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Abstract

This paper addresses the Tardy/Lost penalty miwiticiz with common due dates on
a single machine. According to this performance sueg if the tardiness of a job
exceeds a predefined value, the job will be losd penalized by a fixed value.
Initially, we present a 2-approximation algorithmdaexamine its worst case ratio
bound. Then, a pseudo-polynomial dynamic progrargraigorithm is developed. We
show how to transform the dynamic programming atgor to an FPTAS using the
technique of "structuring the execution of an alfpon” and examine the time
complexity of our FPTAS.

Keywords: Single machine scheduling, Tardy/Lost penalty, Cammiue date,
approximation algorithm, FPTAS

1- Introduction

In this paper, we study a single machine scheglydroblem related to minimizing total Tardy/Lost
penalties and common due dates. Everyijdb< i < n) has a processing timg;, and a weight
tardiness factorw;. The jobs have two common due dates, naméland d,. In case a job is
completed before the first due datg,no penalty is assigned; if the completion timdesweend,
andd,, the job will be penalized by a linear tardinessgity; and finally, the job will be lost and a
fixed amount of penalty;, will be assigned if it is completed after the@st due dated,. Based on
this formulation, we can define the Tardy/Lost alijpe function as shown in Eq. (1), whetgs the
completion time of jold in a sequence.

Z = {Wimax{O, C;—dy} if C;<d, )

s; = wi(d; —dy) if C; > d,

Figure 1 shows the Tardy/Lost penalty functionjédri based on its completion time.
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Fig. 1. Tardy/Lost penalty function with common due dates

We assume that all processing times and due dag&sneegers, the machine is continually
available from time zero and it can process at rapstjob at a time. The resulting problem is deshote
by 1|d; = d|TL, whereTL indicates the Tardy/Lost performance criteria. Y ({#992) has shown that
the tardiness minimization problem with a commorm diate (CD_T) is NP-hard. Since CD_T is a
special case of Tardy/Lost penalty function evadan this paper, this function is also assumeakto
NP-hard.

Objective functions of real-life manufacturing pledns are often much more complex than the
well-known scheduling performance measures. Depgnain the type of contractual penalties and the
expected goodwill of future revenue losses incyrredny types of non-linear tardiness penalty
functions may arise. Tardy/Lost measure combinesfutures of two objective functions: weighted
tardiness and weighted number of tardy jobs.

From a practical point of view, tHEL penalty function is applicable in delivery contsaanost of
which are arranged based on two due dates. If derds early, then no penalty is considered; the
order will be penalized if its delivery time excsethe first due date. The penalty is increased in
proportion to the delivery time until the seconddiate is reached. If the delivery occurs laten tha
the second due date, the order becomes lost asthgethaximum fixed penalty.

The Tardy/Lost performance measure can be consideye special case for scheduling problems
with order acceptance assumption. Here, the olbgedsi minimizing weighted tardiness on a single
machine and a common due date where the rejeatisinfar a jobi can be defined agl, — d;)w;.
Order acceptance assumption has been investigatilywn the literature. Engels et al. (2003)
investigated the problem of minimizing weighted q@detion times and rejection penalties and
developed some approximation algorithms. The supamers by Slotnick (2011) and Shabtay (2013)
have addressed a number of scheduling problemsondtr acceptance.

The performance measure we consider in this stedg kind of regular measure which is
continuous and non-decreasing in the completioegimf jobs. With such performance measures,
jobs are penalized only for being tardy, whileimllentory costs due to early completions are igdore
Pinedo(1995) indicates that in practice, the pgnfaibction associated with a scheduling problem
may follow from a function in which early jobs amssigned no penalty and those finished after their
due dates are assigned a penalty that is incredsediven rate. Within the penalty function, thb j
reaches a point where the penalty assignment isgeldaand increased at a much slower pace. The
function identified by Pinedo(1995) is general; leeer, two more specific functions that react
similarly are the deferral cost function (LawleQ6#) and the late work criterion (Potts and Vav
Wassenhove, 1992a, Potts and Vav Wassenhove, 1992b)

Assume that we have an approximation algorithm @hatys returns near-optimal solution whose
cost is at most a factor g away from the optimal cost, whepe> 1 is a real number. In
minimization problems the near-optimal cost is aistna multiplicative factor op above the
optimum. Such an approximation algorithm is caliggapproximation algorithm. A family of (le)-
approximation algorithms over al> owith polynomial running times is called a polynoimigne



approximation scheme, or PTAS for short. If theetioomplexity of a PTAS is also polynomially
bounded inl/e, then it is called a fully polynomial time approxation scheme, or FPTAS for short
(Woeginger, 2000).

Deferral cost functions have been studied by Kaltlbg1993). He considered general penalty
functions to be monotonous with respect to absdaiess. He also examined several specific cases
of the penalty function for situations in which rmaee idle times are allowed (the unconstrained
problem) or not allowed (the constrained probledging the "V-shape property”, he constructed an
optimal schedule with a pseudo-polynomial algorittamd extended it to an FPTAS of the
ordei0 (n3/¢), wheres denotes the precision of the approximation satutio

Federgruen and Mosheiov (1994) considered a cfasiagle machine scheduling problems with a
common due date and general earliness and targieesdties. In that study, some polynomial greedy
algorithms were proposed for generating scheduidsassmall optimality gap was illustrated through
numerical examples. For convex cost structureg, #heo established that the worst case optimality
gap was bounded by 0.36 if the due date was ndrietese. Baptiste and Sadykov (2009) considered
the objective of minimizing a piecewise linear ftion. This class of functions is very large and can
also be used to model some classical objectivetibng; i.e., total (weighted) completion time, tota
(weighted) tardiness, and (weighted) number ofytgadbs. They introduced a new Mixed Integer
Programming (MIP) model based on time interval degosition. This MIP model was closely
related to the classical time-indexed MIP formulafibut used far fewer variables and constraints.

The research by Ventura and Radhakrishnan (2008)séal on scheduling jobs with varying
processing times and distinct due dates on a singtéhine. Zhou and Cai (1997) examined two types
of regular performance measures, the total costtlamanaximum cost, with general cost functions.
They studied a stochastic scheduling model onglesmachine where processing times were random
variables and the machine was subject to stochlastakdowns. In the paper by Shabtay (2008), two
continuous and non-decreasing objective functioaseveonsidered. They included penalties due to
earliness, tardiness, the number of tardy jobsdareddate assignments.

In the present study, we simply observe that thelyfhost penalty function can be converted to a
late work criterion that estimates the quality afadution on the basis of the duration of the |zes
of jobs. This conversion is accomplished by setting= 1 (Vi = 1,...,n)andd,; = dy; + p;, Where
d,; andd,; are the first and second due dates for eachi.jothe results concerning late work
scheduling problems are partially presented in GHeal. (1998) and Leung (2004), but Sterna (2011)
offers the first complete review of the topic.

A number of researchers have addressed the praiflermimizing the total late work criterion on
a single machine. Potts and Van Wassenhove (1998ppsed a polynomial time algorithm based on
the similarity between tardiness and late work petars. In another study (Potts and Vav
Wassenhove, 1992a), they developed a branch-antdkagorithm for a problem forming the core of
a family of approximation algorithms based on tated enumeration. References (Sterna, 2007b,
Pesch and Sterna, 2009, Sterna, 2007a, Blazewadz @008, Ren et al., 2009) may be consulted for
other studies devoted to the late work criterion.

Kathley and Alidaee (2002) modified the definitiohthe late work criterion by introducing two
due dates for each job, called due date and deadiimey called the proposed performance criterion
"modified TWLW', which was very similar to the Tardy/Lost pendiipction we have considered in
this study. Kianfar and Moslehi (2013, 2014)studsetne tardiness-based objective functions on a
single machine with common due dates. They devdlogeproximation algorithms as well as
FPTASS for the problems. The worst-case ratio bewamnd also proved in some cases.

As the Tardy/Lost penalty function is a generahfoof the late work criterion, most practical
applications of late work can be equally definedling penalty function. Some of the applications in
problems arise in control systems (Blazewicz, 1¥83ts and Vav Wassenhove, 1992b), production
and planning process (Sterna, 2000, sterna, 20@@¥jculture (Alminana et al., 2010), land
cultivation processes (Blazewicz et al., 2004, r&ter2000), and processes of planning tests for
prototypes or software validation (sterna, 2006).

The rest of this paper is organized as follows.Skction 2, we propose an approximation
algorithm and examine its worst case ratio boumdtiSn 3 describes a pseudo-polynomial dynamic



programming algorithm that, in Section 4, will bengerted to an FPTAS using the technique of
structuring the execution of an algorithm. Conahgdiemarks will be presented in Section 5.

2- MWR" approximation algorithm

Here, a 2-approxiamtion algorithm is developed groblem1|d; = d|TL. By using a numerical
example in a later stage, it will be shown thatwloest case ratio bound of 2 is tight for this pewb.
We refer to this algorithm as MWR and designate sbquence it generates @s We adopt the
notation gp;to represent the job if" position in the sequene= 9y 9izp -+ 9pmy) - HeuristicG
requires at most iterations, while, in each iteratidg the f-k+1)" element ofG, Jin—k+17 Will be
determined. Furthermore, if, during an iteratidrere exists an unscheduled job filling the remajnin
tardiness period with the minimum tardiness weitig, relevant sequence (seque@gevill be saved
in addition to the main sequenGe The algorithm returns the best of the two seqeg@cand( as
the final result.

Let Z¢denote the penalty of sequer(éaanng[r'n]denote the total penalty of jobs from position
rton in this sequence. Suppose that all jedoe sorted and indexed according to the non-ddéogeas
order ofw; /p; ratios. In the case of a tie, the job with the ltesa processing time should come first.
The steps of the algorithm are as follows:

Step llet U={1,2,..,n} be a set of unscheduled jobs sorted accordinghéir tindices
(according to the non-decreasing ordewgfp; ratios). SeCp,) = Peym = Xi=q p;andr = n.

Step 2.Define U = {i € U | p; = Cjpyy — dy}. If U is empty, therZ,,, = co; else, select a job
iwith the minimum tardiness weight frobh Let g, = tandZyese = wy(min{Cp,, d,} — d;).

Step 3.Define the first job irJ as jobk; also, seU = U/{k}, g;y) = kandCp,_1 = Cpp — Py

Step 4.1f U = {i €U |p; = Cyproq)— dl} is not empty, select a jdbwith the minimum tardiness
weight from U. CalculateZ = wy(min{Cj_1},dz} —d1). f Z + Zypn) < Zpese then we have
Zbest = 2 + Zg[r,n] andﬁ[i] = g[l] Vi = r,...,nandﬁ[r_l] =1.

Step S.If €1 > dy, thenr = r — 1 and go back to Step 3; else, go to Step 6.
Step 6.Put unscheduled jobs at the beginning of eacheo$éiguenceSandG.

Step 7.If Z6 < ZC, then return sequend@ = (9111 9p2ps -+ 9ny); €lse, return sequende =
(9t Gy -+ Gma)-

It can be easily verified th& has the same order as WSPT &islthe best sequence obtained by
filling the remaining tardiness period with one jiobeach iteration. This algorithm includes a sienpl
sorting ofn elements and hence, its time complexigy(is logn).

Now, we provide a numerical example to illustrabevithe MWR algorithm works. Later, we will
use a theorem to prove that the worst case ratindof this algorithm is equal to 2.

Example 1.Consider a problem|d; = d|TLwith 4 jobs described in Table 1. S&t = 10and
d, = 12.

L. Minimum Weight Ratio



Table 1.Parameters of jobs in Example 1
Job i

5
4
6

AN
[EY
Sown

1

a

At the beginning,U is empty andZ,.,; = «. The following table summarizes the results of
algorithm MWR for this problem.

Table 2.Summary of applying MWR algorithm for Example 1

r=4 30 {4} 32 4 36
r=3 25 {4 32 10 36
r=2 21 {4 32 20 36
r=1 15 (

From Z¢ = 52and Z¢ = Zpest = 36, algorithm MWR returns sequendg as the approximate
solution.

Theorem 1.Algorithm MWR gives a 2-approximation for probléid; = d|TL.
Proof. See the Appendix. [

In the following example, we show that the worgteceaatio bound of algorithm MWR for problem
1|d; = d|TLis a tight bound.

Example 2.Consider the problem|d; = d|TL with n > 2jobs such thatl; =n —landd, =
2n — 1. The parameters are those given in Table 3.

Table 3.Parameters of jobs in Example 2

Jobi
1 n n+1/n
2ton 1 1+1/n

Algorithm MWR returns the sequend@,3,...,n,1) with a penalty value ofi? + 1while the
optimal sequence ,2,...,n), generating the penalty/2n? + 2n — 1/2. Thus,
VA n?+1 z¢

- =T 3 = llm—*=2 2
A %n2+2n—l n-o / ( )

3- Dynamic programming algorithm

Suppose that jobs are indexed according to ahedecreasing order @f /w;and ties are broken by
first selecting a job with the minimum. An optimal solution is composed of three groupgobs.
The first group includes early jobs with completiones less thah . The second group includes the
tardy jobs with completion times betwedpand d,, which must be scheduled according to their
reverse order of indices (the first tardy job, edlktraddling job, may not adopt this order). Ljobs
with completion times greater thdn are placed in the third group by an arbitrary orde



The problem can be optimally solved by applyingfillowing dynamic programming algorithm.

In this algorithm, each state in the state qui(:’g“) shows a particular sequence for fiksjobs

excluding the straddling one, where the straddiatge and its completion time;,,, are predefined.
We use the vectd(t,, t,, f) to denote states. Variablesandt, show the sum of processing times
for jobs in the first and second groups, respeltivendf is the total penalty of the corresponding
partial sequence.

In each iteration, the algorithm selects a ¢ohs the straddling and fixes its completion tiifig,
from all possible values within the scheduling hon. Jobs in the first group, early jobs, are
continually scheduled from time zero (see Fig. ®hile tardy jobs are scheduled by starting frow t
completion time of the straddling job (see Fig). Finally, lost jobs are scheduled in such a weat t
they are completed at tinkg,,,,, = Y./~ p; (see Fig. 8).

Let Z , denote the optimal objective value subject toabiedition in which jobx is selected as

the straddling one with the completion tilfie This algorithm can be described as follows.

Algorithm DP

Step 1. For eactw = {1,2,...,n} and eacl€,, € [d; + 1,d; + p,]
11 Sety{*® ={(0,0,0)}
(arca)

12. Foreachk ={1,2,...,a—1,a+1,...,n}, consider all the statés,, t,, f) inv,_;

o] If t; + pr < C, — pa, then add the state; + py, t,, f) to the state spaa&éa'c"‘)

0  If Cy+t, +py < dy, then add the stafe,, t, + py, f + wi(Cy + t5 + i — dy)) tO

the state spaag™‘®

o] Add (tq, t,, f + s)to the state spaoé

1.3.  For all stategty,t,,f) € v,E“'C“) with equal values for;andt,, keep at most one state
having the minimum value ¢f

14. Remove the state spaz;ﬁ%’f“)
15 SetZ,¢, = min {f + wy.(min{Cy, d,} —dy)}

C
[t1.t2.f]€V,(ﬁl“)

Step 2. Return the optimal solutiafi* = m(l;nzg‘[,(;a
a,lg

a,Cq)



a. Partial schedule associated with sfatet,, f) in viﬁf“)

t d d

Z

b. Add state(t; + py, t,, f) to state space.™“

ift, +p, < d;

1
e .
|

C. Add state(t;, t, + pr, f + wie(Cq + t5 + pi)) tov @ iC, + t, + pr < dy

l

T d ", d

L d g d

i

Fig. 2 Description of the dynamic programming algorithm

To calculate the time complexity of this algorithag all input parameters are integers, we can

restrict the number of states in ea/(,f,ﬁ'c“)by d,(d, — d,). This is because variablesandt,can at
most taked, and d, —d; different values, respectively. Also, in each atem and for each
combination oft;andt,, we keep at most one state with the smallest \atie

Let B4, be the maximum processing time of jobs. The rumtiime of Step 1.2.is proportional to

n1 |v,g“'c“) and hence, it iad,(d, — d,). Similarly, it can be shown that the complexitystép

15 isO(d1 (d, — dl)). Step 1 iterates at masP,,,times by selecting different andC, values and
has the complexity 00 (n2B,q,d;(d, —d;)). Finally, as Step 2 need¥(nP,,,) time, the total
complexity of this algorithm will be obtained ainszxdl(d2 - dl)). Alternatively, we can write
the complexity of this algorithm at:‘,?(nPsumd1 (d, — dl)) because the maximum number of
iterations created by selecting the valuea ahdC, can also be consideredRg,,instead of P, 4.

4- FPTAS algorithm

This FPTAS is based on two phases. In the finstse, algorithm MWR is used to determine an
upper bound for probler|d; = d|TLand in the second phase, the execution of theidlgoDP is
modified in order to reduce the number of stated te running time. One common way used for
transforming a dynamic programming algorithm to RBTis the technique o$tructuring the
execution of an algorithm. The main idea of this technique is to remove ecisp part of states
generated by the algorithm in such a way that tloeified algorithm becomes faster, yielding an
approximate solution instead of the optimal oneésThethod was first introduced by Ibarra and Kim
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(1875) for solving the knapsack problem and it basn extended to numerous scheduling problems
(see (Shabtay et al., 2012, Shabtay and bensou&3ad, Ji and Cheng, 2010, Steiner and Zhang,
2009, Kacem and Mahjoub, 2009)).

Let Zy denote the objective value returned by algorith/RI for an instance of the problem
1|d; = d|TL ande be the maximum acceptable error for the FPTAS.oAtiag to the technique of
structuring the execution of an algorithm, we stawlstrict all factors that allow the size of thets
space to grow in an uncontrolled way. These fadtomur algorithm are the variables andfin the
stateq(t;, t,, f) as well as the completion time of the straddlivig

By selecting a jolx as the straddling, we split its completion timemalC, € [dy + 1,d; + pg]
into L; sub-intervals|[d; + (41)*71],|d1 + (41)?]], whered; =1+¢/3 andy =1,2,...,L;. The
maximum number of these sub-intervals is

= 105 < [10g4m] = [1nPrax/ 811 < [(1 + 3/€)InPras] 3)

So, we havd.; = 0(InP,,,,/€). The last inequality holds since for al&> 1, we haveln z >
(z — 1)/z based on the Taylor expansiont. Therefore,

1 _ 4 1+¢/3
In(4,) ~4,-1 1+¢/3-1

=1+4+3/¢ 4)

To restrict the number of different values fgr setLB = Zy /2 and4, = (e.LB)/(3n). Let there
be m distinct values among tardiness weightsof n jobs. Sort these values in a decreasing order
such thatw,, > w,, >...>w,_and create the permutatiéh= (1,7, ..., ). Split the interval

[0,Zy/wy, | intom mtervals

11-[0—] 12—[2” L0 1m=[ZH Z—“’] (5)

an— 1 WT[m

Then, split each intervd] into the sub-intervals of the Iengﬂg/(n.wnj). It may appear that the
last of the sub-intervals of an intervalis shorter tham, /(n -an)' The maximum number of sub-
intervals created by the above procedure is

L2=

m
Zy ><n.w,,l_l_z: Zy  Zy ]n.wm
Wy 4, Wg, Wg,_ | 43

1 = ©)

m
Zy Wy, Zy Z
Sn.z A Tilsmon.E<nz 22
=~ Wy, 4 4, Az

i=

and sinceZ,; /A, = 2LB/A, < 6n/es, we conclude that, = 0(n3/¢).

In order to make the number of distinct value$ adntrollable, we split the related interya) Z, |
into L; equal sub-intervalsl’,, = [(m — 1)45,m45] of the length 4; ,wherd <m < L;.
Considering.; = [2n/eland4; = ZH/L3, we getL; = 0(n/¢).

Next, the FPTAS algorithm will be designed by meahbounding the number of different values
that each of variabl€s, t, andfcan take in the DP algorithm. Also, the time comeof this
FPTAS as well as its worst case ratio bound wiltlseussed.

This FPTAS works on a reduced state spzi@‘ec'“)# instead of the main state spax,f&'c"‘) and
returns the approximate solutionZf. The algorithm can be described as follows.



Algorithm FPTAS

Step 1. For eachw = {1,2,...,n} and eaclt’, = [d; + (4,)”] , y=0,1,...,L,

11 Setv{*““* = ((0,0,0)}

12. Foreachk ={1,2,...,a—1,a+1,...,n}, consider all the statés,, t,, f) in (@ Cra)#

k-1
0 If t; +px < Cy — pg, then add statét; + py, t,, f) to the state spaoé?“'c’“)#

0 Add(ty,t; + pr f + wr(min{Cq + t; + py, d,} — dy)) to the state spaq;(,é”"c’“”’E

0 Add (t1,t, f + sp)to the state spaag®'=*

1.3. For all stategty, t,, f) € v,E“'C'“)# with equal values for;andt,, keep at most one state

with the minimum value of.

1.4. Remove the state spa@%ﬁf a)#
(a,Cro)#

15. Keep at most one state with the smallest valug aimong all state&t;, t,, /) € v,
laying in common sub-intervals foy andf .
1.6. SetZ;f,C,a = min {f + w,. (min{C',,d,} — d;)}

(a,Crg)#
[tytafleEv, ¢

Step 2. Return the approximate solutidf = mCian;’;E cr
aCr, 7

In the FPTAS algorithm, we have replaced the statertif C, + t, + py < d,, then add state
(ty,t + pr, f + wi(Cq + t, + p — dy))” from step 1.2 of the DP algorithm with phrase destate
(t1,ty + P, f + wie(min{Cy + t; + pi, d,} — dy))’". Here, we have two cases:

Cp+ty+pr <d, =w(min{Cy+t, +pi,dy} —dy) = wi(Cy +ty, +pp —dy)
Co + 1ty + i > dy = wi(min{Cy + t; + pi, dy} — dy) = wi(dy — dy) = s

The first case shows the same condition as in tRealgorithm and in the second case, kois
scheduled in the second group, but its complefime tis greater thad, and its tardiness penalty
equalss,. According to this, we do not need to restrictiaflet, in the FPTAS because penalties are
calculated correctly and from Egs (5) and (6), menber of intervals for variablgis 0(n3/¢),
which is sufficient for the FPTAS.

4-1- Analysis of wor st case ratio bound
The worst case analysis of this FPTAS will bedahon comparing the steps of algorithms DP and
FPTAS. We may remark that the main action of FPTeAS8sists of reducing the cardinality of the

state spaces by splitting the intervals @f, t, andfinto sub-intervals and then replacing all vectors
(t1,t5,f) € v,E“’C“)# belonging to the same sub-intervals by a singler@apmate state with the
smallestt;. Let WX, denote the maximum tardiness weight for a tardbyijothe DP between jobs
kton.

Wk =max{w; |0 <i<n—k,Cpyi > Cy} (7

Lemma 1.Suppos€t,, t,, f) is an arbitrary state iV;E“’C“). Algorithm FPTAS creates at least one

state(¢f, ¢, f#) in v&CD* such that
th <ty (8)
th <t,+ (k.42)/(n.Wkay) 9)

and



fA<f+kd,+kas+ (e/3)f (10)

Proof. The proof is done by induction on paramekeFirst, fork = 0, the statement is trivial

becauseé“‘c'“)# = vé“'c"‘). Now, assume that the lemma holds up to l&kand we want to show

that it is valid for levek. Consider an arbitrary stafe;,t,, f) € v,E“‘C“). Algorithm DP introduces

this state intO/,E“'C“) when jobk is added to some feasible state for the kiktjobs. Let(t';,t',, f')

be the above feasible state.

If Wk, =0, the proof is trivial because in this case, thiemo tardy job in the DP between jdbs
and n and the DP algorithm schedules the remaining pb®arly. In this condition, the FPTAS
algorithm can also schedule the remaining jobsagly,ebecausei < t; and there is enough empty
space for the early jobs in the FPTAS. In otherdsoiX,,, = 0 means that the penalty for the DP
remains unchanged from stdpt n and the FPTAS algorithm is also able to creatate & the final
stepn with the same penalty as stdte So, the proof of lemma 1 is obvious in this cdiodi
According to the above discussion, we assfffg,, > 0 in the rest of the proof.

Let C, and(C’, denote the completion time of the straddling jobaigorithms DP and FPTAS,
respectively. Also, leT,; andT’, be the tardiness of the straddling job in these agorithms. The
FPTAS algorithm considers the completion time far straddling job a§', = |d; + (41)Y] , y =
0,1,...,L;. This divides the possible interved, + 1,d; + p,] into L; integer subinterval§[d, +
47, 1dy + (4711 , y=1,...,Ly. Given the fact that the completion time of theadtiling
job in the DP(,, also falls in intervald; + 1,d; + p,], we have

VCo €1y =[[d; + (A)Y ', 1dy + (A)Y]] = 3C = [dy + (4] Vy=1,...,1L
5Ce=di+ ()Y = Cu—dp = (AT
= A (Co—dy) 2 AL (A= () 2 [(8)Y] =Cy—dy aDn

Ai=1+¢/3 €
= MTg 2T —— T S Te+3Tg

Three cases can be distinguished here. In thedimst we havét,, t,, f) = (t’1 + D, t’z,f’). The
second possibility i§ty, t5, f) = (t'1,t'5 + b, [+ wie(min{C, + t'; + px, d2} — dy)) and the third
one is(ty, ty, f) = (t'y, t'5, f' + s,). We want to prove the statement for lele@ these three cases.

Ca%A.(tl,tz,f) = (tll + pk' tlz,f,)

Sincet';, t'5, f') € v, we have a statét’l#,t’g,f’#) e v®““* in such a way that’,* <
ty, <t +((k—1).4,)/(n.Wkl) andf'* < f' + (k — 1)4; + (k — 14, + (¢/3)f". Thus,
the state(t’l# + Pty f’#) is yielded by algorithm FPTAS at level k, but wayrthrow this state

away when reducing the state space.(l¢t, y) be the remaining state hﬁ“'c'“)# that falls in the

same sub-intervals of andfas(t’l# + Pr, t’z#,f’#) after reductionSo,

A<t o stitme=t (12)
A
u<th+—=
n max
. (k—=1)4, 4,
<t,+ = 2 (13)
nWmax nWmax
4,
<ty +——
max
also,
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y<ft+4,
<f'+ k-4, + (k—1)A43+ (e/3)f + 45 (14)
< f+kd, +kd; + (e/3)f

The last inequality in Eq. (13) is derived frafif,, < W,k L. Therefore, the statement holds for
levelk in this case.

CaseB.(ty, ty, f) = (1, /2 + P, f1 + wie(min{Cy + t'; + P, do} — dy))

Since (¢'1,t2, f) € vi“«, we have a statgr’,”, ¢4, ") € vi*{'@" in such a way that
t <ty 5 <ty + ((k—1).4,)/(n. W) and f'* < f' + (k — )4, + (k — 14, + (¢/3)f".
Therefore, the Stat€<t'f, '8 + o, [+ wie(min{C' o + '8 + Dy, do} — dl)) is generated by

algorithm FPTAS at level. But, we may eliminate it in step 1.3. L@t,u',y") € v,ﬁ“'c'“)# be
the remaining state that is in the same sub-intgrva and fas

(f”f, '8 + pr, [+ wie(min{C'y + '8 + i, d,} — dl)) after reduction. So,

/1, S tll# S tll = tl (15)
A, (k —1)4, A, kA,
W<t +p+ <t ,+————+p + <t,+ (16)
anliax nlgaag anliax anIgax

Y <f#*+ wk(min{C,i;‘E + t’§ +p,—dd, — dl}) + 45
<f'*+ Wk(min{T,j'jt +t'% + pp,dy — dl}) + 45
<P+ wi(Td+ 05 + o) + 45

(k —1)4,
<f'+ (k-4 +(k—1)A5+ (/3)f +wy (T,; + (e/3)T; +t', + WL + pk> + 4,
, , . (k — 14, a7,
< f' 4+ (k= 1Ay + kds + (e/3)f + wy, <Tk + (e/3)T, +W>
(k —1)4,
< f+ k=14, + kd; + (e/3)f + wy ((8/3)T; + W)

< f+kdy+ ks + (e/3)f +wi((e/3)T5)
< f+kA, +kA; + (e/3)f

It can be easily seen that the inequalities in(E¢) are concluded from the following relations.

TH< T + (e/3)Ts (18)

Te =T;+t, +pi (19)

f=1+wTg (20)
k—1)A k—1)A

W ( k)_lz < ( )4, <4, 21
n-Wmax n

Accordingly, the statement holds for lekeh the second case.
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Case C.(ty,ty, f) = (', 5 f' + 1)

Since [t'y,t'5,f'] € vi“{®, we have a statée’,”,¢%,f) e vi®'" in such a way that
t <ty v <t +((k—1).4,)/(n.wkzDand £* < f/ + (k= 14, + (k — 14, + (¢/3)f".
Thus, the statét’l#, "+ sk) will be created by algorithm FPTAS at lewelvhich may
be eliminated when reducing the state space(Aet"”,y"") be the remaining state hﬁ“’c'“)#
that is in the same sub-intervalst@&ndfas(t’l#, ¢, s ) after reduction. So, we have

s st = =
" ’ AZ ' (k - 1)A2 Az kAz
p'sth+——=<t, p— — <ty +— (23)
n max nWmax nWmax nWmax
also,

V' < f#+s,+4;
<fl+k—-—DA,+ (k—1)A5+ (e/3)f + s + 43 (24)
< f+kd,+kd; + (e/3)f

This indicates the correctness of Lemma 1 in thisecand hence, we conclude the proof in its
general form. [

Theorem 2. For any arbitrary > 0, algorithm FPTAS generates a solutifsuch thaZ# — Z* <
€Z” holds.

Proof.Supposex*is the straddling job in an optimal sequence. Jokill also be selected as the
straddling in one of the iterations of algorithmT#AS. By definition, the optimal solution can be

associated with a stai@y, t,, f)in J(@Car)

n—1
(th,t4, £%) e v such thatef < tand f# < £+ (n — 1)4; + (n— 1)45 + (¢/3)f. Also,

there always exists a feasible state in FPTAS wisichlated to any feasible state generated byitDP.
is because? < t; holds in all states of FPTAS and none of the statil be lost by the constraint
t + pr < d, in Step 1.2. We also have

. From Lemma 2, algorithm FPTAS generates a state

fA<f+m—-1D4,+(n—1)4;+ (e/3)f (25)
€ .LB \
27 3p !
Zy LB/2 e = f* < f+(e/3)LB+ (¢/3)LB + (¢/3)f < (1 + o)f (26)
Ay =—=—==<—LB
L T

Also, with regard t@'%. < T;- + (¢/3)T;-andZ* = f + T,., it can be concluded that

Z¥ = f* 4+ T
SA+ef +Ty +(e/3)T, (27)
<(A+ez"

and this completes the proof. m

12



4-2- Time complexity of algorithm FPTAS

To complete our analysis, we try to estimatertimning time of algorithm FPTAS. Before starting
the first step, algorithm MWR must be applied amplemented ir0(n logn). In each iteration of

Step 1.2, the state spa@%"c'“)#(k ={1,2,...,n—1}) is generated. Note that algorithm FPTAS, in
each step, keeps only one state with minimyramong all states laying in common sub-intervats fo

variablest, and f. So, the number of states h;i“'c'“)# does not exceed,.L;and fromL, =
0(n3/e)andL; = 0(n/¢), the running time of Step 1.2 is calculated as

L
Z |vka’ « | <n.L,.L; =0(n5%/&?) (28)
k=1

Since the algorithm iterates times by each choice of the straddling job and,adgiessingC,
needs at mostL; = O(InP,,,,/€) iterations, we can deduce that Step 1 is of thderor
0(n®InP,,,,/€3). Step 2 is implemented with the running tidéinP,,,,/€) and finally, the whole
algorithm require® (n®InP,,,, /€3) time.

5- Conclusion

In this paper, we analyzed a less studied pedoce measure called Tardy/Lost penalty function
for scheduling problems and discussed its practoal theoretical applications. According to this
performance measure, each job has two due datesdepeénding on its completion time, it is
classified into one of the three groups: earlydyaor lost jobs.

An FPTAS is the strongest possible polynomial tep@roximation result that we can derive for
an NP-hard problem. Woeginger(2000)introduced aotebnditions on optimization problems that
guarantee the existence of an FPTAS. These consliiover a relatively large subclass of the fully
polynomial time approximable problems including gieblem considered in this paper.

A polynomial time approximation algorithm, named NRWwas designed for problemd; =
d|TL. It was shown that its worst case ratio was bodnioe 2. Next, we developed a dynamic
programming algorithm and converted it to an FPTUs8g the method of structuring the execution
of an algorithm. The resulting FPTAS was founduo in 0 (n®InP,,,,/€3) time.

As a perspective, we aim to adjust our scheme malleathe problem with any fixed number of
distinct due dates. Another interesting researcil goto study the Tardy/Lost penalty function in
other scheduling environments such as parallel mastor flow-shops and extend the results to more
complex problems. Development of better approxiomtialgorithms and FPTASs is also a
challenging subject.
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Appendix A: Proof of Theorem 1

Let G denote a sequence generated by algorithm MWR ackl motation including an asterisk (*)
be related to an optimal sequence. Algorithm MWReskles jobs iteratively from the end of the
sequence to the beginning. Through this procedoios, are classified into three groups, early, tardy
and lost. On the other hand, each job may be eargy, or lost in the optimal sequence. Thus, we
get nine groups of jodd/,F,B,H,F',B',H",F",B"'}, as shown below. For example, sets
B"§,...,B"¢ include jobs in sequenc& which are early in both the sequences and sets

B";,...,B";, include the same jobs in the optimal sequencensher example, sel8'{ ..., F"§,
are some jobs in sequen@ewhich are early irc and tardy in the optimal sequence and appeasein th
optimal sequence in sel'],...,F"}, . Define the sum of the processing times of jobs igub-

sequenceasp, .

early jobs tardy jobs
"G "G "G "G oG "G G G G G /G G
oo (B"S F'S H"S ... ,B"§,F"$,H"S) (B'5, , F'on H'G o, B'SF'S H'S)
sequence b = lost jobs

(Bg  F¢, Hg ,...,Bf ,Ff, HY)

early jobs tardy jobs
LS I'x * LS I * Ix I * Ix LS *
o | B oy By v BV F'LFY) (B g Hiny o+, B F'3, HY)
optimat sequence = lost jobs

* LS I'x * LS %
By, H"%, H', ..., Bi,H'"},H'})

First, we must compare the penalty of lost jobsGir(jobs in setsH¢, FéandB®) with some
penalties in the optimal sequence; then, we shagdat this comparison for tardy jobs in sequence
G. Given the fact that algorithm MWR selects jobsading to the non-decreasing order of their
w; /p;ratios and that jobs iH'¢andH"“are not selected to be lost@® we have

W; Wi
p—fsp—{Vie{HG,FG}, ii]}ﬁst , Vje{H'S H"E} (A1)
i j

Let]}L} be the first lost job iiG. Thus, it is obvious that the lost jobs@nexcept]{” cannot

irst first
fill the time interval betweed,andP,,,,, but the lost jobs in the optimal sequence do.aSgpbs in
setsB are common in both the sequences, we get

kq
Z (pHiG + pFiG + pBiG) - p]{L} < Poym — d; | kq ka

i= irst
1;21 ? ) Z (leG * pFiG) - p]}llllst < Z(pH': + pH/I;) (AZ)
Z(pH'Z +Pui pBi*) 2 Poym — d; J - i=1

=1

From Egs. (A1) and (A2), we conclude

kq k1 k2 ke
IORAPNIETIEDINAIPI 839
i=1 jeHiG i=1 jeFiG i=1 jeHr; i=1 jeHr;

The above inequality can be summarized gs + Z ¢ — < Zyr+ Zy LetZ{GL} andZ{*L}

first

denote the penalty of the lost jobsGrand in the optimal sequence, respectively. So,
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Z{GL} =Zyc+Zpe+Zge

<ZHI +ZHII* +Z{L} +ZB*
]fLrst

(A4)

In order to evaluate the penalty of tardy job<Ginwe should compare the penalty related to sets
H'G, F'¢ andB’“with some penalties in the optimal sequence.

Zigy = 2 2 [w; (Cf = di)] +2 Z [w; (¢ —di)] + 2 2 [w(CF — di)] (A5)

i=1 jEH’iG =1 jEF,iG i=1 jEB[iG

Jobs in set#l are penalized only in the optimal sequence anthsoyworst case ratio occurs when
the tardiness weights;;, are equal to zero for these sets. Therefore rdicgpto the WSPT order for
tardy jobs in the optimal sequence, we concludegbisH must be scheduled after s8tsandF"’ in
the optimal sequence. Therefore,

(B"y, Fo ,Fy ....B 5, F'5, B ) (B sy F'ny oo B'L, F', H,*nz,...,H{‘)>

optimal sequence =
P 1 <(B;;2,H";;2,H’;;2 ,...,B;, H"}, H"

In the following, we will consider the three expsms in (AS5) one by one. L&t ¢ andS, ¢

show the starting times of set§ andB’¢ in sequencé, respectively. As algorithm MWR selects
jobs inF'¢ after jobs inH'¢ for eachi € {1,2,...,m,}, we have

Z Z [w;(cf - dy)] Z Z w; ( Z P +pH,g) +Zp3,$ +(cf —SF,lg;)>

i= 1]ep, i= 1]ep, r=i+1
my my
Z Z [W;(Z PrS +ZPBI$ +(Cf—5 ) [W; Z pHrfl (A6
i= 1]€F1 r=i+1 r=i i= ljepl r=i+1 ’
i
Sy W,<z pF,HzpB,H (s, ) S [ 3o
i= 1151:, r=i+1 i= 1151.1, r=1

Similarly, we conclude the following inequalitiesr fsetsB’¢.

szwwwzzm@hwwwmwwﬁ@]

i= 1](53, i= 1163, r=i+1
[ my ] mq
Z 2 [\ 2 (oeg +pog) + (6 = Sug) +Z 2. [W" 2. ””’S] (a7)
i= 1]€B/ | r=i+1 ] i= 1](53, r=i+1
my [ my 1 i
SN AR ) I Y
i=1 jep& | r=i+1 1 =1 jen§ r=1

Next, considering the direct penalty of sét§ and their penalty in (A6) and (A7), we get
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DYDY W,zpp,a 53 w,zpB,G

i= 1]EH/ i= 1]EH, i= 1]EH,
zz w;j C+ZpF'G+ZpB’ —d;
= ]EHI
- (A8)
i=1 jeH/¢
ko
i=1
And so
my my
2 =) Y wlcf =)+ ) > [wlcf - )]+ Z 2 (e - )
i=1 jep/§ i=1 jep/§ =1 jen/§
my
SZZ w;j ZPF'G+ZPB'G+ - S )
i=1 jEF'iG r=i+1 ]
my my ko (49)
+Z Z Wj Z (PFIE + PB:?) + (CJG - SB,iG) + ZZHI’{
i=1 jEBlf r=i+1 i=1
e +zz,,,
(d1+2i=1(pF,lg+p G
Supposq}fr}st be the first tardy job in sequen@e Thus,
Py6 + Pp6 + Pp6 + Py6 + Pp6 + Ppic — p]}Tiist < Paym — dy
Pur + Pai + Dp* + Dy* + Pris + P — (dl - SBI;HZ) = Psum - dl (AlO)

=  Pp6 +Dp6 <Pt Ppir + Ppr — (dl - SB/?,IZ) + p]{T}

first

Given the fact that jobs iH"* andF'"* are not selected as tardy or lost by algorithm MW@
can conclude

—<—VlE{F'G} vje{F" H"*} (A11)
pi  Pj

From (A10) and (Al11), we derive

T
(B1Gyy FiGoy o BIG PG BIGFIG]  [JE0) By 1ty B3 F115,BY 115 |

o <Z + Zyir
( 1+Zi=1(p1:/?+173115)) <d1+2i:1(p3,;+pF,,;)—(d1—SB,;n2)+p]{T} >
flTSt
My (A12)
R X I LT
first 4 ' . 4 . N
i=1 jEBr; i=1 jeF;

< 2Zpy+ 2Zp + Zyy
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The last inequality in Eq. (A12) is derived frometfollowing relations and the fact that in each
iteration, algorithm MWR checks if there exist®h filling the remaining tardiness period.

P <G~ Ve BnET (413)
m, m, my m,
R DR IR AN CEEN EDION CEEN] (A14)
i=1 jeBr; i=1 jeFn; i=1 jeBr] i=1 jeFr;
= ZB,* + ZF,,*

Now, by summarizing (A4), (A9), and (Al12), we get
Z{GL} S ZH,* + ZH,,* + ZZB*

ZG <7 47 427 427 }ﬁZ{GL}'i'Z{GT}SZZH,*+ZZH,,*+ZZB,*+ZZF,,*+2ZB*
{T} = 4Hr" Hrr* Br* Frr*

= 7% <2z
If the first lost job,]}{cﬁst, fills the entire tardiness period, then no tgalyis created by algorithm
MWR. In this case, job{L} has the smallest weight among unscheduled jobsemaencé is the

first
related sequence. The main sequence in MWR isteééfyG and it has already been proved that it
gives a worst case ratio of 2. Step 7 of the allgoriselects the best of sequenGeandG and hence,
the final result of MWR is a 2-approximation whichmpletes the proof. =
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