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Abstract 

This paper addresses the Tardy/Lost penalty minimization with common due dates on 
a single machine. According to this performance measure, if the tardiness of a job 
exceeds a predefined value, the job will be lost and penalized by a fixed value. 
Initially, we present a 2-approximation algorithm and examine its worst case ratio 
bound. Then, a pseudo-polynomial dynamic programming algorithm is developed. We 
show how to transform the dynamic programming algorithm to an FPTAS using the 
technique of "structuring the execution of an algorithm" and examine the time 
complexity of our FPTAS. 

Keywords: Single machine scheduling, Tardy/Lost penalty, Common due date, 
approximation algorithm, FPTAS 

1- Introduction 
   In this paper, we study a single machine scheduling problem related to minimizing total Tardy/Lost 
penalties and common due dates. Every job ��1 ≤ � ≤ �� has a processing time, ��, and a weight 
tardiness factor, 	�. The jobs have two common due dates, namely, 
�and 
�. In case a job is 
completed before the first due date,
�, no penalty is assigned; if the completion time is between 
� 
and 
�, the job will be penalized by a linear tardiness penalty; and finally, the job will be lost and a 
fixed amount of penalty, 
�, will be assigned if it is completed after the second due date, 
�. Based on 
this formulation, we can define the Tardy/Lost objective function as shown in Eq. (1), where ��is the 
completion time of job i in a sequence.  

 

�� = �	�����0, �� − 
��						��											�� ≤ 
�
� = 	��
� − 
��								��											�� > 
� � �1� 
 

Figure 1 shows the Tardy/Lost penalty function for job i based on its completion time.  
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Fig. 1. Tardy/Lost penalty function with common due dates 

We assume that all processing times and due dates are integers, the machine is continually 
available from time zero and it can process at most one job at a time. The resulting problem is denoted 
by 1|
� = 
|� , where TL indicates the Tardy/Lost performance criteria. Yuan (1992) has shown that 
the tardiness minimization problem with a common due date (CD_T) is NP-hard. Since CD_T is a 
special case of Tardy/Lost penalty function evaluated in this paper, this function is also assumed to be 
NP-hard.  

Objective functions of real-life manufacturing problems are often much more complex than the 
well-known scheduling performance measures. Depending on the type of contractual penalties and the 
expected goodwill of future revenue losses incurred, many types of non-linear tardiness penalty 
functions may arise. Tardy/Lost measure combines the futures of two objective functions: weighted 
tardiness and weighted number of tardy jobs. 

From a practical point of view, the TL penalty function is applicable in delivery contracts, most of 
which are arranged based on two due dates. If an order is early, then no penalty is considered; the 
order will be penalized if its delivery time exceeds the first due date. The penalty is increased in 
proportion to the delivery time until the second due date is reached. If the delivery occurs later than 
the second due date, the order becomes lost and gets the maximum fixed penalty.  

The Tardy/Lost performance measure can be considered as a special case for scheduling problems 
with order acceptance assumption. Here, the objective is minimizing weighted tardiness on a single 
machine and a common due date where the rejection cost for a job i can be defined as �
� − 
��	�. 
Order acceptance assumption has been investigated widely in the literature. Engels et al. (2003) 
investigated the problem of minimizing weighted completion times and rejection penalties and 
developed some approximation algorithms. The survey papers by Slotnick (2011) and Shabtay (2013) 
have addressed a number of scheduling problems with order acceptance.   

The performance measure we consider in this study is a kind of regular measure which is 
continuous and non-decreasing in the completion times of jobs. With such performance measures, 
jobs are penalized only for being tardy, while all inventory costs due to early completions are ignored. 
Pinedo(1995) indicates that in practice, the penalty function associated with a scheduling problem 
may follow from a function in which early jobs are assigned no penalty and those finished after their 
due dates are assigned a penalty that is increased at a given rate. Within the penalty function, the job 
reaches a point where the penalty assignment is changed and increased at a much slower pace. The 
function identified by Pinedo(1995) is general; however, two more specific functions that react 
similarly are the deferral cost function (Lawler, 1964) and the late work criterion (Potts and Vav 
Wassenhove, 1992a, Potts and Vav Wassenhove, 1992b). 

Assume that we have an approximation algorithm that always returns near-optimal solution whose 
cost is at most a factor of ! away from the optimal cost, where ! > 1 is a real number. In 
minimization problems the near-optimal cost is at most a multiplicative factor of ! above the 
optimum. Such an approximation algorithm is called a !-approximation algorithm. A family of (1+")-
approximation algorithms over all " > 0with polynomial running times is called a polynomial time 
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approximation scheme, or PTAS for short. If the time complexity of a PTAS is also polynomially 
bounded in 1/", then it is called a fully polynomial time approximation scheme, or FPTAS for short 
(Woeginger, 2000). 

Deferral cost functions have been studied by Kahlbacher(1993). He considered general penalty 
functions to be monotonous with respect to absolute lateness. He also examined several specific cases 
of the penalty function for situations in which machine idle times are allowed (the unconstrained 
problem) or not allowed (the constrained problem). Using the "V-shape property", he constructed an 
optimal schedule with a pseudo-polynomial algorithm and extended it to an FPTAS of the 
order$��% "⁄ �, where " denotes the precision of the approximation solution.  

Federgruen and Mosheiov (1994) considered a class of single machine scheduling problems with a 
common due date and general earliness and tardiness penalties. In that study, some polynomial greedy 
algorithms were proposed for generating schedules and a small optimality gap was illustrated through 
numerical examples. For convex cost structures, they also established that the worst case optimality 
gap was bounded by 0.36 if the due date was non-restrictive. Baptiste and Sadykov (2009) considered 
the objective of minimizing a piecewise linear function. This class of functions is very large and can 
also be used to model some classical objective functions, i.e., total (weighted) completion time, total 
(weighted) tardiness, and (weighted) number of tardy jobs. They introduced a new Mixed Integer 
Programming (MIP) model based on time interval decomposition. This MIP model was closely 
related to the classical time-indexed MIP formulation, but used far fewer variables and constraints.  

The research by Ventura and Radhakrishnan (2003) focused on scheduling jobs with varying 
processing times and distinct due dates on a single machine. Zhou and Cai (1997) examined two types 
of regular performance measures, the total cost and the maximum cost, with general cost functions. 
They studied a stochastic scheduling model on a single machine where processing times were random 
variables and the machine was subject to stochastic breakdowns. In the paper by Shabtay (2008), two 
continuous and non-decreasing objective functions were considered. They included penalties due to 
earliness, tardiness, the number of tardy jobs, and due date assignments.  

In the present study, we simply observe that the Tardy/Lost penalty function can be converted to a 
late work criterion that estimates the quality of a solution on the basis of the duration of the late parts 
of jobs. This conversion is accomplished by setting 	� = 1			�∀� = 1, . . . , ��and 
�� = 
�� + ��, where 
�� and 
�� are the first and second due dates for each job i. The results concerning late work 
scheduling problems are partially presented in Chen et al. (1998) and Leung (2004), but Sterna (2011) 
offers the first complete review of the topic. 

A number of researchers have addressed the problem of minimizing the total late work criterion on 
a single machine. Potts and Van Wassenhove (1992b) proposed a polynomial time algorithm based on 
the similarity between tardiness and late work parameters. In another study (Potts and Vav 
Wassenhove, 1992a), they developed a branch-and-bound algorithm for a problem forming the core of 
a family of approximation algorithms based on truncated enumeration. References (Sterna, 2007b, 
Pesch and Sterna, 2009, Sterna, 2007a, Blazewicz et al., 2008, Ren et al., 2009) may be consulted for 
other studies devoted to the late work criterion.  

Kathley and Alidaee (2002) modified the definition of the late work criterion by introducing two 
due dates for each job, called due date and deadline. They called the proposed performance criterion 
"modified TWLW", which was very similar to the Tardy/Lost penalty function we have considered in 
this study. Kianfar and Moslehi (2013, 2014)studied some tardiness-based objective functions on a 
single machine with common due dates. They developed approximation algorithms as well as 
FPTASs for the problems. The worst-case ratio bounds are also proved in some cases.  

As the Tardy/Lost penalty function is a general form of the late work criterion, most practical 
applications of late work can be equally defined by this penalty function. Some of the applications in 
problems arise in control systems (Blazewicz, 1984, Potts and Vav Wassenhove, 1992b), production 
and planning process (Sterna, 2000, sterna, 2006), agriculture (Alminana et al., 2010), land  
cultivation processes (Blazewicz et al., 2004, Sterna, 2000), and processes of planning tests for 
prototypes or software validation (sterna, 2006). 

The rest of this paper is organized as follows. In Section 2, we propose an approximation 
algorithm and examine its worst case ratio bound. Section 3 describes a pseudo-polynomial dynamic 
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programming algorithm that, in Section 4, will be converted to an FPTAS using the technique of 
structuring the execution of an algorithm. Concluding remarks will be presented in Section 5. 

 

2- MWR1 approximation algorithm 
   Here, a 2-approxiamtion algorithm is developed for problem 1|
� = 
|� . By using a numerical 
example in a later stage, it will be shown that the worst case ratio bound of 2 is tight for this problem. 
We refer to this algorithm as MWR and designate the sequence it generates as G. We adopt the 
notation *[�]to represent the job in ith position in the sequence- = �*[�], *[�], . . . , *[.]�. Heuristic G 
requires at most n iterations, while, in each iteration k, the (n-k+1)th element of G, *[./01�] will be 
determined. Furthermore, if, during an iteration, there exists an unscheduled job filling the remaining 
tardiness period with the minimum tardiness weight, the relevant sequence (sequence -2) will be saved 
in addition to the main sequence G. The algorithm returns the best of the two sequences G and -2 as 
the final result. 

Let �3denote the penalty of sequence G and �4[5,6]denote the total penalty of jobs from position 

rton in this sequence. Suppose that all jobs iare sorted and indexed according to the non-decreasing 
order of 	� ��⁄  ratios. In the case of a tie, the job with the smallest processing time should come first. 
The steps of the algorithm are as follows:  

Step 1.Let 7 = �1,2, . . , �� be a set of unscheduled jobs sorted according to their indices 
(according to the non-decreasing order of 	� ��⁄  ratios). Set �[.] = 9:;< = ∑ ��.�>� and ? = �. 

Step 2.Define 7@ = A� ∈ 7	|	�� ≥ �[.] − 
�D. If 7@ is empty, then �EFG:H = ∞; else, select a job Jŵith the minimum tardiness weight from 7@. Let *L[.] = Jând �EFG:H = 	M̂N���A�[.], 
�D − 
�O. 
Step 3.Define the first job in U as job k; also, set 7 = 7/�P�, *[Q] = Pand �[Q/�] = �[Q] − �0. 

Step 4.If 7@ = A� ∈ 7	|	�� ≥ �[Q/�] − 
�D is not empty, select a job J ̂with the minimum tardiness 

weight from 7@. Calculate �E = 	M̂N���A�[Q/�], 
�D − 
�O. If �E + �4[Q,.] < �EFG:H then we have �EFG:H = �E + �4[Q,.] and *L[�] = *[�]			∀� = ?, . . . , �and *L[Q/�] = J.̂ 
Step 5.If �[Q/�] > 
�, then ? = ? − 1 and go back to Step 3; else, go to Step 6. 

Step 6.Put unscheduled jobs at the beginning of each of the sequences Gand -2. 
Step 7.If �3 ≤ �32, then return sequence - = N*[�], *[�], . . . , *[.]O; else, return sequence -2 =N*L[�], *L[�], . . . , *L[.]O. 

It can be easily verified that G has the same order as WSPT and -2is the best sequence obtained by 
filling the remaining tardiness period with one job in each iteration. This algorithm includes a simple 
sorting of n elements and hence, its time complexity is$��	ST*��.  

Now, we provide a numerical example to illustrate how the MWR algorithm works. Later, we will 
use a theorem to prove that the worst case ratio bound of this algorithm is equal to 2.   

Example 1.Consider a problem 1|
� = 
|� with 4 jobs described in Table 1. Set 
� = 10and 
� = 12. 

 

 

 

                                                           
1- Minimum Weight Ratio 
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Table 1.Parameters of jobs in Example 1 

Job i 
2 5 1 
3 4 2 
5 6 3 
16 15 4 

 
 

At the beginning, 7@ is empty and �EFG:H = ∞. The following table summarizes the results of 
algorithm MWR for this problem. 

 

Table 2.Summary of applying MWR algorithm for Example 1 U 

36 4 32 {4} 30 r=4 

36 10 32 {4} 25 r=3 

36 20 32 {4} 21 r=2 �   15 r=1 
 

 

From �3 = 52and �32 = �EFG:H = 36, algorithm MWR returns sequence -2 as the approximate 
solution.  

Theorem 1.Algorithm MWR gives a 2-approximation for problem1|
� = 
|� . 

Proof. See the Appendix.                     ■ 

In the following example, we show that the worst case ratio bound of algorithm MWR for problem 1|
� = 
|� is a tight bound.  

Example 2.Consider the problem 1|
� = 
|�  with � > 2jobs such that 
� = � − 1and 
� =2� − 1. The parameters are those given in Table 3. 
 

Table 3.Parameters of jobs in Example 2 

Job i 
n+1/n n 1 
1+1/n 1 2 to n 

 

Algorithm MWR returns the sequence �2,3, . . . , �, 1� with a penalty value of �� + 1while the 
optimal sequence is �1,2, . . . , ��, generating the penalty 1 2⁄ �� + 2� − 1 2⁄ . Thus,  �3�∗ = �� + 1���� + 2� − ��

							⇒ 								 S��.→\�3�∗ = 2 �2� 
 

3- Dynamic programming algorithm   
   Suppose that jobs are indexed according to the non-decreasing order of �� 	�⁄ and ties are broken by 
first selecting a job with the minimum	�. An optimal solution is composed of three groups of jobs. 
The first group includes early jobs with completion times less than
�. The second group includes the 
tardy jobs with completion times between 
�and 
�, which must be scheduled according to their 
reverse order of indices (the first tardy job, called straddling job, may not adopt this order). Lost jobs 
with completion times greater than 
� are placed in the third group by an arbitrary order.  



6 

 

The problem can be optimally solved by applying the following dynamic programming algorithm. 

In this algorithm, each state in the state space ]0�^,_`� shows a particular sequence for first k jobs 
excluding the straddling one, where the straddling job a and its completion time, �^, are predefined. 
We use the vector �b�, b�, �� to denote states. Variables b� and b� show the sum of processing times 
for jobs in the first and second groups, respectively, and f  is the total penalty of the corresponding 
partial sequence. 

In each iteration, the algorithm selects a job a as the straddling and fixes its completion time, �^, 
from all possible values within the scheduling horizon. Jobs in the first group, early jobs, are 
continually scheduled from time zero (see Fig. 2b) while tardy jobs are scheduled by starting from the 
completion time of the straddling job (see Fig. 2c). Finally, lost jobs are scheduled in such a way that 
they are completed at time 9:;< = ∑ ��.�>�  (see Fig. 2d). 

Let �^,_`∗  denote the optimal objective value subject to the condition in which job a is selected as 
the straddling one with the completion time �^. This algorithm can be described as follows. 

 

Algorithm DP 

Step 1. For each a = �1,2, . . . , �� and each �^ ∈ [
� + 1	, 
� + �^] 
1.1.  Set ]c�^,_`� = ��0,0,0�� 
1.2.  For each P = �1,2, . . . , a − 1, a + 1	, . . . , ��, consider all the states �b�, b�, �� in ]0/��^,_`� 

o If  b� + �0 ≤ �^ − �^, then add the state �b� + �0 , b�, �� to the state space ]0�^,_`� 
o If �^ + b� + �0 ≤ 
�, then add the state Nb�, b� + �0 , � + 	0��^ + b� + �0 − 
��O to 

the state space ]0�^,_`� 
o Add �b�, b�, � + 
0�to the state space ]0�^,_`� 

1.3. For all states �b�, b�, �� ∈ ]0�^,_`� with equal values for b�and b�, keep at most one state 

having the minimum value of f. 

1.4.   Remove the state space ]0/��^,_`� 
1.5.   Set �^,_`∗ = ���[Hd,He,f]∈g6hd�`,i`��� + 	^ . ������^, 
�� − 
��� 

Step 2. Return the optimal solution �∗ = ���^,_`�^,_`∗  
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Fig. 2 Description of the dynamic programming algorithm 

To calculate the time complexity of this algorithm, as all input parameters are integers, we can 

restrict the number of states in each ]0�^,_`�by 
��
� − 
��. This is because variables b� and b�can at 
most take 
� and 
� − 
� different values, respectively. Also, in each iteration and for each 
combination of  b�and b�, we keep at most one state with the smallest value of f. 

Let 9<jk be the maximum processing time of jobs. The running time of Step 1.2.is proportional to ∑ l]0�^,_`�l./�0>�  and hence, it is �
��
� − 
��. Similarly, it can be shown that the complexity of step 

1.5 is $N
��
� − 
��O. Step 1 iterates at most �9<jktimes by selecting different a and �^ values and 
has the complexity of $N��9<jk
��
� − 
��O. Finally, as Step 2 needs $��9<jk� time, the total 
complexity of this algorithm will be obtained as $N��9<jk
��
� − 
��O. Alternatively, we can write 
the complexity of this algorithm as $N�9:;<
��
� − 
��O because the maximum number of 
iterations created by selecting the values of α and �^ can also be considered as 9:;<instead of �9<jk. 
 

4- FPTAS algorithm 
    This FPTAS is based on two phases. In the first phase, algorithm MWR is used to determine an 
upper bound for problem 1|
� = 
|� and in the second phase, the execution of the algorithm DP is 
modified in order to reduce the number of states and the running time. One common way used for 
transforming a dynamic programming algorithm to FPTAS is the technique of structuring the 
execution of an algorithm. The main idea of this technique is to remove a special part of states 
generated by the algorithm in such a way that the modified algorithm becomes faster, yielding an 
approximate solution instead of the optimal one. This method was first introduced by Ibarra and Kim 

b�

a. Partial schedule associated with state �b1, b2, �� in ]P−1�a,�a� 


�
jobα 

b. Add state �b� + �0 , b�, �� to state space ]0�^,_`� ifb1 + �P ≤ 
1 

c. Add state Nb�, b� + �0 , � + 	0��^ + b� + �0�O to ]0�^,_`� if�^ + b� + �0 ≤ 
� 


�

d. Add state �b�, b�, � + 
0� to ]0�^,_`� 

b� 
�
α 


�


� 
�


� 
�

b�

b�

b�

b�

b�

b�
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(1875) for solving the knapsack problem and it has been extended to numerous scheduling problems 
(see (Shabtay et al., 2012, Shabtay and bensoussan, 2010, Ji and Cheng, 2010, Steiner and Zhang, 
2009, Kacem and Mahjoub, 2009)). 

Let �n denote the objective value returned by algorithm MWR for an instance of the problem 1|
� = 
|�  and ε be the maximum acceptable error for the FPTAS. According to the technique of 
structuring the execution of an algorithm, we should restrict all factors that allow the size of the state 
space to grow in an uncontrolled way. These factors in our algorithm are the variables b� and fin the 
states �b�, b�, �� as well as the completion time of the straddling job.  

By selecting a job a as the straddling, we split its completion time interval �^ ∈ [
� + 1	, 
� + �^] 
into  � sub-intervals qr
1+ �s1�t−1u, v
1+ �s1�twx, where s� = 1 + " 3⁄  and t = 1,2, . . . ,  �. The 
maximum number of these sub-intervals is 

  � = yST*zd{`| ≤ yST*zd}~��| = �S�9<jk S�s�⁄ � ≤ ��1 + 3 "⁄ �S�9<jk� �3� 
 

 So, we have  � = $�S�9<jk "⁄ �. The last inequality holds since for all � ≥ 1, we have S�	� ≥�� − 1� �⁄  based on the Taylor expansion of ln z. Therefore,  
 1S��s�� ≤ s�s� − 1 = 1 + " 3⁄1 + " 3 − 1⁄ = 1 + 3 "⁄  �4� 

 

To restrict the number of different values for b�, set  � = �n 2⁄  and s� = �".  �� �3��⁄ . Let there 
be m distinct values among tardiness weights 	� of n jobs. Sort these values in a decreasing order 
such that 	�d > 	�e >	. . . > 	�~and create the permutation � = ���, ��, . . . , �<�. Split the interval q0, �n 	�~⁄ x into m intervals 

�� = �0, �n	�d�			,			�� = � �n	�d , �n	�e�			,			 . ..		, �< = � �n	�~hd , �n	�~� �5� 
 

Then, split each interval �� into the sub-intervals of the length s� ��	. 	���� . It may appear that the 

last of the sub-intervals of an interval �� is shorter than s� ��	. 	���� . The maximum number of sub-
intervals created by the above procedure is  

 � = �n	�d × �.	�ds� +���n	�� − �n	��hd�
<
�>�

�	. 	��s�
					≤ �	.���n	�� 	 . 	��s� � ≤ �	. �	. �ns� ≤<

�>� ��	. �ns�
 �6� 

 

and since �n s�⁄ = 2 � s�⁄ ≤ 6� "⁄ , we conclude that  � = $��% "⁄ �. 
In order to make the number of distinct values of f controllable, we split the related interval [0, �n] 

into  % equal sub-intervals �′< = [�� − 1�s%, �s%] of the length s% ,where1 ≤ � ≤  %. 
Considering  % = �2� "⁄ �and s% = �n  %⁄ , we get  % = $�� "⁄ �.  

Next, the FPTAS algorithm will be designed by means of bounding the number of different values 
that each of variables�^, b� and fcan take in the DP algorithm. Also, the time complexity of this 
FPTAS as well as its worst case ratio bound will be discussed.  

This FPTAS works on a reduced state space ]0�^,_�`�# instead of the main state space ]0�^,_`� and 
returns the approximate solution of �#. The algorithm can be described as follows.  
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Algorithm FPTAS 

Step 1. For each a = �1,2, . . . , �� and each �′^ = �
� + �s����			,			t = 0,1, . . . ,  � 

1.1.  Set ]c�^,_�`�# = ��0,0,0�� 
1.2.  For each P = �1,2, . . . , a − 1, a + 1	, . . . , ��, consider all the states �b�, b�, �� in ν�/���,����# 

o If  b� + �0 ≤ �^ − �^, then add state �b� + �0 , b�, �� to the state space ]0�^,_�`�# 

o Add Nb�, b� + �0 , � + 	0������^ + b� + �0 , 
�� − 
��O to the state space ]0�^,_�`�# 

o Add �b�, b�, � + 
0�to the state space ]0�^,_�`�# 

1.3. For all states �b�, b�, �� ∈ ]0�^,_�`�# with equal values for b�and b�, keep at most one state 

with the minimum value of f. 

1.4.   Remove the state space ]0/��^,_�`�# 

1.5. Keep at most one state with the smallest value of b� among all states �b�, b�, �� ∈ ]0�^,_�`�# 

laying in common sub-intervals for b� and f . 

1.6.   Set �^,_�`# = ���[Hd,He,f]∈g6hd�`,i�`�#�� + 	^ . ������′^, 
�� − 
��� 
Step 2. Return the approximate solution �# = ���^,_�`�^,_�`#  

In the FPTAS algorithm, we have replaced the statement “if �^ + b� + �0 ≤ 
�, then add state Nb�, b� + �0 , � + 	0��^ + b� + �0 − 
��O” from step 1.2 of the DP algorithm with phrase “add state  Nb�, b� + �0 , � + 	0������^ + b� + �0 , 
�� − 
��O”. Here, we have two cases: �^ + b� + �0 ≤ 
� ⇒ 	0������^ + b� + �0 , 
�� − 
�� = 	0��^ + b� + �0 − 
���^ + b� + �0 > 
� ⇒ 	0������^ + b� + �0 , 
�� − 
�� = 	0�
� − 
�� = 
0  

The first case shows the same condition as in the DP algorithm and in the second case, job k is 
scheduled in the second group, but its completion time is greater than 
� and its tardiness penalty 
equals 
0. According to this, we do not need to restrict variable b� in the FPTAS because penalties are 
calculated correctly and from Eqs (5) and (6), the number of intervals for variable b�is $��% "⁄ �, 
which is sufficient for the FPTAS. 

4-1- Analysis of worst case ratio bound  
   The worst case analysis of this FPTAS will be based on comparing the steps of algorithms DP and 
FPTAS. We may remark that the main action of FPTAS consists of reducing the cardinality of the 
state spaces by splitting the intervals of  �^, b� and finto sub-intervals and then replacing all vectors �b�, b�, �� ∈ ]0�^,_`�# belonging to the same sub-intervals by a single approximate state with the 
smallest b�. Let  <jk0  denote the maximum tardiness weight for a tardy job in the DP between jobs 
kton.  <jk0 = ����	01�	|	0 ≤ � ≤ � − P	, �01� > �^� �7� 
 

Lemma 1.Suppose �b�, b�, �� is an arbitrary state in ]0�^,_`�. Algorithm FPTAS creates at least one 

state Nb�#, b�#, �#O in ]0�^,_�`�# such that b�# ≤ b� �8� b�# ≤ b� + �P. s�� N�	. <jk0 O⁄  �9� 
 

and 
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�# ≤ � + Ps� + Ps% + �" 3⁄ �� �10� 
 

Proof. The proof is done by induction on parameter k. First, for P = 0, the statement is trivial 

because]c�^,_�`�# = ]c�^,_`�. Now, assume that the lemma holds up to level k-1and we want to show 

that it is valid for level k. Consider an arbitrary state �b�, b�, �� ∈ ]0�^,_`�. Algorithm DP introduces 

this state into ]0�^,_`� when job k is added to some feasible state for the first k-1 jobs. Let �b′�, b′�, �′� 
be the above feasible state. 

If  <jk0 = 0, the proof is trivial because in this case, there is no tardy job in the DP between jobs k 
and n and the DP algorithm schedules the remaining jobs as early. In this condition, the FPTAS 
algorithm can also schedule the remaining jobs as early, because b�# ≤ b� and there is enough empty 
space for the early jobs in the FPTAS. In other words,  <jk0 = 0 means that the penalty for the DP 
remains unchanged from steps k to n and the FPTAS algorithm is also able to create a state in the final 
step n with the same penalty as state k. So, the proof of lemma 1 is obvious in this condition. 
According to the above discussion, we assume  <jk0 > 0 in the rest of the proof. 

Let �^ and �′^ denote the completion time of the straddling job in algorithms DP and FPTAS, 
respectively. Also, let �̂∗ and �′^ be the tardiness of the straddling job in these two algorithms. The 
FPTAS algorithm considers the completion time for the straddling job as �′^ = �
� + �s����			,			t =0,1, . . . ,  �. This divides the possible interval [
� + 1, 
� + �^] into  � integer subintervals [�
� +�s���/��, �
� + �s����]			,			t = 1, . . . ,  �. Given the fact that the completion time of the straddling 
job in the DP, �^, also falls in interval [
� + 1, 
� + �^], we have ∀	C� ∈ I¦ = [�d� + �Δ��¦/��, �d� + �Δ��¦�] 					⇒ 			 ∃C′� = �d� + �Δ��¦�										∀y = 1, . . . , L�⇒ C� ≥	d� + �Δ��¦/� 						⇒ 						 C� − d� ≥	 �Δ��¦/�⇒		Δ�. �C� − d�� ≥ Δ�. �Δ��¦/� = �Δ��¦ ≥ ��Δ��¦� = C′� − d�⇒		Δ�. T�∗ ≥ T′� ­d>�1® %⁄°̄°°°°°± T′� ≤ T�∗ + ε3T�∗

 �11� 
 

Three cases can be distinguished here. In the first one, we have �b1, b2, �� = Nb′1 + �P, b′2, �′O. The 
second possibility is �b�, b�, �� = Nb′�, b′� + �0 , �′ + 	0������^ + b′� + �0 , 
�� − 
��O and the third 
one is �b�, b�, �� = �b′�, b′�, �′ + 
0�. We want to prove the statement for level k in these three cases. 

 

Case A.�b1, b2, �� = Nb′1 + �P, b′2, �′O 
Since�b′�, b′�, �′� ∈ ]0/��^,_`�, we have a state ²b′�#, b′�#, �′#³ ∈ ]0/��^,_�`�# in such a way that b′�# ≤b′�, b′�# ≤ b′� + N�P − 1�	. s�O N�	. <jk0/�O�  and �′# ≤ �′ + �P − 1�s� + �P − 1�s� + �" 3⁄ ��′. Thus, 

the state ²t′�# + p�, t′�#, f′#³ is yielded by algorithm FPTAS at level k, but we may throw this state 

away when reducing the state space. Let �¶, ·, ¸� be the remaining state in ]0�^,_�`�# that falls in the 

same sub-intervals of b� and �as ²b′�# + �0 , b′�#, �′#³ after reduction. So,  

¶ ≤ b′�# + �0 ≤ b′� + �0 = b� �12� 
· ≤ b′�# + s�� <jk0
				≤ b′� + �P − 1�s�� <jk0/� + s�� <jk0
				≤ b� + Ps�� <jk0

 �13� 
 

also, 
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¸ ≤ �′# + s%				≤ �′ + �P − 1�s� + �P − 1�s% + �" 3⁄ ��′ + s%				≤ � + Ps� + Ps% + �" 3⁄ ��  �14� 
 

The last inequality in Eq. (13) is derived from  <jk0 ≤  <jk0/�. Therefore, the statement holds for 
level k in this case. 

Case B.�b�, b�, �� = Nb′�, b′� + �0 , �′ + 	0������^ + b′� + �0 , 
�� − 
��O
 

Since �b′�, b′�, �′� ∈ ]0/��^,_`�, we have a state ²b′�#, b′�#, �′#³ ∈ ]0/��^,_�`�# in such a way that b′�# ≤ b′�, b′�# ≤ b′� + N�P − 1�	. s�O N�	. <jk0/�O�  and �′# ≤ �′ + �P − 1�s� + �P − 1�s� + �" 3⁄ ��′. 
Therefore, the state ²b′�#, b′�# + �0 , �′# +	0N���A�′^ + b′�# + �0 , 
�D − 
�O³ is generated by 

algorithm FPTAS at level k. But, we may eliminate it in step 1.3. Let �¶′, ·′, ¸′� ∈ ]0�^,_�`�# be 
the remaining state that is in the same sub-intervalsb2 and fas ²b′�#, b′�# + �0 , �′# +	0N���A�′^ + b′�# + �0 , 
�D − 
�O³ after reduction. So,  

¶′ ≤ b′�# ≤ b′� = b� �15� 
·′ ≤ b′�# + �0 + s�� <jk0 ≤ b′� + �P − 1�s�� <jk0/� + �0 + s�� <jk0 ≤ b� + Ps�� <jk0  �16� 
 ¸′ ≤ �′# +	0N���A�#̂ + b′�# + �0 − 
�, 
� − 
�DO + s%					≤ �′# +	0N���A�̂# + b′�# + �0 , 
� − 
�DO + s%						≤ �′# +	0N�̂# + b′�# + �0O + s%
					≤ �′ + �P − 1�s� + �P − 1�s% + �" 3⁄ ��′ + 	0 ��̂∗ + �" 3⁄ ��̂∗ + b′� + �P − 1�s��	. <jk0/� + �0� + s%
					≤ �′ + �P − 1�s� + Ps% + �" 3⁄ ��′ + 	0 ��0∗ + �" 3⁄ ��̂∗ + �P − 1�s��	. <jk0/� �
					≤ � + �P − 1�s� + Ps% + �" 3⁄ ��′ + 	0 ¹�" 3⁄ ��̂∗ + �P − 1�s��	. <jk0/� º
					≤ � + Ps� + Ps% + �" 3⁄ ��′ + 	0N�" 3⁄ ��̂∗O					≤ � + Ps� + Ps% + �" 3⁄ ��

 �17�

 

It can be easily seen that the inequalities in Eq. (17) are concluded from the following relations.   

�̂# ≤ �̂∗ + �" 3⁄ ��̂∗ �18� �0∗ = �̂∗ + b′� + �0 �19� � = �′ + 	0�0∗ �20� 
	0 �P − 1�s��	. <jk0/� ≤ �P − 1�s��	 ≤ s� �21� 
 

Accordingly, the statement holds for level k in the second case. 
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Case C.�b�, b�, �� = �b′�, b′�, �′ + 
0� 
Since [b′�, b′�, �′] ∈ ]0/��^,_`�, we have a state ²b′�#, b′�#, �′#³ ∈ ]0/��^,_�`�# in such a way that b′�# ≤ b′�, b′�# ≤ b′� + N�P − 1�	. s�O N�	. <jk0/�O� and �′# ≤ �′ + �P − 1�s� + �P − 1�s� + �" 3⁄ ��′. 

Thus, the state ²b′�#, b′�#, �′# + 
0³ will be created by algorithm FPTAS at level k which may 

be eliminated when reducing the state space. Let �¶′′, ·′′, ¸′′� be the remaining state in ]0�^,_�`�# 
that is in the same sub-intervals of b2and �as Nb′�#, b′�#, �′# + 
0O after reduction. So, we have ¶′′ ≤ b′�# ≤ b′� = b� �22� 
·′′ ≤ b′�# + s�� <jk0 ≤ b′� + �P − 1�s�� <jk0/� + s�� <jk0 ≤ b� + Ps�� <jk0  �23� 
 

also, 

¸′′ ≤ �′# + 
0 + s%						≤ �′ + �P − 1�s� + �P − 1�s% + �" 3⁄ ��′ + 
0 + s%						≤ � + Ps� + Ps% + �" 3⁄ ��  �24� 
 

This indicates the correctness of Lemma 1 in this case and hence, we conclude the proof in its 
general form.          ■  

Theorem 2. For any arbitrary" > 0, algorithm FPTAS generates a solution �#such that �# − �∗ ≤"�∗ holds.  

Proof.Suppose a∗is the straddling job in an optimal sequence. Job a∗will also be selected as the 
straddling in one of the iterations of algorithm FPTAS. By definition, the optimal solution can be 

associated with a state �b�, b�, ��in ]./�N^∗,_`∗O. From Lemma 2, algorithm FPTAS generates a state Nb�#, b�#, �#O ∈ ]./�N^∗,_�`∗O# such that b�# ≤ b�and �# ≤ � + �� − 1�s� + �� − 1�s% + �" 3⁄ ��. Also, 
there always exists a feasible state in FPTAS which is related to any feasible state generated by DP. It 
is because b�# ≤ b� holds in all states of FPTAS and none of the states will be lost by the constraint b + �0 ≤ 
� in Step 1.2. We also have 

�# ≤ � + �� − 1�s� + �� − 1�s% + �" 3⁄ �� �25� 
�s� =

"	.  �3�s% = �n % =  � 2⁄y�.» | ≤ "3�  �¼½¾
½¿ ⇒ �# ≤ � + �" 3⁄ � � + �" 3⁄ � � + �" 3⁄ �� ≤ �1 + "�� �26� 

 

Also, with regard to �̂ ∗# ≤ �̂ ∗∗ + �" 3⁄ ��̂ ∗∗ and �∗ = � + �̂ ∗∗ , it can  be concluded that 

�# = �# + �̂ ∗#							≤ �1 + "�� + �̂ ∗∗ + �" 3⁄ ��̂ ∗∗						≤ �1 + "��∗  �27� 
 

and this completes the proof.      ■ 
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4-2- Time complexity of algorithm FPTAS 
    To complete our analysis, we try to estimate the running time of algorithm FPTAS. Before starting 
the first step, algorithm MWR must be applied and implemented in $��	ST*��. In each iteration of 

Step 1.2, the state space ]0�^,_�`�#�P = �1,2, . . . , � − 1�� is generated. Note that algorithm FPTAS, in 
each step, keeps only one state with minimum t� among all states laying in common sub-intervals for 

variables b�	and �. So, the number of states in ]0�^,_�`�# does not exceed  �.  %and from  � =$��% "⁄ �and  % = $�� "⁄ �, the running time of Step 1.2 is calculated as 
 

� l]0�^,_�`�#l./�
0>� ≤ �	.  �	.  % = $��À "�⁄ � �28� 

 

Since the algorithm iterates n times by each choice of the straddling job and also, guessing �^ 
needs at most  � = $�S�9<jk "⁄ � iterations, we can deduce that Step 1 is of the order $��ÁS�9<jk "%⁄ �. Step 2 is implemented with the running time $��S�9<jk "⁄ � and finally, the whole 
algorithm requires $��ÁS�9<jk "%⁄ � time.  
 

5- Conclusion       
   In this paper, we analyzed a less studied performance measure called Tardy/Lost penalty function 
for scheduling problems and discussed its practical and theoretical applications. According to this 
performance measure, each job has two due dates and, depending on its completion time, it is 
classified into one of the three groups: early, tardy, or lost jobs. 

An FPTAS is the strongest possible polynomial time approximation result that we can derive for 
an NP-hard problem. Woeginger(2000)introduced a set of conditions on optimization problems that 
guarantee the existence of an FPTAS. These conditions cover a relatively large subclass of the fully 
polynomial time approximable problems including the problem considered in this paper. 

A polynomial time approximation algorithm, named MWR, was designed for problem 1|
� =
|� . It was shown that its worst case ratio was bounded by 2. Next, we developed a dynamic 
programming algorithm and converted it to an FPTAS using the method of structuring the execution 
of an algorithm. The resulting FPTAS was found to run in $��ÁS�9<jk "%⁄ � time. 

As a perspective, we aim to adjust our scheme to handle the problem with any fixed number of 
distinct due dates. Another interesting research goal is to study the Tardy/Lost penalty function in 
other scheduling environments such as parallel machines or flow-shops and extend the results to more 
complex problems. Development of better approximation algorithms and FPTASs is also a 
challenging subject.   
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Appendix A: Proof of Theorem 1 
  Let G denote a sequence generated by algorithm MWR and each notation including an asterisk (*) 
be related to an optimal sequence. Algorithm MWR schedules jobs iteratively from the end of the 
sequence to the beginning. Through this procedure, jobs are classified into three groups, early, tardy, 
and lost. On the other hand, each job may be early, tardy, or lost in the optimal sequence. Thus, we 
get nine groups of jobs,�Â, Ã, �, Â′, Ã′, �′, Â′′, Ã′′, �′′�, as shown below. For example, sets �′′�3 	, . . . , �′′Äd3  include jobs in sequence G which are early in both the sequences and sets �′′�∗ 	, . . . , �′′Äe∗  include the same jobs in the optimal sequence. As another example, sets Ã′′�3 	, . . . , Ã′′Äd3  
are some jobs in sequence G which are early in G and tardy in the optimal sequence and appear in the 
optimal sequence in sets Ã′′�∗ 	, . . . , Ã′′<e∗ . Define the sum of the processing times of jobs in a sub-
sequence Åas �Æ. 
 


ÇÈÉÇ�ÊÇ		- =
Ë
ÌÍN�′′Äd3 , Ã′′Äd3 , Â′′Äd3 	, . . . , �′′�3 , Ã′′�3 , Â′′�3OÎÏÏÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÏÏÑGjQÒ�	�ÓF: N�′<d3 , Ã′<d3 , Â′<d3 	, . . . , �′�3 , Ã′�3 , Â′�3OÎÏÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÏÑHjQÔ�	�ÓF:

N�0d3 , Ã0d3 , Â0d3 	, . . . , ��3 , Ã�3 , Â�3OÎÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÑÒÓ:H	�ÓF:
Õ
Ö× 

T�b���S	
ÇÈÉÇ�ÊÇ =
Ë
ÌÍN�′′Äe∗ , Ã′Äe∗ , ÃÄe∗ 	, . . . , �′′�∗ , Ã′�∗ , Ã�∗OÎÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÑGjQÒ�	�ÓF: N�′<e∗ , Ã′′<e∗ , Â<e∗ 	, . . . , �′�∗ , Ã′′�∗ , Â�∗OÎÏÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÏÑHjQÔ�	�ÓF:

N�0e∗ , Â′′0e∗ , Â′0e∗ 	, . . . , ��∗, Â′′�∗ , Â′�∗OÎÏÏÏÏÏÏÏÏÏÏÐÏÏÏÏÏÏÏÏÏÏÑÒÓ:H	�ÓF:
Õ
Ö× 

First, we must compare the penalty of lost jobs in G (jobs in sets Â3, Ã3and�3) with some 
penalties in the optimal sequence; then, we should repeat this comparison for tardy jobs in sequence 
G. Given the fact that algorithm MWR selects jobs according to the non-decreasing order of their 	� ��⁄ ratios and that jobs in Â′3and Â′′3are not selected to be lost in G, we have  

 	��� ≤ 	��� ∀� ∈ �Â3 , Ã3�, � ≠ Ùf�Q:H�Ú� 				,				∀Û ∈ �Â′3 , Â′′3� �A1� 
 

Let Ùf�Q:H�Ú�  be the first lost job in G. Thus, it is obvious that the lost jobs in G except Ùf�Q:H�Ú�  cannot 
fill the time interval between 
�and 9:;<, but the lost jobs in the optimal sequence do. So, as jobs in 
sets B are common in both the sequences, we get 

��²�n�Ý + �Þ�Ý + �ß�Ý³ − �àá�5âã�ä�
0d
�>� < 9:;< − 
�
�N�n��∗ + �n���∗ + �ß�∗O ≥
0e
�>� 9:;< − 
� ¼½

¾
½¿ ⇒		�²�n�Ý + �Þ�Ý³ − �àá�5âã�ä�

0d
�>� <�N�n��∗ + �n���∗O

0e
�>�  �A2� 

 

From Eqs. (A1) and (A2), we conclude  

� � ���∈n�Ý
+0d

�>� � � ���∈Þ�Ý
− �àá�5âã�ä�

0d
�>� < � � ���∈n��∗

+0e
�>� � � ���∈n���∗

0e
�>�  �A3� 

 

The above inequality can be summarized as �nÝ + �ÞÝ − �àá�5âã�ä� < �n�∗ + �n��∗. Let ��Ú�3  and ��Ú�∗  

denote the penalty of the lost jobs in G and in the optimal sequence, respectively. So, 
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��Ú�3 = �nÝ + �ÞÝ + �ßÝ< �n�∗ + �n��∗ + �àá�5âã�ä� + �ß∗ �A4� 
 

In order to evaluate the penalty of tardy jobs in G, we should compare the penalty related to sets Â′3, Ã′3 and �′3with some penalties in the optimal sequence.  

��å�3 = � � q	�N��3 − 
�Ox +�∈n��Ý
<d
�>� � � q	�N��3 − 
�Ox�∈Þ��Ý

<d
�>� +� � q	�N��3 − 
�Ox�∈ß��Ý

<d
�>�  �A5� 

 

Jobs in sets H are penalized only in the optimal sequence and so, the worst case ratio occurs when 
the tardiness weights, 	�, are equal to zero for these sets. Therefore, according to the WSPT order for 
tardy jobs in the optimal sequence, we conclude that sets H must be scheduled after sets �′ and Ã′′ in 
the optimal sequence. Therefore,  

T�b���S	
ÇÈÉÇ�ÊÇ = �N�′′Äe∗ , Ã′Äe∗ , ÃÄe∗ 	, . . . , �′′�∗ , Ã′�∗ , Ã�∗ON�′<e∗ , Ã′′<e∗ 	, . . . , �′�∗ , Ã′′�∗ , Â<e∗ , . . . , Â�∗ON�0e∗ , Â′′0e∗ , Â′0e∗ 	, . . . , ��∗, Â′′�∗ , Â′�∗O �
 In the following, we will consider the three expressions in (A5) one by one. Let æÞ��Ý and æß��Ý 

show the starting times of sets Ã′�3 and �′�3 in sequence G, respectively. As algorithm MWR selects 
jobs in Ã′�3 after jobs in Â′�3 for each � ∈ �1,2, . . . , ���, we have  

� � q	�N��3 − 
�Ox ≤�∈Þ��Ý
<d
�>� � � ç	� è � ²�Þ�5Ý + �n�5Ý³ +��ß�5Ý

<d
Q>� + ²��3 − æÞ��Ý³

<d
Q>�1� éê

�∈Þ��Ý
<d
�>�

																																										= � � ç	� è � �Þ�5Ý +��ß�5Ý
<d
Q>� + ²��3 − æÞ��Ý³

<d
Q>�1� éê

�∈Þ��Ý
<d
�>� +� � ë	� � �n�5Ý

<d
Q>�1� ì

�∈Þ��Ý
<d
�>�

																																									≤ � � ç	� è � �Þ�5Ý +��ß�5Ý
<d
Q>� + ²��3 − æÞ��Ý³

<d
Q>�1� éê

�∈Þ��Ý
<d
�>� +� � ë	� ��Þ�5Ý

�
Q>� ì

�∈n��Ý
<d
�>�

 �A6�

 

Similarly, we conclude the following inequalities for sets �′�3.  

� � q	�N��3 − 
�Ox ≤�∈ß��Ý
<d
�>� � � ç	� è � ²�Þ�5Ý + �n�5Ý + �ß�5Ý³ + ²��3 − æß��Ý³

<d
Q>�1� éê

�∈ß��Ý
<d
�>�

																																											= � � ç	� è � ²�Þ�5Ý + �ß�5Ý³ + ²��3 − æß��Ý³
<d

Q>�1� éê
�∈ß��Ý

<d
�>� +� � ë	� � �n�5Ý

<d
Q>�1� ì

�∈ß��Ý
<d
�>�

																																											≤ � � ç	� è � ²�Þ�5Ý + �ß�5Ý³ + ²��3 − æß��Ý³
<d

Q>�1� éê
�∈ß��Ý

<d
�>� +� � ë	� ��ß�5Ý

�
Q>� ì

�∈n��Ý
<d
�>�

�í7� 

 

Next, considering the direct penalty of sets Â′�3 and their penalty in (A6) and (A7), we get  
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� � q	� . N�� − 
�Ox�∈n��Ý
<d
�>� +� � ç	� ��Þ�5Ý�

Q>� ê
�∈n��Ý

<d
�>� +� � ç	���ß�5Ý�

Q>� ê
�∈n��Ý

<d
�>�

								= � � ç	� è�� +��Þ�5Ý�
Q>� +��ß�5Ý�

Q>� − 
�éê�∈n��Ý
<d
�>�

							≤ � � q	��
� − 
��x�∈n��Ý
<d
�>�

						=��n��∗
0e
�>�

 �A8� 

 

And so,  

��å�3 = � � q	�N��3 − 
�Ox +� � q	�N��3 − 
�Ox�∈ß��Ý
<d
�>��∈Þ��Ý

<d
�>� +� � q	�N��3 − 
�Ox�∈n��Ý

<d
�>�

								≤ � � ç	� è � �Þ�5Ý +��ß�5Ý
<d
Q>� + ²��3 − æÞ��Ý³

<d
Q>�1� éê

�∈Þ��Ý
<d
�>�

													+� � ç	� è � N�Þ�5Ý + �ß�5ÝO + ²��3 − æß��Ý³
<d

Q>�1� éê
�∈ß��Ý

<d
�>� +��n��∗

0e
�>�

						= �îÔd1∑ î{ï��Ý1{ð��Ýñ~d�òd ñqß�~dÝ ,Þ�~dÝ ,...,ß�eÝ,Þ�eÝ,ß�dÝ,Þ�dÝx +��n��∗
0e
�>�

 �í9� 

 

Suppose Ùf�Q:H�å�  be the first tardy job in sequence G. Thus, 
 

��nÝ + �ÞÝ + �ßÝ + �n�Ý + �Þ�Ý + �ß�Ý − �àá�5âã�ó� < 9:;< − 
�
�n�∗ + �n��∗ + �ß∗ + �n∗ + �Þ��∗ + �ß�∗ − ²
� − æß�~e∗ ³ ≥ 9:;< − 
�ô⇒				 �Þ�Ý + �ß�Ý < �n��∗ + �Þ��∗ + �ß�∗ − ²
� − æß�~e∗ ³ + �àá�5âã�ó�

 �í10� 
 

Given the fact that jobs in Â′′∗ and Ã′′∗ are not selected as tardy or lost by algorithm MWR, we 
can conclude 	��� ≤ 	��� ∀� ∈ �Ã′3�				,				∀Û ∈ �Ã′′∗, Â′′∗� �A11� 
 

 From (A10) and (A11), we derive 

�îÔd1∑ î{ï��Ý1{ð��Ýñ~d�òd ñqß�~dÝ ,Þ�~dÝ ,...,ß�eÝ,Þ�eÝ,ß�dÝ,Þ�dÝx < �¹Ôd1∑ ²{ð��∗1{ï���∗³~e�òd /²Ôd/õð�~e∗ ³1{öá�5âã�ó� º
÷àá�5âã�ó� ,ß�~e∗ ,Þ��~e∗ ,...,ß�e∗ ,Þ��e∗ ,ß�d∗ ,Þ��d∗ ø + �n��∗

																																													≤ �ß�∗ + �Þ��∗ + �àá�5âã�ó� . è� � 	��∈ß��∗
+� � 	��∈Þ���∗

<e
�>�

<e
�>� é + �n��∗

																																												≤ 2�ß�∗ + 2�Þ��∗ + �n��∗
 �A12� 
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The last inequality in Eq. (A12) is derived from the following relations and the fact that in each 
iteration, algorithm MWR checks if there exists a job filling the remaining tardiness period. �àá�5âã�ó� ≤ ��∗ − 
�																																									∀Û ∈ ��′∗, Ã′′∗� �í13� 
�àá�5âã�ó� . è� � 	��∈ß��∗

+� � 	��∈Þ���∗
<e
�>�

<e
�>� é ≤� � q	�N��∗ − 
�Ox�∈ß��∗

+� � q	�N��∗ − 
�Ox�∈Þ���∗
<e
�>�

<e
�>�																																																														= �ß�∗ + �Þ��∗

 �í14� 
 

Now, by summarizing (A4), (A9), and (A12), we get 

���Ú�3 	≤ �n�∗ + �n��∗ + 2�ß∗��å�3 	≤ �n�∗ + �n��∗ + 2�ß�∗ + 2�Þ��∗ù ⇒ ��Ú�3 + ��å�3 ≤ 2�n�∗ + 2�n��∗ + 2�ß�∗ + 2�Þ��∗ + 2�ß∗
																																																																				⇒ �3 ≤ 2�∗

 

If the first lost job, Ùf�Q:H�Ú� , fills the entire tardiness period, then no tardy job is created by algorithm 

MWR. In this case, job Ùf�Q:H�Ú�  has the smallest weight among unscheduled jobs and sequence -2 is the 

related sequence.  The main sequence in MWR is denoted by - and it has already been proved that it 
gives a worst case ratio of 2. Step 7 of the algorithm selects the best of sequences G and -2 and hence, 
the final result of MWR is a 2-approximation which completes the proof.        ■ 

 

 

  


