 

than 1 and this unit will not be placed on an efficient frontier (Sohrabi Haghighat and Khorram, 2005).  
   Although classic models like model (1) proposes a suitable method for evaluating the efficiency of units, 
they are not always able to completely rank the units. In order to overcome this deficiency, interval full-
ranking model is used. The main difference of this model and classic models is that the obtained weights 
for the inputs and outputs of each unit would be multiplied by the inputs and outputs of other units. Thus, 
they would provide a criterion for full-ranking in addition to be used for measuring weighted ratio of outputs 
to inputs (efficiency). 
   In the second step, all the criteria are placed in a pay-off table, in which every row displayed a rank for 
the related DMU. The digit which is obtained by the sum of all the criteria placed in each row is not a 
representative of the amount of efficiency; but, it provides full-ranking for units. The mathematical form of 
this interval full-ranking model is like model (1). After solving this model, optimum weights of inputs and 
outputs are obtained for DMUp as uo

*p and vi
*p and then the efficiency of DMUp is measured using Eq. (5):  

Zp
*  =

∑ uo
*pBop

s
o=1  

∑ vi
*pDip

w
i=1

  (5) 

   After solving full-ranking model for all DMUs, optimum weights of each unit is multiplied by the inputs 
and outputs of other units based on Table 1 and Eq. (5), providing a criterion for full-ranking. Considering 
these conceptions, pay-off table would be as follows: 
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Table 1-Pay-off table 

�uo
*n , vi

*n� .  .  .  . �uo
*p , vi

*p� .  .  .  . �uo
*3 , vi

*3� �uo
*2 , vi

*2� �uo
*1 , vi

*1� Pay-off 
Table 

∑ uo
*nBo1

s
o=1

∑  vi
*nDi1

w
i=1

 .  .  .  . 
∑ uo

*pBo1
s
o=1

∑  vi
*pDi1

w
i=1

 .  .  .  . 
∑ uo

*3Bo1
s
o=1

∑  vi
*3Di1

w
i=1

 
∑ uo

*2Bo1
s
o=1

∑  vi
*2Di1

w
i=1

 
∑ uo

*1Bo1
s
o=1

∑  vi
*1Di1

w
i=1

 DMU1 

∑ uo
*nBo2

s
o=1

∑  vi
*nDi2

w
i=1

 .  .  .  . 
∑ uo

*pBo2
s
o=1

∑  vi
*pDi2

w
i=1

 .  .  .  . 
∑ uo

*3Bo2
s
o=1

∑  vi
*3Di2

w
i=1

 
∑ uo

*2Bo2
s
o=1

∑  vi
*2Di2

w
i=1

 
∑ uo

*1Bo2
s
o=1

∑  vi
*1Di2

w
i=1

 DMU2 

∑ uo
*nBo3

s
o=1

∑  vi
*nDi3

w
i=1

 .  .  .  . 
∑ uo

*pBo3
s
o=1

∑  vi
*pDi3

w
i=1

 .  .  .  . 
∑ uo

*3Bo3
s
o=1

∑  vi
*3Di3

w
i=1

 
∑ uo

*2Bo3
s
o=1

∑  vi
*2Di3

w
i=1

 
∑ uo

*1Bo3
s
o=1

∑  vi
*1Di3

w
i=1

 DMU3 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

∑ uo
*nBop

s
o=1

∑  vi
*nDip

w
i=1

 .  .  .  . 
∑ uo

*pBop
s
o=1

∑  vi
*pDip

w
i=1

 .  .  .  . 
∑ uo

*3Bop
s
o=1

∑  vi
*3Dip

w
i=1

 
∑ uo

*2Bop
s
o=1

∑  vi
*2Dip

w
i=1

 
∑ uo

*1Bop
s
o=1

∑  vi
*1Dip

w
i=1

 DMUp 

. 

. .  .  .  . . 
. .  .  .  . . 

. 
. 
. 

. 

. 
. 
. 

∑ uo
*nBon

s
o=1

∑  vi
*nDin

w
i=1

 .  .  .  . 
∑ uo

*pBon
s
o=1

∑  vi
*pDin

w
i=1

 .  .  .  . 
∑ uo

*3Bon
s
o=1

∑  vi
*3Din

w
i=1

 
∑ uo

*2Bon
s
o=1

∑  vi
*2Din

w
i=1

 
∑ uo

*1Bon
s
o=1

∑  vi
*1Din

w
i=1

  
DMUn 

   Elements that are placed on the main diameter of Table 1, display the efficiency amount of units. 
According to this table, the general equation could be extracted for ranking the criteria of DMUn as follows. 
The more the criterion introduced in Eq. (6), the earlier priority the related unit would be.  

θn=
∑ uo

*1Bop
s
o=1

∑  vi
*1Dip

w
i=1

+ ∑ uo
*1Bon

s
o=1

∑  vi
*1Din

w
i=1

+ ∑ uo
*3Bon

s
o=1

∑  vi
*3Din

w
i=1

+…+ ∑ uo
*pBon

s
o=1

∑  vi
*pDin

w
i=1

+…+ ∑ uo
*nBon

s
o=1

∑  vi
*nDin

w
i=1

  (6) 

 
   Due to the existence of uncertainty, DEA sometimes encounters uncertain data. Considering lack of 
research in this area, evaluating the efficiency of DMUs in a fuzzy or interval environment is of great 
importance; so, in this paper, the available level of resources in each of the candidate sites is assumed to be 
equal for all facilities, while the amount of these resources used by each facility are assumed to be  variable. 
On the other hand, input and output data are assumed to be placed within the bounded intervals, in which 
lower bound showed the worst and upper bound indicated the best estimated amount thus far (Sohrabi 
Haghighat and Khorram, 2005). 
 

Dij∈�Dij
l  ,Dij

u�     ,  Boj∈�Boj
l  ,Boj

u �  (7) 
  

In Eq. (7), 𝐵𝐵𝑜𝑜𝑜𝑜
𝑙𝑙  is the lowest bound of output o for DMUj, Boj

u  is the upper bound of output o for DMUj 
(o=1,2,…..s), Dij

l  is the lower bound of input i for DMUj, Dij
u  is the upper bound of input i for DMUj 

(i=1,2,…..w), which are parameters of model, uo is the weight attached to output o, and vi is the weight 
attached to input i. Generally, intervals B and D can be written as follows: 

Dij=D
ij
l + ƛij�Dij

u-Dij
l �,    Boj=Boj

l + ʹƛ oj�Boj
u -Boj

l �,     0≤ ƛij , ʹƛ oj ≤1                        (8) 

By inserting Boj and Dij mentioned in Eq. (8) in Constraints (1) and (4) respectively, Constraints (9)-(12) 
would be obtained: 
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Max ∑  uo Bop
l + ∑  uo ʹƛ op�Bop

u -Bop
l �s

o=1
s
o=1   (9) 

𝒔𝒔. 𝒕𝒕: ∑  vi Dip
l + ∑ pip�Dip

u -Dip
l �w

i=1
w
i=1 =1     (10) 

∑ uo Boj
ls

o=1 + ∑  uo ʹƛ oj
s
o=1  �Boj

u -Boj
l �- ∑ vi Dij

lw
i=1 - ∑ vi ƛij

w
i=1 �Dij

u-Dij
l �≤0            j=1,2,……,n   (11) 

uo, vi ≥  ε  ,    0≤ ƛij , ʹƛ oj≤1   (12) 

A linear model would be achieved after variable transformation (13):  
uo ʹƛ op=pʹop  ,          vi ƛip=p ip  ,         uo ʹƛ oj=pʹoj   ,         vi ƛij=pij (13) 

 
After variable transformation (13), Constraints (9)-(11) will be change into Constraints (14)-(16): 

Max ∑  uo Bop
l + ∑ pʹop�Bop

u -Bop
l �s

o=1
s
o=1     (14) 

s. t: ∑  vi Dip
l + ∑ pip�Dip

u -Dip
l �w

i=1
w
i=1 =1    (15) 

∑ uo Boj
ls

o=1 + ∑ 𝑝𝑝ʹoj
s
o=1  �Boj

u -Boj
l �- ∑ vi Dij

lw
i=1 - ∑ pij

w
i=1 �Dij

u-Dij
l �≤0   j=1,2,…,n     (16) 

 
Considering Constraint (12) and variable transformation (13), the following could be written: 

0≤ ƛʹoj≤1 ,  uo≥  ε  → 0≤ uo ʹƛ oj=pʹoj ≤uo    0≤ ƛij≤1 ,   vi≥ ε  → 0≤ vi ƛij=pij ≤vi               
After variable transformation (17), Constraint (12) would be eliminated from model (9) and Constraint (18) 
will be added to this model: 

 
pʹoj≤uo          pij≤vi         pʹoj,  pij≥ 0                

 
After solving model (9), p'op

* , pip 
* , uo

* , vi
* can be obtained. By putting these values in objective function 

(14), the optimum efficiency for DMUp is measured as follows: 
Zp

*= ∑ uo
*s

o=1 Bop
l + ∑ pʹop

*s
o=1 �Bop

u -Bop
l �    (19) 

 
Therefore, by solving model (14), the first step in interval full-ranking model would be taken. Also, by 
combining Eq. (5) and (19), Eq. (20) is created to measure optimum efficiency of units: 

Zp
*=

∑ uo
*ps

o=1 Bop
l + ∑ pʹop

*s
o=1 �Bop

u -Bop
l �

∑  vi
*pDip

l + ∑ pip
* (Dip

u -Dip
l )w

i=1
w
i=1

          
       
(20) 

After solving model (14) for all DMUs, Eq. (6) and (20) led to a ranking criterion for DMUn which is 
measured by Eq. (21): 

θDMUn=
∑ uo

*1s
o=1 Bon

l + ∑ pʹo1
*s

o=1 �Bon
u -Bon

l �
∑  vi

*1Din
l + ∑ pi1

* �Din
u -Din

l �w
i=1

w
i=1

 +…+
∑ uo

*ns
o=1 Bon

l + ∑ pʹon
*s

o=1 �Bon
u -Bon

l �
∑  vi

*nDin
l + ∑ pin

* (Din
u -Din

l )w
i=1

w
i=1

 (21) 

Similar to full-ranking model in crisp case, the unit with the highest index would rank first.  
 
 
 
 
 

(18) 

(17) 
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2-2- Introducing maximal covering with backup model (MCBM) 
    One of the most popular facility location models is covering problem. Although covering models are not 
new, they have always been very attractive in terms of research, owing to their applicability in real-world 
life. Sometimes, covering models include emergency services like responding to serious trauma victims. In 
this case, responding to and covering demand nodes as soon as possible are highly important. To that end, 
Erdemir et al. (2010) proposed a model for locating aero-medical ambulance service, ground ambulance 
service, and transfer points simultaneously which responded to serious trauma victims.  
   In this model, coverage is defined as the combination of both response time and total service time and 
three types of it were considered: (i) Ground emergency medical service coverage, (ii) Air emergency 
medical service coverage, and (iii) Joint coverage of ground and air emergency medical service through 
transfer point, as a new conception in covering models. 
These three types, led to three different coverage definitions, respectively. A trauma incident location is 
covered if and only if: 

• Ground covered: if at least one ground ambulance is located within a pre-specified travel time to 
the incident location and it can take the trauma victim to the closest trauma center (TC) within a pre-
specified time t by ground, or 
• Air covered: at least one air ambulance is located within a pre-specified travel time to the incident 
location and it can take the patient to the closest TC within a pre-specified time t by air if the air 
ambulance is able to land onto the incident location, or 
• Joint ground-air covered: if at least one ground ambulance-transfer point-air ambulance 
combination is located within a pre-specified travel time to the incident location, in such a way that 
the servers can take the patient to the closest TC within a pre-specified time t. This coverage option 
applies when the air ambulance cannot land at the crash scene. The ground ambulance takes the patient 
to a transfer point where it is met by an air ambulance. The patient is transferred and the air ambulance 
takes the patient to the TC (Erdemir et al., 2010).  

   Many factors influence the type of transportation that is more advantageous for the seriously injured 
trauma victims, one of which can be providing less out-of hospital time (the time from the occurrence of 
accidents until reaching the hospital). For example, if the incident scene is close to a TC, then ground 
ambulances are preferred; if the scene is in a rural area far away from a TC, then air ambulances are 
preferred. Ground ambulances respond to many types of medical and less serious trauma incidents as well 
as a major percentage of trauma incidents. 
   However, if only one ground ambulance exists in an area, there is often reluctance to commit the only 
available vehicle to a lengthy transport out of its service area. Thus, backup coverage is needed in high 
crash density regions, which are covered by only a single ground ambulance or a single combination of 
ground and air ambulances. In practice, the most preferred (nearest) ground ambulance may be busy to 
respond to another emergency when its service is requested. In such cases, other available ground 
ambulances handle the calls. Backup coverage is a method for such achievement. 
   The proposed model addressed uncertainty in the spatial distribution of vehicle crash locations by 
providing coverage to a given set of both crash nodes and paths. Paths corresponded to the roads on which 
trauma crashes occurred, and crash nodes could be defined as frequent crash occurrence points on the paths. 
As opposed to crash nodes, a crash path might have segments in the coverage regions of different emergency 
medical services (EMS). 
   For small crash path lengths, there is greater likelihood for a single EMS server to cover the entire crash 
path. Motivated by this observation, each crash path is divided into small linear segments, which allowed 
for modeling both crash nodes and crash paths in a similar manner. According to this definition, crash 
locations are classified into two groups: locations in which air ambulances can land and locations where air 
ambulances cannot land. For the former group, only ground and only air coverage were considered. For the 
latter group, only ground or joint ground-air coverage was considered.  
   In MCBM, the objective is to find the optimum mix of ground and air ambulances, and transfer points 
are maximizing the weighted combination of the first coverage for all crash nodes and paths, and backup 
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coverage for the crash nodes and paths, which are exactly covered once by ground or joint ground-air 
ambulances. The numbers of each EMS server to be located were not given separately. The following 
notation is used for MCBM. 
 
• Index sets 
MA    Set of potential ground ambulance locations (index: a) 
MH    Set of potential air ambulance (helicopter) locations (index: h) 
MR    Set of potential transfer point locations (index: r) 
N      Set of all crash nodes (index: j) 
P      Set of all crash paths (index: k) 
 
• Decision Variables 

xa   �1, if  ground ambulance is located at a                                                                                    
0, otherwise                                                                                                                    

yh   �1, if  air ambulance is located at h                                                                                    
0, otherwise                                                                                                                      

zr    �1, if  a transfer point is located at r                                                                                    
0, otherwise                                                                                                                         

ucj  �
1, if node/path j is covered by at least one of the located air ambulances                                                                                              

0, if node/path j is covered by at least two ground ambulances or combination                                                                                             

vaja �1, if  node/path j is covered   by ground ambulance a                                                                               
0, otherwise                                                                                                                                       

fj      �
1, if  node/path j is covered at least once                                                                                                      

0, otherwise                                                                                                                                       

bpj   �1, if backup coverage is given to node/path j                                                                                               
0, otherwise                                                                                                                                       

lahr=xayhzr  �
1, if  a ground ambulance, air ambulance and a transfer point are located at                                      

 a, h and r respectively                                                                                                                           
0, otherwise                                                                                                                                       

 

gj=ucjbpj      �
1, if backup coverage is not needed for node/path j by locating at least one                                                                                                                 

 air ambulance that covers j                                                                                                                                                                                                 
0, otherwise                                                                                                                                                                                                                    

 

 
• Parameters 
cA   Cost of locating a ground ambulance 
cH   Cost of locating an air ambulance 
cR    Cost of locating a transfer point 
dpj   Weight attached to node/path j 
θ      Weight of first coverage (between 0 and 1) 
1-  θ   Weight given to backup coverage (between 0 and 1) 

 

Aaj(Aak)        �1, if potential ground ambulance location a covers node j (path k)                                      
0, otherwise                                                                                                                           

Ahj(Ahk)        �
1, if potential air ambulance location h covers node j (path k)                                           
and if air ambulance can land at node j (path k)                                                               
0, otherwise                                                                                                                         

 

Aahrj(Aahrk)  �
1,  if potential ground (a) and air (h) ambulances and transfer point                                      
location r covers node j (path k)                                                                                             
0, otherwise                                                                                                                             
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Considering above notation, the mathematical model of MCBM can be as follows: 

Max (θ ∑ dpjfj+(1-θ) ∑ dpjbpj)jϵN∪PjϵN∪P +ε ∑ ucjjϵN∪P   (22) 
s.t: ∑ Aajxaa∈MA + ∑ Ahjyhh∈MH + ∑ ∑ ∑ Aahrjlahr ≥ fj       ∀jϵ N∪P      r∈MRh∈MHa∈MA   (23) 
∑ Ahjyh h∈MH ≥ gj    (24) 
Aajxa+ ∑ ∑ Aahrjlahr ≥ vaja             r∈MRh∈MH    ∀jϵ N∪P , ∀aϵMA     (25) 
∑ vaja=2bpj-2gj               a∈MA                      ∀jϵ N∪P  (26) 
xa ≥ lahr                     ∀aϵMA          ,          ∀hϵMH     ,       ∀rϵMR    (27) 
yh ≥ lahr                     ∀aϵMA          ,          ∀hϵMH     ,       ∀rϵMR    (28) 
zr ≥ lahr                      ∀𝑎𝑎𝑎𝑎MA          ,           ∀ℎ𝜖𝜖MH     ,        ∀rϵMR    (29) 
xa+yh+zr-lahr ≤ 2         ∀aϵMA           ,         ∀hϵMH      ,       ∀rϵMR    (30) 
ucj ≥ gj      ,        bpj≥ gj           ,          ucj+bpj-gj ≤1                ∀jϵ N∪P (31) 
xaϵ{0,1}    ∀aϵMA     ,    yhϵ{0,1}       ∀hϵMH   ,   zrϵ{0,1}      ∀rϵMR    (32) 
lahrϵ{0,1}                       ∀aϵMA          ,         ∀hϵMH     ,        ∀rϵMR    (33) 
ucjϵ {0,1}                       ∀jϵ N∪P     (34) 
vajaϵ{0,1}                      ∀jϵ N∪P       ,          ∀aϵMA        (35) 
fj ϵ{0,1}     ,         bpj ϵ{0,1}     ,        gj ϵ{0,1}                ∀jϵ N∪P (36) 

 

 

  
   Objective function (22) maximizes the weighted combination of the first and backup coverage given to 
crash nodes and paths, which is given inside the parentheses. The ε term is added to the objective function 
to ensure that, if there is at least one air ambulance located to cover a given node/path j, then ucj should be 
1 to relax Constraint (24) which locates at least two ground ambulances covering node/path j. Constraint 
(23) defines the first coverage variable. A crash location is covered if and only if it is covered at least once 
through ground, air, or joint ground-air ambulances. 
   Constraint set (24)-(26) is backup coverage constraints; when there is at least one air ambulance that 
covers a given node/path j, then Constraint (24) applies through the introduction of the term in the objective 
function. When there is no air ambulance covering a given node/path j, then Constraints (25) and (26) apply 
to ensure that at least two different ambulances are located. Constraint set (27)-(30) is linearization 
constraint to ensure that lahr cannot be 1, when at least one of xa, yh or zr is 0.  
   In other words, when at least one of the EMS servers that should be in the combination is not located, 
then there is no such combination of ground and air ambulances used for service. Constraint set (30) ensures 
that, if all xa, yh and zr are 1, then lahr cannot be 0; i.e. if all the EMS servers that form the combination are 
located, then this combination should be available to cover the crash nodes and paths in its coverage area. 
In practice, θ is determined by the service providers as a discretionary input between 0 and 1. If both of the 
first and backup coverage are equally important, then θ should be set to 0.5. On the other hand, if providing 
the first coverage to as many crash locations as possible has higher priority than providing backup coverage 
to some of the crash nodes and paths, then θ should be set close to 1.  
   Additionally, input parameter dj-weight attached to node/path j, is also discretionary. If service providers 
prefer to maximize the number of nodes/paths covered by EMS servers, then dj should be 1 for all nodes 
and paths. However, in practice, there may be some locations, in which crashes occur more frequently than 
other crash nodes/paths. In this case, dj could be based on the number of density of crashes expected to 
occur at or near j. Constraints (31)-(36) are the linearization constraints and binary variable definitions. 

 
2-3- Presenting combinational MCBM and interval full-ranking model 
   As mentioned before, in addition to posing changes in the assumptions, multi-objective covering models 
could be applied to evaluate more factors simultaneously and based on target considerations. One of these 
objectives can be evaluating the efficiency of facilities. Generally, in a covering model, the main objective 
is to minimize the total cost of locating facilities or maximize covering percentage.  
   In the proposed model, maximizing efficiency is also taken into account and efficiency is entered as 
another objective into an interval environment to provide an attitude toward facilities in different potential 
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sites. Thus, locating facilities in each candidate site is assumed as a decision making unit in DEA. Based 
on these conceptions, a three-objective combinational model is proposed, which not only encompassed the 
advantages of both interval full-ranking and MCBM models, but also considered cost, coverage, and 
efficiency requirements simultaneously. Before defining mathematical formula, the related citation of 
interval full-ranking which should be combined by those of MCBM are presented as follows. 
 
• Index sets 
o   Set of all outputs of decision making units (candidate sites for air/ground ambulances) 
i   Set of all inputs of decision making units (candidate sites for air/ground ambulances) 
 
• Decision variables 
• uoa   Weight attached to oth output of DMUa (ground ambulance a) 
•  𝜇𝜇oh  Weight attached to oth output of DMUh (air ambulance h) 
• via    Weight attached to ith input of DMUa (ground ambulance a) 
• 𝛾𝛾ih   Weight attached to ith input of DMUh (air ambulance h) 
• φih,  qia, ωoh, koa   Non-negative coefficients equal to ƛ, ƛ′ in interval full-ranking 

 
• Parameters 
• Boa

l    The lower bound of output oth of DMUa (ground ambulance a) 
• Boa

u    The upper bound of output oth of DMUa (ground ambulance a) 
• 𝛽𝛽oh

l    The lower bound of output oth of DMUh (air ambulance h) 
• 𝛽𝛽oh

u    The upper bound of output oth of DMUh (air ambulance h) 
• Dia

l    The lower bound of input ith of DMUa (ground ambulance a) 
• Dia

u    The upper bound of input ith of DMUa (ground ambulance a) 
• 𝛼𝛼ih

l    The lower bound of input ith of DMUh (air ambulance h) 
• 𝛼𝛼ih

u   The upper bound of input ith of DMUh (air ambulance h) 

  
By combining citations for interval full-ranking and MCBM, the proposed combinational model is 
described as follows. 
 

Z1=Max ∑ ∑  uoa Boa
l +s

o=1a∈MA ∑ ∑ koa�Boa
u -Boa

l �s
o=1a∈MA + ∑ ∑  μoh βoh

l +s
o=1h∈MH ∑ ∑ ωoh�βoh

u -βoh
l �s

o=1h∈MH    (37)  

Z2=Max (θ ∑ dpjfj+(1-θ) ∑ dpjbpj)jϵN∪PjϵN∪P +ε ∑ ucjjϵN∪P     (38)  

Z3=Min�∑ cAxaa∈MA + ∑ cHyhh∈MH + ∑ cRzrr∈MR �- ∑ ucjεj∈N∪P     (39)  

s.t:  ∑ via Dia
l + ∑ q ia�Dia

u -Dia
l �=xa              ∀aϵMA                w

i=1
w
i=1    (40)  

∑ 𝛾𝛾ih 𝛼𝛼ih
l + ∑ 𝜑𝜑 ih�𝛼𝛼ih

u -𝛼𝛼ih
l �=yh                         ∀hϵMH               w

i=1
w
i=1    (41)  

∑ uoa Boa
ls

o=1 + ∑ koa
s
o=1  �Boa

u -Boa
l �- ∑ via Dia

lw
i=1 - ∑ qia

w
i=1 �Dia

u -Dia
l �≤0              ∀aϵMA      (42)  

∑ µoh βoh
ls

o=1 + ∑ ωoh
s
o=1  �βoh

u -βoh
l �- ∑ γih αih

lw
i=1 - ∑ φ ihw

i=1 �αih
u -αih

l �≤0           ∀hϵMH       (43)  
∑ Aajxaa∈MA + ∑ Ahjyhh∈MH + ∑ ∑ ∑ Aahrjlahr ≥ fj r∈MRh∈MHa∈MA          ∀jϵ N∪P    (44)  
∑ Ahjyh h∈MH ≥ gj                  ∀jϵ N∪P   (45)  

Aajxa+ ∑ ∑ Aahrjlahr ≥ vaja        r∈MRh∈MH       ∀jϵ N∪P,  ∀aϵMA   (46)  
∑ vaja=2bpj-2gj                      a∈MA                 ∀jϵ N∪P   (47)  

xa ≥ lahr            ∀aϵMA          ,         ∀hϵMH     ,       ∀rϵMR      (48)  
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yh ≥ lahr            ∀aϵMA          ,         ∀hϵMH     ,       ∀rϵMR     (49)  
zr ≥ lahr            ∀aϵMA          ,         ∀hϵMH     ,       ∀rϵMR     (50)  
xa+yh+zr-lahr ≤ 2              ∀aϵMA          ,       ∀hϵMH     ,       ∀rϵMR      (51)  
uoa,via ≥ εxa   (52)  
𝜇𝜇oh,𝛾𝛾ih ≥ εyh         (53)  
0 ≤ koa≤ uoa      ,   0 ≤ qia≤ via         ,      0 ≤ ωoh≤ µoh     ,    0 ≤ φih≤γih   (54)  
ucj ≥ gj              ,      bpj≥ gj          ,      ucj+bpj-gj ≤1              ∀jϵ N∪P  (55)  

xaϵ{0,1}      ∀aϵMA   ,    yhϵ{0,1}         ∀hϵMH   ,   zrϵ{0,1}     ∀rϵMR     (56)  
lahrϵ{0,1}                         ∀aϵMA          ,         ∀hϵMH     ,        ∀rϵMR     (57)  
ucjϵ{0,1}                          ∀jϵ N∪P   (58)  
vajaϵ{0,1}                         ∀jϵ N∪        ,  ∀aϵMA     (59)  
fj ϵ{0,1}     ,       bpj ϵ{0,1}     ,        gj ϵ{0,1}               ∀jϵ N∪P   (60)  

 
   Objective function (37) maximizes the weighted sum of outputs of decision making units (potential sites 
for locating air and ground ambulances). Objective function (38) is similar to objective function (22) in 
MCBM. Objective function (39) minimizes the total cost of locating services. The sum inside the 
parentheses is the total cost of locating ground ambulances, air ambulances, and transfer points. Sum of 
variables ucj (multiplied by a very small number ε) is subtracted from the total cost, which relaxes the 
assignment of two different ground ambulances to cover node/path j, if there is at least one air ambulance 
covering j. 
   Constraint (40) states that, if one ground ambulance is located at the candidate site a, the weighted sum 
of the inputs at this site should be 1. Constraint (41) states that, if one air ambulance is located at candidate 
site h, the weighted sum of inputs at this site should be 1. Constraint (42) assures that the weighted ratio of 
outputs to inputs for each candidate site for locating ground ambulances cannot be more than 1. Constraint 
(43) ensures that the weighted ratio of outputs to inputs for each candidate site in terms of locating air 
ambulances cannot be more than 1. Constraint (44) is similar to Constraint (23) in MCBM.  
Constraint set (45)-(47) is similar to Constraint set (24)-(26) and Constraint set (48)-(51) is similar to 
Constraint set (27)-(30) in MCBM. Constraints (52) and (53) assure that input and output weights for air 
and ground ambulances, which are located (or xa=1, yh=1), should be more than or equal to ε. If an 
ambulance is not located in a potential site, then there will be no obligation for the weights attached to 
inputs and outputs to be more than or equal to ε. Constraints (54)-(60) are the linearization constraints and 
binary variable definitions. 
   After solving the proposed combinational model and satisfying coverage requirements, common weights 
which are attached to the inputs and outputs of the candidate sites in order to locate air and ground 
ambulances could be obtained. Afterward, these obtained weights were placed in Equation (6) and thus 
full-ranking of these sites would become possible. 
 

3- Proposed Solution methods 
   Due to the fact that the proposed combinational model in this paper is a three-objective model, multi-
objective optimization techniques should be used for its solution. Multi-objective optimization can be 
applied in two ways: classic methods and evolutionary algorithms. Classic methods usually perform the 
process of optimization by prioritizing objectives, optimizing one objective, and considering other 
objectives as constraints (Tsou, 2009). 
   In this paper, LP-metric was applied as a classic method for multi-objective optimization. In this method, 
deviation of the objectives from their optimum value is minimized. Based on this conception, for a model 
with n objectives, the optimum value of each function should be measured regardless of n-1 remaining 
objectives and considering all the constraints. The best state happens when all the objectives approach to 
their optimum values (Chou et al., 2008). Mathematically, when P→∞, the method is described as Eq. (61): 
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Min: y                                                                                                                                             

s.t:          wj(
Zj

*-Zj

Zj
* )≤ y                                j=1,2,…,k   

gj(x1,x2,…,xn) >
=
<

bi                                   i=1,2,…,m                                     

xs≥0                                                           s=1,2,…..,n  
 
    It should be noted that model (1) is defined for objectives in a maximum form; therefore, when dealing 
with minimum objectives, by multiplying by a minus, they should be changed to maximum. Also, wj is a 
representative of importance degree (weight) of objective j which is assumed equal to 1 in this paper. Based 
on this conception, different steps of multi-objective optimization were as follows for the proposed 
combinational model: 
First step: First of all, for solving combinational model based on LP-metric, all objectives should be turned 
to maximum. To do that, objective function Z3 should be multiplied by a minus:  
Z3=Max�- ∑ cAxaa∈MA - ∑ cHyhh∈MH - ∑ cRzrr∈MR �+ ∑ ucjεj∈N∪P                             
 
Second step: In this step, ideal points should be measured for each objective function separately. Thus, the 
proposed combinational model should be solved once for Z1 and all constraints, the second time for Z2 and 
all constraints, and the third time, for Z3 and all constraints using Lingo. Afterward, the ideal points for Z1, 
Z2 and Z3 will be equal to six, nine, and -1000, respectively. 
Third step: In this step, the obtained values are placed in model (61) which will be resulted in Eq. (62) and 
then it is solved by considering all the constraints of the proposed combinational model. 

Min: y (62) 
s.t: 6-Z1

6
≤ y      9-Z2

9
≤ y ,     -1000-Z3

-1000
≤y   

 
    Although classic methods are considered useful tools for multi-objective optimization, they always 
depend on an initial solution for converging to an optimum solution. In addition, these methods are just 
applicable in problems with discrete solution area. To overcome these problems, evolutionary algorithms 
could be utilized. In this paper, genetic algorithm (GA) was used in order to compare the solutions obtained 
by LP-metric. Also, for solving three-objective model, non-dominated sorting genetic algorithm (NSGA-
II) was used. 
   Due to the complexity of the proposed combinational model, multidisciplinary chromosomes in GA and 
NSGA-II were used. In addition, crossover operator was defined as single-point and mutation operator was 
defined as displacement. Also, by applying a heuristic method in both algorithms, generated problems were 
always feasible and all the solutions would be placed in the feasible area of research space. Accordingly, 
there would be no need for using common techniques for eliminating, changing non-feasible solutions to 
feasible ones, or decreasing the existence probability of non-feasible solutions. In this paper, both 
algorithms stopped when achieving the maximum iteration or pre-determined number of generations. 
 
3-1- Parameter tuning 
   Performance of meta-heuristic algorithms severely depends on the value of input parameters; therefore, 
if these parameters are not set properly, they will lead to inefficient algorithms. That is why in this paper, 
response surface methodology (RSM) was used for parameter tuning in both GA and NSGA-II. First of all, 
in designing the experiments, the parameters affecting algorithm performance were recognized and then, 
based on the best regression equation at different levels of parameters, suitable values for parameter tuning 
were presented. Table 2 and 3 represent parameter levels and tuned parameters in GA and NSGA-II, 
respectively. 
 
 
   

(61)                                                       
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Table 2. Parameter levels and tuned parameters in GA for the proposed combinational model 

Tuned parameters Levels Allocate
d 

intervals 
Factors Real 

values 
Coded 
values 

Level3 
1 

Level2 
0 

Level1 
-1 

182 0.6239726 200 150 100 ]100, 200[ Population size (A) 

182 0.7613460 200 150 100 ]100, 200[ 
Number of  
generations (B)  

0.8425 -0.4332096 0.95 0.875 0.8 [0.8, 0.95] Crossover rate (C) 

0.564 -0.9144883 0.2 0.125 0.05 [0.05, 0.2] Mutation rate (D) 

0.1659 -0. 6705696 0.5 0.3 0.1 [0.1, 0.5] Elitism rate (E) 

69 0.9762773 70 50 30 [30, 70] Break condition  (F) 

 

   In this paper, each affective parameter is considered to have two levels: -1 as a representative of lower 

level and +1 as a representative of upper level. For coding middle levels, Eq. (63) would be used, in which 

l and h show the lower and upper levels of parameter, respectively. xi and ri  are coded value and real value 

of parameter. 

xi=
ri-(

h+l
2 )

(h-l
2 )

  
(63) 

 
Table 3. Parameter levels and tuned parameters in NSGA-II for the proposed combinational model 

Tuned parameters levels Allocate
d 

intervals 
Factors Real 

values 
Coded 
values 

Level3 
1 

Level2 
0 

Level1 
-1 

200 0.333333 250 175 100 [100, 250] Population size (A) 

50 0.666666 100 70 40 [40, 100] 
Number of  
generations (B) 

0.95 0.500000 1 0.9 0.8 [0.8, 1] Crossover rate (C) 

0.05 0.578947 0.2 0.105 0.01 [0.01, 0.2] Mutation rate (D) 

0.1 0.632653 0.5 0.255 0.01 [0.01, 0.5] Elitism rate (E) 

 
4- Results of designing numerical examples  
   Lack of examples in the proposed combinational model area at covering and interval full-ranking 
literature motivated the generation of 30 random examples. The first step in generating these examples is 
changing the values of indices. The proposed combinational model encompassed six indices as the number 
of potential sites for locating ground ambulances (a), number of potential sites for locating air ambulances 
(h), number of potential sites for locating transfer points (r), number of crash nodes and paths (j), number 
of inputs related to potential sites for locating ambulances –DMUs (i), and number of outputs related to 
potential sites for locating ambulances–DMUs (o). 
   It is obvious that, by changing the values of indices, dimensions of the related parameters would change. 
In this paper, parameters were assumed to have uniform distributions which were generated randomly. For 
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instance, the parameters related to cost were defined as: c(a)~U[100,500], c(h)~U[1000,5000] and 
c(r)~U[500,700]. Also, each element of matrix parameters of the proposed model was defined as: 
Bl(o,a) ,βl(o,h), Dl(i,a), αl(i,h)~U[0,0/5]. Bu(o,a), βu(o,h), Du(i,a),αu(i,h)~U[0/5,1]. Matrices A(a,j), A(h,j) 
and A(a,j,h,r) included 0 and 1 elements. 
   It should be noted that the proposed meta-heuristics were coded using MATLAB software, version 
7.11.00584 on a notebook with 4 GB memory and Core i5 processor. Also, Lingo 8.0 was used in order to 
evaluate the model validity and quality of the generated solutions by GA algorithm. However, due to the 
complexity of the proposed problems, Lingo software can only be run in small problem instances. Thus, in 
this state, objective functions were merged using LP-metric. Table 4 represents the results of applying GA 
algorithm and Lingo software in the designed examples. 
 

Table 4. Results of applying GA algorithm and Lingo software in the designed examples 
        

Lingo GA Example 
number objective function Time (sec) objective function 

0 10.1185 0 1 
-0.333333 11.6986 -0.33333 2 
-0.666667 22.6399 -0.66667 3 

-1 24.9075 -0.66667 4 
-1 23.2973 -0.33333 5 

-1.6666667 21.1036 -1.66667 6 
-2.00000 60.4559 -2 7 

-2.3333333 36.003 -2.3333 8 
-2.6666667 66.104 -2.6666 9 
-2.99999 60.1583 -2.9999 10 
-3.33333 79.4305 -3.3333 11 
-3.66666 88.5585 -3.6666 12 
-3.99999 90.8751 -3.9999 13 
-4.33333 108.1040 -4.3333 14 
-4.66667 144.05 -4.6667 15 
-5.00000 453.4223 -5 16 

- 252.376 -5.3333 17 
- 166.4461 -5.6667 18 
- 258.1332 -6 19 
- 207.8719 -6.2225 20 
- 263.1108 -6.6667 21 
- 524.9481 -7 22 
- 491.3273 -7.3333 23 
- 355.804 -7.4448 24 
- 688.2623 -7.9999 25 
- 961.0563 -8.3333 26 
- 1092.4496 -8.6667 27 
- 857.9952 -9 28 
- 1312.700 -9.3333 29 
- 2001.8294 -9.6667 30 

   Data placed in Table 4 show that GA algorithm was accurately performed. Now, using MID, RAS, SM, 
NPS, and time criterion, the performance of NSGA-II algorithm was evaluated in 30 designed examples 
for the proposed combinational model and results are shown in Table 5.  
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Table 5. Results of applying NSGA-II algorithm and Lingo software in the designed examples 
Criteria 

Example number Time(sec) NPS SM RAS MID 
193.7863 9 0.8055 1.2330 0.9056 1 
182.3563 10 0.6669 1.2273 0.8771 2 
178.0733 8 0.9221 1.2990 0.9183 3 
175.0374 12 0.8177 1.4416 0.9678 4 
176.4771 13 1.0943 1.2327 0.9033 5 
180.3894 11 0.6127 1.1968 0.8525 6 
189.0905 13 0.9800 1.1550 0.8544 7 
184.0510 15 0.7576 1.3813 0.9861 8 
185.5743 17 1.1173 1.2279 0.9063 9 
192.7370 23 1.1901 1.0759 0.8055 10 
193.8176 21 1.0743 1.1758 0.8546 11 
209.6464 16 0.8023 1.0777 0.8176 12 
214.9587 8 0.9319 1.1560 0.8913 13 
222.4065 13 0.9281 1.2675 0.9475 14 
228.7576 16 0.7120 1.2488 0.9346 15 
249.3386 16 1.0803 1.1948 0.9119 16 
282.1129 17 1.1305 1.1125 0.8693 17 
290.0197 19 1.0725 1.3216 0.9829 18 
333.4393 14 1.2805 1.0230 0.8280 19 
349.5156 25 1.1173 1.1018 0.8528 20 
391.2799 18 1.1120 1.0697 0.8607 21 
425.3056 22 1.2477 1.0658 0.8581 22 
463.6974 24 1.2972 0.9776 0.7848 23 
528.9926 15 1.4457 0.9255 0.7700 24 
542.5151 24 1.1221 1.1488 0.9022 25 
601.2778 25 1.3043 1.0307 0.8316 26 
662.2127 17 1.3331 1.2101 0.9218 27 
755.3965 22 1.2548 1.1185 0.8783 28 
818.0606 15 1.1406 0.9679 0.8025 29 
786.8193 27 1.2823 1.1980 0.9253 30 

Figures 1 and 2 demonstrate the performance of GA and NSGA-II in example 24 in order to better 
description of table results mentioned above.  

  

 
 
 
 
 

 

 

  

Figure2. Performance of NSGA_II in example 2           
 

 
Figure1. Performance of NSGA_II in example 24 
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5- Conclusion and suggestions for future work 
    Despite the past studies in covering literature, the absence of a comprehensive model to meet all practical 
requirements is absolutely undeniable. So it is necessary to define a new model through a specified 
framework of assumptions. In general, majority of covering models have been defined to cover a large 
volume of customer demands. In this paper, we have focused on emergency services in which responding 
to customers should be accelerated. Many customers (demand nodes) can’t tolerate waiting. This feature 
will reach to its summit in the scope of emergency services in which a slight delay can lead to serious 
problems. There is no time to loaf in such situations; accordingly, unavailability of servers should be 
assumed and solved. Even if it can be proved that the proposed covering model is comprehensively 
formulated, invalid and imprecise data will threaten its credibility. To overcome this problem, we addressed 
uncertainty in data by defining input and output values as intervals. Moreover, facilities should be located 
efficiently to stop disturbing the performance of other elements, to tackle this problem; we addressed 
efficiency by applying interval full-ranking model. All features mentioned above bring about a three-
objective model which addresses availability, certainty and efficiency at the same time.  
   Different covering models include variant assumptions. That is why focusing on these assumptions can 
be a practical way for figuring out variant areas of future research. For instance, covering models can be 
called with different facilities, different covering radius, fuzzy and probabilistic parameters, and multi-
objective covering models considering non-cost objective functions. In addition to assumptions, focusing 
on solving methods can be considered as another practical area for future research. For instance, replacing 
GA with other solving algorithms like simulated annealing (SA) and Tabu search, the possibility of using 
hybrid systems for solving model, using stochastic programming solution techniques, and extending better 
heuristic methods can be effective. 
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