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Abstract 

Hubs are facilities to collect arrange and distribute commodities in telecommunication 
networks, cargo delivery systems, etc. In this paper, an uncapacitated phub center 
problem in case of single allocation and also multiple allocations is introduced in which 
travel times or transportation costs are considered as fuzzy parameters. Then, by 
proposing new methods, the presented problem is converted to deterministic mixed 
integer programming (MIP) problems where these methods are obtained through the 
implementation of the possibility theory and fuzzy chance-constrained programming. 
Both possibility and necessity measures are considered separately in the proposed new 
methods. Finally, the proposed methods are applied on the popular CAB data set. The 
computational results of our study show that these methods can be implemented for the 
phub center problem with uncertain frameworks. 
Keywords:  phub center, fuzzy chance-constrained programming, uncertainty, hub loation 
 

1-Introduction 
   Hub location is one of the most attractive fields in facility location problems. Hub location problems 
(HLPs) are classical optimization problems that have many practical applications in telecommunication 
networks, cargo delivery systems, railroad transports systems, airlines, postal networks and other delivery 
networks that have multiple send and receive nodes. In hub location problem, commodities (such as 
cargo, passengers, mails, express packages etc.) are consolidated and distributed by hub nodes to the 
none-hub nodes (whom are also called spokes).The goal of the HLPs is to optimize the objective function 
by locating hub nodes and allocating spokes to the hubs. Minimization of transportation costs in hub 
location problems is achieved by the economy of scale, which happens due to existence of discount factor 
(�) in inter-hub connections. Hub location problems are classified by their objective function (Mini-max 
or Mini-sum), solution space (continuous, discrete or network), determination of the number of hubs to 
locate, capacity of hubs or links, fixed or variable cost for establishing hubs and allocating spokes and 
other classification factors. In most of the classical hub location problems, demand of the nodes or in 
other words, the flow between any origin-destination (O-D) nodes and also transportation cost (or travel 
time) is considered as deterministic parameters.  
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However, because of many environmental aspects such as traffic intensity or climate changes, it is 
required to assume these deterministic parameters as uncertain parameters. One of the suggested 
approaches to confront uncertain parameters in linear models is fuzzy linear programming. In this 
research, we study and develop one of the popular hub location problems under fuzzy framework by 
fuzzy parameters.  We considered the uncapacitated phub center problem as the primary model for 
proposing fuzzy counterpart of this problem. The major properties of this problem are: 

• The problem is uncapacitated and there is no limitation in capacity of hubs. 
• The objective function is mini-max which means that the maximum flow from any pair of origin - 

destination will be minimized. 
• The number of hubs to be located is exogenous and must be equal to �. 
• No cost has been defined for locating hub nodes. 
• Both single and multiple allocations are considered: in single allocation each spoke must be 

allocated only to one hub but in multiple allocations, none of hub nodes' could be allocated to 
more than one hub. 

   This paper proposes the phub center problem with uncertain travel time (or transportation cost) in which 
the transportation times are considered as fuzzy variables. 
  The reminder of this paper is organized as follows: Section 2 reviews some related researches to this 
work. In section 3, the fuzzy uncapacitated phub center mathematical model for both single and multiple 
allocations are proposed (in possibility and necessity condition),. In section 4 numerical experiments on 
the problems are presented and finally conclusion and future research are presented in section 5. 
 
2- Literature Review 
   In the last two decades, hub location problems have gained more attention from researchers and 
practitioners; however, hub location under uncertain environment is newly discussed and it is state-of-the-
art field. In this section at first, we review the researches about classical and original hub location 
problems briefly. Then some related works to this paper, specifically those considering uncertainty are 
reviewed in two sub sections containing mathematical modeling and solution methods respectively.  
O’Kelly (1987) introduced the first mathematical model in HLP. He presented a quadratic integer 
programming whose objective is to minimize the total delivery cost between nodes and locating a pre-
specified number of hubs. The later hub location literatures focused on different kinds of problems such 
as criterion (objective function), number of hubs to locate (fixed or variable), hub capacity (capacitated or 
uncapacitated), and kinds of allocation (single or multiple) and so on. The interested reader could review 
the papers by Campbell and O’Kelly (2012) and Farahani et al(2013) to read full survey of hub location 
problems and its sub categories. 
   Campbell (1994) proposed two new hub location problems, which are hub covering and phub center 
problems. In phub center problem a given number of hubs (p) is located while the maximum flow or 
travel time is minimized. The specified flow in these problems is considered between all origin-
destination nodes. The none-hub nodes in some literatures are called spokes, so the networks containing 
hubs and none-hubs are called hub and spoke networks. Kara and Tansel (2000) and Ernst et al. (2009) 
represented different formulations for the phub center problem. In the phub center problem the main issue 
is time, which is mostly considered in cargo delivering systems. 
 
2-1- Hub location problems with uncertainty 
  In real world problems, there might be vagueness or ambiguity in the parameters of the model. For 
example, the flow of commodities from one city to another could be uncertain for the decision makers. 
This is why optimization under uncertainty is discussed. In the literature of HLPs, there is less attention to 
the uncertainty of problem and most of the models have been formulated in deterministic environment.        
Mahdi and Mirzaei (2008) introduced a fuzzy capacitated hub center location problem that locates hub 
facilities based on qualitative variables. They proposed a hybrid formulation that performs both location 
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and allocation phases with qualitative and quantitative criteria simultaneously. Makui et al. (2002) 
presented a robust optimization model for multi-objective operation of capacitated phub location 
problems under uncertainty. They used scenario based robust approach to encounter with uncertainties 
(Mulvey and Ruszczynsk, 1995). Alumur et al. (2012) proposed a comprehensive model considering all 
sources of uncertainty and used direct approach for solution. Ghodratnama et al. (2013) proposed a novel 
fuzzy bi-objective model for a hub covering location–allocation problem, whom its first objective 
minimizes total cost and its second objective is to minimize the summation of shipping times ‘of 
commodities by transporters from the origin node to the destination node via hubs. A fuzzy goal 
programming approach is proposed to obtain solution. A sustainable hub location under mixed 
uncertainty is formulated by Mohammadi et al. (2014). Niakan et al. (2014) studied on a multi-objective 
hub location under uncertainty with an inexact rough-interval fuzzy approach. Recently, Yang et al. 
(2014) developed fuzzy phub center problem with generalized value-at-risk. Also, Qin and Gao(2014) 
discussed phub location with uncertain flows.Mohammadi and Tavakkoli-Moghaddam (2015) designed a 
novel bi-objective reliable p-hub center problem. They considered arrival time of shipments as a fuzzy 
M/M/1 queuing system. As well as fuzzy programming, some researchers interested in robust 
optimization for confronting uncertainties and proposing robust hub location formulations (Boukani et al. 
2014; Shahabi and Unnikrishnan 2014; Ghaffari-Nasab et al. 2015). 
 
2-2- Solution approaches to HLPs under uncertainty 
   One of the most efficient metaheuristic algorithmswhich is used by many researchers, is genetic 
algorithm (Kratica and Stanimirović, 2006).The other metaheuristic method is particle swarm 
optimization (PSO) algorithm. For example, Kai Yang et al. (2012) proposed a hybrid particle swarm 
optimization algorithm for fuzzy phub center. They combined PSO with genetic operators and local 
search (LS) to improve solutions of the problem. Other papers that have been focused on solution 
approaches for HLPs under uncertainty are as follows: Bashiri et al. (2013) presented a genetic based 
heuristic to solve the capacitated p-hub center problem. They tested their solution on an example obtained 
by the fuzzy VIKOR method and the AP (Australian Post) data set to explain the effectiveness of the 
heuristic. Kai Yang et al. (2012) proposed a new fuzzy phub center with value-at-risk criterion in the 
objective and presented a genetic algorithm incorporating with local search for solution approach. After 
that Zade et al. (2014) presented a multi-objective hub maximal covering. They assumed uncertain 
shipments in the context of the problem and a modified NSGA-II metaheuristic was proposed for the 
solution of the multi-objective problem. Furthermore, Ghaderi and Rahmaniani (2015) presented 
metaheuristic approaches for robust hub location problem. 
   In most of the articles related to phub center problems under uncertainty, the uncertainty approach that 
has been applied is fuzzy programming and robust optimization. Especially, those who observed fuzzy 
programming, proposed diverse solution methods for it or presented mathematical modeling with fuzzy 
parameters, and confronted them by different techniques. According to our literature review, we could not 
find any papers that encounter uncertain parameters of phub center problem by offering possibility and 
necessity measures. The most important aim of this paper is to introduce new approaches for the 
uncapacitated phub center problem in both single and multiple allocation states under fuzzy framework 
based on the possibility theory (Dubois & Prade, 2001). Therefore, the theorems are obtained to convert 
the original problem to the deterministic mixed integer programming (MIP) problem for optimistic and 
pessimistic decision makers separately. 

3- Mathematical models 
   Let G= (N, E) be an undirected complete graph with node set N= {1, 2, … , n} and arc set E. Each arc 
(i,j) has a cost (time, flow, distance, etc.) ��� where ��� = ��� and satisfies triangular inequity (��� ≤ ��� +��� 	∀	�, �,�). Each origin-destination pair i-j should be connected through hub nodes and it is assumed 
that there is a pre-defined reduction factor (� such that0 ≤ � ≤ 1) between hub nodes so the cost between 
pairs is reduced, compared to direct connection. Also a given integer number of � hubs should be located. 
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We will discuss fuzzy uncapacitated phub center problem (FUpHCP) in single (FUSApHCP) and 
multiple (FUMApHCP) states. Mathematical model of phub center originally is proposed by Campel 
(1994).  Then, Ernst et al. (2009) presented linear formulation for phub center. In this research, linear 
model of Ernst et al. (2009) is used for fuzzy programming. 

3-1 The FUSApHCP 
   The original objective function of phub center model is the following equation: minmax�,�,�,�	∈�{�����������}, 
Which has a quadratic objective function and ����� represents the cost (time, money, etc.) between node � 
and node � that flows through hub � and hub �. In other words, the route from node � to node � is the 
following scheme: 

�� �! − ℎ$% 			→ 			 �ℎ$% 			→ 			 �ℎ$% 			→ 			 �� �! − ℎ$% 
To include the discount factor in the model, the cost coefficient is transformed as����� = ��� ++����+��� where α is the discount factor of cost between hub � and �. ��� is a binary variable such 
that ��� = 1 if and only if node � is allocated to node � .The objective function of the linearized 
USApHCP model and its constraints, proposed by Ernst et al (2009), are as follows: 

Indices are: 

• i , j : none-hub node index 
• k , m : hub node index 

min ( 

). +.					( ≥ -.��� + ����/��� + ������					�, �, � = 1,… , �																																																																						.1/�
�12

 

-��� = 1�
�12

� = 1,… , �																																																																																																																												.2/ 
��� ≤ ����, � = 1,… , �																																																																																																																											.3/ 
-����
�12

= �																																																																																																																																																.4/ 
	���6{0,1}																					�, � = 1,… , �																																																																																																						.5/ 

 

   In the above model, objective function minimizes (, where ( is the maximum flow or cost between all 
origin-destination nodes, which is obtained in the first constraint. The second constraint assures that each 
none-hub node � is allocated to only one hub node �. The third constraint means that node � must be a 
hub, if a node like� is allocated to it, and the last constraint shows that precisely � hubs should be located. 
In our hub location problem, there are two parameters that could be assumed as uncertain parameters: 
flow (or monetary cost or travel time) between any O-D pair and the cost of establishing hubs in any 
node. As noted in the model assumptions, there is no establishing cost for hubs, so the only uncertain 
parameter is the flow between nodes. For proposing our fuzzy models we use the method which is 
discussed in details by Nematian (2015).  
A LR fuzzy number 89 = .8:, 8;, 8</=> is represented by the following membership function: 
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89.?/ =
@AB
ACD E8: − ?8; F8: − 8; ≤ ? ≤ 8:	
G E? − 8:

8< F8: < ? ≤ 8: + 8<,I 																																																																																																							.6/ 
Where8: defines the center, 8< defines the right spread and 8; is the left spread. D, G: L0,1M → L0,1M with G.0/ = D.0/ = 1 and D.1/ = G.1/ = 0 . R and L are decreasing continuous functions.  

By the following problem, the USApHCP is developed to a model with fuzzy variables (FUSApHCP): 

Problem1:  

N��	( 

	). +.							( ≥ O-P�Q�� + ��Q��R����
�12

+ �Q�����S �, �,� = 1,… , �																																																																	.7/ 
Constraint (2) – (5),  

where �Q�� = .���: , U�� , V��/=> , �Q�� = .���: , U��, V��/=>  and �Q�� = .���: , U��, V��/=>. In the above 

model, each variable with "tilde sign (~)" over it , shows a fuzzy variable or uncertain parameter. 

In order to solve the FUSApHLP, the fuzzy model should be transformed into a deterministic model by 
using possibility and necessity measures in each constraint with fuzzy variables and applying fuzzy 
chance-constrained programming (FCCP). Now, problem 1 is converted into the following problem by 
applying the FCCP:  

Problem 2:   

N��	( 

	). +.							W ) XO-P�Q�� + ��Q��R����
�12

+ �Q�����S ≤ (Y ≥ Z�, �, � = 1,… , �																																									.8/ 
Constraint (2) – (5),  

where Z	is a predetermined possibility level and W )P\∑ P�Q�� + ��Q��R�����12 + �Q�����^ ≤ (R is defined 
as follwes:  

W )P(̃��� ≤ (R = )$�`a,`b c��� defghij.k2/, ef.kl/m |k2 ≤ klo,																																																																				.9/ 
where (̃��� = ∑ P�Q�� + ��Q��R�����12 + �Q����� 

 

Now, we obtain the following theorem to convert problem 2 to deterministic programming. 

Theorem 1: 

W )P(̃��� ≤ (R ≥ Z	 ⇔ 	∑ .���: + ����: /�����12 + ���: ��� − D∗.Z/\∑ .U�� + �U��/�����12 + U�����^ ≤ (		 
  (10) 



28 
 

 

Where D∗.Z/ is pseudo inverse function and is defined as D∗.s/ = sup	{+|D.+/ ≥ s}. Z indicates the level 
of possibility, for example if Z = 1 then the model output would be the same as non-fuzzy mode.  

So the complete possibility model is represented by the following problem: 

Problem 3: 

N��	( 
). +.						-.���: + ����: /����

�12
+ ���: ��� − D∗.Z/ O-.U�� + �U��/����

�12
+ U�����S ≤ (										�, �, � = 1, … , � 

Constraint (2) – (5).  

 

Furthermore, for pessimistic decision makers, we apply the necessity measures in the FCCP approach   
like the previous model as follows: 

Problem 4: 

N��	( 

	). +.							w!� XO-P�Q�� + ��Q��R����
�12

+ �Q�����S ≤ (Y ≥ Z�, �, � = 1,… , �																																									.12/ 
Constraint (2) – (5), 

where w!�P\∑ P�Q�� + ��Q��R�����12 + �Q�����^ ≤ (R is defined as 

w!�P(̃��� ≤ (R = inf`a,`b c�y? d1 − efghij.k2/, 1 − ef.kl/m |k2 ≤ klo																																																				 .13/ 
Like the possibility model, we obtain the following theorem to transform problem 4 to a deterministic 
problem. 

 

 

Theorem 2: 

w!�P(̃��� ≤ (R ≥ Z	 ⇔ 	-.���: + ����: /����
�12

+ ���: ��� − D∗.1 − Z/ O-.U�� + �U��/����
�12

+ U�����S ≤ ( 
 

 

 

 

  (11) 

     (14) 
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Problem 5: 

N��	( 
). +.						-.���: + ����: /����

�12
+ ���: ��� − D∗.1 − Z/ O-.U�� + �U��/����

�12
+ U�����S ≤ (									�, �, � = 1,… , � 

Constraint (2) – (5). 

 

3-2- FUMApHCP 
   In multiple allocations each none-hub node can be allocated to more than one hub node. The 
mathematical model for multiple allocation of pHub center proposed by Ernst et al. (2009) is as follows: N�� ( 

). +.					( ≥ - - k����P��� + ���� + ���R												�, � = 1,… , ��
�12

�
�12

 

- - k���� = 1�
�12

�
�12

�, � = 1,… , �																																																																																																																					.16/ 
-k�����
�12

≤ z��, �, � = 1,… , �																																																																																																																					.17/ 
- k�����
�12

≤ z��, �, � = 1,… , �																																																																																																																						.18/ 
-z��
�12

= �																																																																																																																																																										.19/ 
z� , k����6{0,1}																													�, �, �,� = 1,… , �																																																																																			.20/ 
The variable k���� represents the allocation of node � to hub � and node � to hub �, so the origin-
destination path is � − � − �− �. The variable z� indicates the index of the hubs that will be established. 
The process of developing UMApHCP to FUMApHCP is the same as previous section that mentioned 
above: 
 
Problem 6: N��	( 

). +.					( ≥ - - k����P�Q�� + ��Q�� + �Q��R�
�12

�
�12

	�, � = 1,… , �																																																																	.21/ 
Constraint (16) – (20). 

By applying FCCP approach with possibility measures for the above problem, we have: 

 

     (15) 
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Problem 7:  

N��	( 

). +.					W ).( ≥ - - k����P�Q�� + ��Q�� + �Q��R�
�12

/�
�12

≥ Z	�, � = 1,… , �																																															.22/ 
Constraint (16) – (20). 

Like previous section, we achieve the following proposition: 

Proposition 1: 

W )P(̃�� ≤ (R ≥ Z	 ⇔ 

- - k����P���: + ����: + ���: R�
�12

�
�12

− D∗.Z/ O- - k����PU�� + �U�� + U��R�
�12

�
�12

S ≤ (																	.23/ 
where (̃�� = ∑ ∑ k����P�Q�� + ��Q�� + �Q��R��12��12 . 

Then, the possibility model of FUMApHCP is represented as 

Problem 8: 

N��	( 

). +.					- -P���: + ����: + ���: Rk�����
�12

�
�12

− D∗.Z/- -PU�� + �U�� + U��Rk�����
�12

�
�12

≤ (																													.24/ 
													�, � = 1,… , � 

Constraint (16) – (20). 

Furthermore, based on the necessity measures, we have the following problem:  

Problem 9:   

N��	( 

). +.					w!�.( ≥ - - k����P�Q�� + ��Q�� + �Q��R�
�12

/�
�12

≥ Z	�, � = 1,… , �																																										.25/ 
Constraint (16) – (20). 

Proposition 2: 

w!�P(̃�� ≤ (R ≥ Z	 ⇔ 

- - k����P���: + ����: + ���: R�
�12

�
�12

− D∗.1 − Z/ O- - k����PU�� + �U�� + U��R�
�12

�
�12

S ≤ (							.26/ 
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Finally, the necessity model of FUMApHCP is represented as follows: 

Problem 10:  

N��	( 

). +.						- - k����P���: + ����: + ���: R�
�12

�
�12

− D∗.1 − Z/ O- - k����PU�� + �U�� + U��R�
�12

�
�12

S
≤ (												�, � = 1,… , � 

Constraint (16) – (20). 

All obtained deterministic problems are easily solved by one of the MIP solvers. 

4-Numerical Experiments 
    In this paper, we used popular CAB data set for numerical tests. The CAB data set was represented by 
O’Kelly (1987) for hub location problems. The CAB data set is based on Civil Aeronautics Board in 
1970, which is generated from the flow of airline passengers in 25 cities in United States. Numbers in 
CAB data set are symmetric and satisfies triangular inequity. We used GAMS v24.1.2 to solve fuzzy 
phub center problem. A PC with Core i5 processor and 8GB RAM was used for performing experiments. 
For solving our fuzzy models we need to use input data in form of (?2, ?l, ?{) where ?l is the crisp 
number, and ?2, ?{ are left and right values. The crisp and middle number (?l) is assumed to be the 
original number in CAB data set. Assume that | is the original number in data set, to generate right and 
left values the following relation is used: .1 ± ~/|, Where 0 ≤ ~ ≤ 1. The value of ~ depends on level of 
uncertainty and the decision maker can change it according to his opinion. We assumed ~ = 0.2 so the 
right and left values are obtained respectively by 1.2| and 0.8|.  

We divided numerical tests for solving these two problems (both single and multiple allocations for fuzzy 
phub center) into several sub problems. These sub problems are generated by using different values for 
model features. The features conclude the following cases: 

• Size of problem: different problem sizes are found by taking the top 10, 15, 20 and 25 nodes 
from CAB data set. 

• Discount factor: various varies of α = {0.2, 0.4, 0.6, 0.8} 
• Number of hubs to locate: different values of � = {2, 3, 4, 5} 
• Possibility or necessity 
• Pseudo inverse functions: the functions G∗.ℎ/ and D∗.Z/ in models represent probability and 

possibility levels, where G∗.ℎ/ = D∗.ℎ/ = 1 − ℎ. So different probability  
Levels are obtained by using ℎ, Z as 0.1 , 0.3 , 0.5 , 0.7 , 0.9 . 

Sub problems are shown as	?. k. (, where ? is the size of problem, k is the discount factor value and ( is 
the value of �. For example sub problem 25.2.3 represents 25 nodes with � = 0.2 and � = 3. 

Results for the fuzzy single allocation phub center model are shown in Table I and for the fuzzy multiple 
allocation phub center model the results are shown in Table II. According to the results of Table I and 
Table II, in the same problem with the lowest possibility level for possibility-based model and the highest 
possibility level for necessity-based model, the optimal solutions for both possibility and necessity-based 
models are same. 

(27) 



Fig.1 and Fig.2 represent the optimal solution for different problems in 
possibility cases of minimizing objective functions like phub center, with the increase of 
function increases too and in necessity cases the optimal value decreases.

 

Fig. 1.Problem: 10.2.2 of single allocation phub center for po

Fig. 2.Problem: 20.4.3 of Single allocation phub center for necessity

Any decision maker can consider other levels based on his/her circumstances or any other constraints. 
Therefore, the decision maker’s opinion can be classified as follows:

1. Best optimal solution: 
possibility or necessity. The decision maker chooses the best allocation of spokes and the optimal 
hubs to locate and there is no restriction for selecting the possi
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the optimal solution for different problems in the case
possibility cases of minimizing objective functions like phub center, with the increase of 
function increases too and in necessity cases the optimal value decreases. 

Problem: 10.2.2 of single allocation phub center for possibility

 

 

Problem: 20.4.3 of Single allocation phub center for necessity

 

Any decision maker can consider other levels based on his/her circumstances or any other constraints. 
Therefore, the decision maker’s opinion can be classified as follows: 

 this vision of the decision maker does not deal with any levels of 
The decision maker chooses the best allocation of spokes and the optimal 

hubs to locate and there is no restriction for selecting the possibility/necessity levels.

 

case thatℎ changes. For the 
possibility cases of minimizing objective functions like phub center, with the increase of ℎ the objective 

 

ssibility 

 

Problem: 20.4.3 of Single allocation phub center for necessity 

Any decision maker can consider other levels based on his/her circumstances or any other constraints. 

not deal with any levels of 
The decision maker chooses the best allocation of spokes and the optimal 

bility/necessity levels. 
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2. The lowest or highest level: in this point of view, the decision maker chooses only lowest or 
highest levels of possibility/necessity for locating hubs and allocating none-hub nodes. We 
considered ℎ = 0.1 as the lowest level and ℎ = 0.9 as the highest level. 
 

3. The middle levels: in this perspective, the decision maker wants to have middle levels. This view 
happens when the DM does not have absolute information about the levels and decides to have 
middle levels.  

In this section, we treated the possibility/necessity levels of {0.1, 0.3, 0.5, 0.7, 0.9}onlyas sample levels to 
obtain optimal solutions, so there is no limitation for the decision maker to choose only them to find the 
optimal solutions.  One can choose any other levels between.0,1M to find his/her optimal solutions. 

The map of the geographical locations of the cities in the CAB data set and the optimal solution for some 
of the problems is shown on Fig.3 and Fig.4. The optimal solution among all possibility or necessity level 
is chosen for the problem which is illustrated. Both figures considered only single allocation of the 
problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 

Fig. 3.Optimal solution of CAB data set with 25 nodes and two numbers of hubs to located with � = 0.2 

 

 

 

 

Fig. 4.Optimal solution of CAB data set with 25 nodes and three numbers of hubs to located with � = 0.8 
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Table I. Numerical Results of FUSApHCP for CAB dataset 

prob Possibility Necessity 
 h=0.1 h=0.3 h=0.5 h=0.7 h=0.9 h=0.1 h=0.3 h=0.5 h=0.7 h=0.9 

10.2.2 399.163  627.256 855.349 1083.442 1311.535 1311.535 1083.442 855.349 627.256 399.163 
10.2.3 313.470 492.595 671.721 850.846 1029.972 1029.972 850.846 671.721 492.595 313.47 
10.2.4 235.017 369.313 503.608 637.904 772.199 772.199 637.904 503.608 369.313 235.017 
10.2.5 206.148 323.947 441.746 559.545 677.343 677.343 559.545 441.746 323.947 206.148 
10.4.2 470.026 738.613 1007.199 1275.786 1544.372 1544.372 1275.786 1007.199 738.613 470.026 
10.4.3 331.818 521.429 711.039 900.649 1090.260 1090.26 900.649 711.039 521.429 331.818 
10.4.4 271.096 426.008 580.919 735.831 890.743 890.743 735.831 580.919 426.008 271.096 
10.4.5 241.152 378.953 516.754 654.556 792.357 792.357 654.556 516.754 378.953 241.152 
10.6.2 492.556 774.017 1055.478 1336.938 1618.399 1618.399 1336.938 1055.478 774.017 492.556 
10.6.3 401.071 630.254 859.437 1088.620 1317.804 1317.804 1088.62 859.437 630.254 401.071 
10.6.4 320.932 504.322 687.711 871.101 1054.491 1054.491 871.101 687.711 504.322 320.932 
10.6.5 301.653 474.026 646.399 818.773 991.146 991.146 818.773 646.399 474.026 301.653 
10.8.2 492.556 774.017 1055.478 1336.938 1618.399 1618.399 1336.938 1055.478 774.017 492.556 
10.8.3 466.158 732.533 998.909 1265.285 1531.661 1531.661 1265.285 998.909 732.533 466.158 
10.8.4 410.636 645.285 879.935 1114.584 1349.233 1349.233 1114.584 879.935 645.285 410.636 
10.8.5 395.313 621.206 847.100 1072.993 1298.886 1298.886 1072.993 847.1 621.206 395.313 
15.2.2 568.340    893.105   1217.871   1542.637   1867.402   1867.402 1542.637 1217.871 893.105 568.34 
15.2.3 492.841   774.464   1056.087   1337.711   1619.334 1619.334 1337.711 1056.087 774.464 492.841 
15.2.4 381.197   599.024   816.851   1034.678   1252.505 1252.505 1034.678 816.851 599.024 381.197 
15.2.5 321.887   505.822   689.758   873.693   1057.629 1057.629 873.693 689.758 505.822 321.887 
15.4.2 605.009   950.729   1296.449   1642.168   1987.888 1987.888 1642.168 1296.449 950.729 605.009 
15.4.3 492.841   774.464   1056.087   1337.711   1619.334 1619.334 1337.711 1056.087 774.464 492.841 
15.4.4 401.626   631.127   860.628   1090.129   1319.630 1319.63 1090.129 860.628 631.127 401.626 
15.4.5 359.682   565.215   770.748   976.280   1181.813 1181.813 976.28 770.748 565.215 359.682 
15.6.2 619.945   974.200   1328.454   1682.709   2036.964 2036.964 1682.709 1328.454 974.2 619.945 
15.6.3 516.578   811.766   1106.953   1402.141   1697.328 1697.328 1402.141 1106.953 811.766 516.578 
15.6.4 491.263   771.985   1052.707   1333.428   1614.150 1614.15 1333.428 1052.707 771.985 491.263 
15.6.5 436.813   686.421   936.028   1185.636   1435.243 1435.243 1185.636 936.028 686.421 436.813 
15.8.2 700.539   1100.847   1501.154   1901.462   2301.770 2301.77 1901.462 1501.154 1100.847 700.539 
15.8.3 606.631   953.277   1299.923   1646.569   1993.215 1993.215 1646.569 1299.923 953.277 606.631 
15.8.4 582.417   915.227   1248.037   1580.847   1913.657 1913.657 1580.847 1248.037 915.227 582.417 
15.8.5 598.148   939.946   1281.745   1623.543   1965.342   1965.342 1623.543 1281.745 939.946 598.148 
20.2.2 530.037    832.916   1135.794   1438.673   1741.552 1741.552 1438.673 1135.794 832.916 530.037 
20.2.3 434.350   682.550   930.750   1178.950   1427.150 1427.15 1178.95 930.75 682.55 434.35 
20.2.4 379.516   596.382   813.248   1030.114   1246.980 1246.98 1030.114 813.248 596.382 379.516 
20.2.5 340.358   534.848   729.339   923.829   1118.319 1118.319 923.829 729.339 534.848 340.358 
20.4.2 605.009   950.729   1296.449   1642.168   1987.888 1987.888 1642.168 1296.449 950.729 605.009 
20.4.3 501.370   787.867   1074.364   1360.861   1647.358 1647.358 1360.861 1074.364 787.867 501.37 
20.4.4 412.358   647.991   883.624   1119.257   1354.891 1354.891 1119.257 883.624 647.991 412.358 
20.4.5 389.153   611.525   833.898   1056.271   1278.644 1278.644 1056.271 833.898 611.525 389.153 
20.6.2 636.908   1000.855   1364.802   1728.749   2092.696 2092.696 1728.749 1364.802 1000.855 636.908 
20.6.3 559.382   879.029   1198.676   1518.323   1837.969 1837.969 1518.323 1198.676 879.029 559.382 
20.6.4 513.753   807.326   1100.899   1394.471   1688.044 1688.044 1394.471 1100.899 807.326 513.753 
20.6.5 479.468   753.450   1027.432   1301.414   1575.396 1575.396 1301.414 1027.432 753.45 479.468 
20.8.2 702.287   1103.595   1504.902   1906.209   2307.516 2307.516 1906.209 1504.902 1103.595 702.287 
20.8.3 651.407   1023.640   1395.872   1768.105   2140.337 2140.337 1768.105 1395.872 1023.64 651.407 
20.8.4 633.884   996.104   1358.324   1720.543   2082.763 2082.763 1720.543 1358.324 996.104 633.884 
20.8.5 622.443   978.124   1333.806   1689.487   2045.169   2045.169 1689.487 1333.806 978.124 622.443 
25.2.2 596.735    937.727   1278.719   1619.710   1960.702   1960.702 1619.71 1278.719 937.727 596.735 
25.2.3 538.473    846.172   1153.871   1461.570   1769.269 1769.269 1461.57 1153.871 846.172 538.473 
25.2.4 467.798   735.110   1002.423   1269.736   1537.049 1537.049 1269.736 1002.423 735.11 467.798 
25.2.5 381.197   599.024   816.851   1034.678   1252.505  1252.505 1034.678 816.851 599.024 381.197 
25.4.2 672.713   1057.120   1441.527   1825.935   2210.34 2210.34 1825.935 1441.527 1057.12 672.713 
25.4.3 596.735   937.727   1278.719   1619.710   1960.702  1960.702 1619.71 1278.719 937.727 596.735 
25.4.4 527.756   829.332   1130.907   1432.482   1734.057 1734.057 1432.482 1130.907 829.332 527.756 
25.4.5 447.927   703.885   959.844   1215.802   1471.760 1471.76 1215.802 959.844 703.885 447.927 
25.6.2 733.631   1152.848   1572.066   1991.283   2410.500 2410.5 1991.283 1572.066 1152.848 733.631 
25.6.3 655.271   1029.712   1404.153   1778.593   2153.034 2153.034 1778.593 1404.153 1029.712 655.271 
25.6.4 617.809   970.843   1323.876   1676.910   2029.944 2029.944 1676.91 1323.876 970.843 617.809 
25.6.5 573.751   901.609   1229.467   1557.324   1885.182 1885.182 1557.324 1229.467 901.609 573.751 
25.8.2 760.179   1194.567   1628.956   2063.344   2497.732 2497.732 2063.344 1628.956 1194.567 760.179 
25.8.3 721.911   1134.431   1546.952   1959.472   2371.993 2371.993 1959.472 1546.952 1134.431 721.911 
25.8.4 719.517   1130.669   1541.822   1952.974   2364.127 2364.127 1952.974 1541.822 1130.669 719.517 
25.8.5 695.903   1093.561   1491.220   1888.879   2286.538   2286.538 1888.879 1491.22 1093.561 695.903 
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Table II. Numerical Results of FUMApHCP for CAB dataset 

prob Possibility Necessity 
 h=0.1 h=0.3 h=0.5 h=0.7 h=0.9 h=0.1 h=0.3 h=0.5 h=0.7 h=0.9 

10.2.2 398.128  625.629 853.131 1080.632 1308.134 1308.134 1080.632 853.131 625.629 398.128 
10.2.3 313.470 492.595 671.721 850.846 1029.972 1029.972 850.846 671.721 492.595 313.47 
10.2.4 226.622 356.120 485.619 615.117 744.615 744.615 615.117 485.619 356.12 226.622 
10.2.5 206.148 323.947 441.746 559.545 677.343 677.343 559.545 441.746 323.947 206.148 
10.4.2 438.486 689.050 939.613 1190.176 1440.740 1440.74 1190.176 939.613 689.05 438.486 
10.4.3 330.783 519.802 708.821 897.840 1086.859 1086.859 897.84 708.821 519.802 330.783 
10.4.4 271.096 426.008 580.919 735.831 890.743 890.743 735.831 580.919 426.008 271.096 
10.4.5 241.152 378.953 516.754 654.556 792.357 792.357 654.556 516.754 378.953 241.152 
10.6.2 508.206 798.610 1089.014 1379.418 1669.821 1669.821 1379.418 1089.014 798.61 508.206 
10.6.3 371.771 584.211 796.651 1009.092 1221.532 1221.532 1009.092 796.651 584.211 371.771 
10.6.4 343.802 540.260 736.718 933.176 1129.634 1129.634 933.176 736.718 540.26 343.802 
10.6.5 302.505 475.365 648.224 821.084 993.944 993.944 821.084 648.224 475.365 302.505 
10.8.2 489.730 769.576 1049.422 1329.268 1609.113 1609.113 1329.268 1049.422 769.576 489.73 
10.8.3 420.718 661.129 901.540 1141.950 1382.361 1382.361 1141.95 901.54 661.129 420.718 
10.8.4 395.313 621.206 847.100 1072.993 1298.886 1298.886 1072.993 847.1 621.206 395.313 
10.8.5 395.313 621.206 847.100 1072.993 1298.886 1298.886 1072.993 847.1 621.206 395.313 
15.2.2 561.405    882.208    1203.011   1523.813   1844.616 1844.616 1523.813 1203.011 882.208 561.405 
15.2.3 480.520   755.103   1029.685   1304.268   1578.851 1578.851 1304.268 1029.685 755.103 480.52 
15.2.4 360.577   566.621   772.666   978.710   1184.754   1184.754 978.71 772.666 566.621 360.577 
15.2.5 321.887   505.822   689.758   873.693   1057.629   1057.629 873.693 689.758 505.822 321.887 
15.4.2 603.351   948.122   1292.894   1637.666   1982.438   1982.438 1637.666 1292.894 948.122 603.351 
15.4.3 486.731   764.862   1042.994   1321.126   1599.258   1599.258 1321.126 1042.994 764.862 486.731 
15.4.4 413.349   649.548   885.748   1121.947   1358.146   1358.146 1121.947 885.748 649.548 413.349 
15.4.5 370.417   582.084   793.751   1005.418   1217.085   1217.085 1005.418 793.751 582.084 370.417 
15.6.2 615.954   967.928   1319.902   1671.876   2023.850   2023.85 1671.876 1319.902 967.928 615.954 
15.6.3 529.068   831.392   1133.717   1436.041   1738.366   1738.366 1436.041 1133.717 831.392 529.068 
15.6.4 492.906   774.566   1056.227   1337.888   1619.548   1619.548 1337.888 1056.227 774.566 492.906 
15.6.5 436.813   686.421   936.028   1185.636   1435.243   1435.243 1185.636 936.028 686.421 436.813 
15.8.2 678.664   1066.472   1454.280   1842.088   2229.897   2229.897 1842.088 1454.28 1066.472 678.664 
15.8.3 614.255   965.258   1316.261   1667.264   2018.267   2018.267 1667.264 1316.261 965.258 614.255 
15.8.4 582.417   915.227   1248.037   1580.847   1913.657   1913.657 1580.847 1248.037 915.227 582.417 
15.8.5 582.417   915.227   1248.037   1580.847   1913.657   1913.657 1580.847 1248.037 915.227 582.417 
20.2.2 530.499    833.641   1136.783   1439.925   1743.067 1743.067 1439.925 1136.783 833.641 530.499 
20.2.3 464.007   729.154   994.301   1259.448   1524.595 1524.595 1259.448 994.301 729.154 464.007 
20.2.4 374.712   588.834   802.955   1017.076   1231.198  1231.198 1017.076 802.955 588.834 374.712 
20.2.5 328.511   516.232   703.953   891.674   1079.394 1079.394 891.674 703.953 516.232 328.511 
20.4.2 567.754   892.185   1216.616   1541.047   1865.477 1865.477 1541.047 1216.616 892.185 567.754 
20.4.3 486.731   764.862   1042.994   1321.126   1599.258 1599.258 1321.126 1042.994 764.862 486.731 
20.4.4 429.520   674.961   920.401   1165.841   1411.281  1411.281 1165.841 920.401 674.961 429.52 
20.4.5 387.412   608.790   830.168   1051.546   1272.924 1272.924 1051.546 830.168 608.79 387.412 
20.6.2 629.476   989.177   1348.878   1708.579   2068.280 2068.28 1708.579 1348.878 989.177 629.476 
20.6.3 555.828   873.445   1191.061   1508.677   1826.293 1826.293 1508.677 1191.061 873.445 555.828 
20.6.4 519.347   816.117   1112.887   1409.657   1706.427 1706.427 1409.657 1112.887 816.117 519.347 
20.6.5 465.452   731.424   997.396   1263.368   1529.341 1529.341 1263.368 997.396 731.424 465.452 
20.8.2 719.890   1131.255   1542.621   1953.986   2365.352 2365.352 1953.986 1542.621 1131.255 719.89 
20.8.3 664.318   1043.928   1423.538   1803.148   2182.758 2182.758 1803.148 1423.538 1043.928 664.318 
20.8.4 602.839   947.319   1291.798   1636.278   1980.758 1980.758 1636.278 1291.798 947.319 602.839 
20.8.5 582.417   915.227   1248.037   1580.847   1913.657   1913.657 1580.847 1248.037 915.227 582.417 
25.2.2 1081.979    1700.252    2318.526   2936.800   3555.073 3555.073 2936.8 2318.526 1700.252 1081.97

9 
25.2.3 535.249   841.106   1146.962   1452.819   1758.676 1758.676 1452.819 1146.962 841.106 535.249 
25.2.4 467.798   735.110   1002.423   1269.736   1537.049 1537.049 1269.736 1002.423 735.11 467.798 
25.2.5 364.370   572.581   780.792   989.003   1197.214   1197.214 989.003 780.792 572.581 364.37 
25.4.2 1200.170   1885.982   2571.793   3257.605   3943.416 3943.416 3257.605 2571.793 1885.982 1200.17 
25.4.3 578.107   908.454   1238.801   1569.148   1899.495  1899.495 1569.148 1238.801 908.454 578.107 
25.4.4 521.646   819.730   1117.814   1415.897   1713.981 1713.981 1415.897 1117.814 819.73 521.646 
25.4.5 472.240   742.091   1011.942   1281.794   1551.645 1551.645 1281.794 1011.942 742.091 472.24 
25.6.2 766.981   1205.255   1643.530   2081.805   2520.080 2520.08 2081.805 1643.53 1205.255 766.981 
25.6.3 638.964   1004.087   1369.210   1734.332   2099.455 2099.455 1734.332 1369.21 1004.087 638.964 
25.6.4 611.070   960.253   1309.436   1658.620   2007.803 2007.803 1658.62 1309.436 960.253 611.07 
25.6.5 556.976   875.248   1193.520   1511.792   1830.064 1830.064 1511.792 1193.52 875.248 556.976 
25.8.2 795.967   1250.805   1705.643   2160.481   2615.319 2615.319 2160.481 1705.643 1250.805 795.967 
25.8.3 760.713   1195.406   1630.099   2064.792   2499.485 2499.485 2064.792 1630.099 1195.406 760.713 
25.8.4 716.226   1125.498   1534.770   1944.042   2353.314  2353.314 1944.042 1534.77 1125.498 716.226 
25.8.5 670.440   1053.548    1436.657   1819.765   2202.874  2202.874 1819.765 1436.657 1053.548 670.44 
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5- Conclusion 

   In this paper, we studied uncapacitated phub center problem under uncertainty in the travel time or 
transportation costs. We presented generic models capturing these different sources of uncertainty for the 
single and the multiple allocation cases of the problem. Also we proposed new methods to solve the 
problem for optimistic and pessimistic decision makers separately. Our new approach uses 
differentpossibility and necessity measures to obtain the optimal solution of the phub center problem. The 
presented problem is converted to deterministic mixed integer programming problems for convenience of 
solving with MIP solvers. Finally, for the numerical experiments we performed extensive computational 
analysis with more than 250 sub problems on the CAB data set. 
   As one of the future research activities, the proposed approach in confronting uncertain parameters 
could be implemented on other hub location problems such as hub covering problems, multi objective 
hub location problems, other capacitated hub location problems and also some new hub location problems 
like the hub line location problem (Martins et. al. 2015). Another future research suggestion is providing 
solution methods to efficiently solve more realistic, large-scale instances for this class of fuzzy phub 
center problem. This includes solving the formulation with met-heuristic algorithms. 
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