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                                                          Abstract 
Perishing of the items in an inventory model has always been a crucial issue for beverage 

companies. Besides, some items not only perish but also have specific expiration dates. 
To manage the inventory-in-hand, proposing a delay in payment is usually an appropriate 

solution. Also, beverage companies encounter sustainable policies that are regulated to 

dispose of waste without damaging the environment. These regulations lead companies 

to establish waste treatment units in their companies to purify the obsolete items before 
disposing of them. Despite the importance of this challenge in practice, no research has 

been made to contribute to these issues. To fill the mentioned gap in the literature, this 

paper proposes an inventory model for perishable items which: (a) items perish 
continuously and have specific expiration dates, (b) a single-level trade credit is offered 

to the customer to stimulate the demand, and (c) waste treatment policy is considered for 

the beverage company to purify the returning items before disposing of them. To develop 
our work in practice, the case study of Behnoush Beverage Company is considered and 

a real domain dataset is utilized. To validate the proposed mathematical model, a 

sensitivity analysis is developed. Eventually, managerial implications are outlined and 

the findings are concluded. 
Keywords: Inventory management, perishable items, delay in payment, wastewater 

treatment 

1-Introduction 
   As the expectations from the customers in the food industry are increasing, the expiration date of 
items has become a vital factor in purchasing an item (Chen et al. 2016). When the item is near its 

expiration date, the demand approaches zero (Wu et al. 2016).  

   In practice, the accounts are not settled immediately and a credit period is offered to the buyer (Teng 
et al. 2016). One solution to the issue of selling the perishable items before their expiration dates are 

offering a trade credit period that stimulates the demand but increases the default risk (Mahata and De 

2017). 
   In this study, green inventory management is concerned with the overarching question of how to 

efficiently manage inventories with respect to both costs and green aspects (Marklund and Berling 

2017). Sustainability criteria such as carbon emission policies can be added to a perishable inventory 

model to restrict emissions (Shi et al. 2020). 
   The remainder of this paper is illustrated as follows. In section 2, a concise literature review is 

provided to indicate the impact of the expiration date, credit period, and sustainable disposal on an 

inventory system. In section 3, notations and assumptions required for developing a perishable 
inventory model are prepared and the mathematical model is developed. In section 4, a solution 

approach is illustrated. A special case for non-deteriorating items is developed in section 5. To validate 

the formulation, a case study is developed and a sensitivity analysis is proposed in sections 6 and 7 

respectively. Finally, the findings are concluded in section 8.    
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2-Literature review 
   The most contribution models concerning perishable inventory and trade credit policy are as follows: 
Sarkar (2012) proposed the first inventory model considered a time-varying deterioration rate (i.e. 

expiration date). Besides, Teng and Lou (2012) developed a credit-dependent demand function, and 

Wang et al. (2014) prepared a model for items with expiration dates and credit-dependent demand. Then 
Wu et al. (2014) provided an extension with two levels of the credit period. Thereafter, some works 

were extended for partial credit period (Wu and Chan 2014), price-dependent demand (Feng et al. 2017; 

Tiwari et al. 2018a; Wu et al. 2017), and random expiration date (Tai et al. 2019). Khan et al. (2019) 
developed a perishable model with partial backordering and time-varying holding cost. Moreover, the 

demand rate can be dependent on the expiration date (Yang 2020).  

   On the other hand, among the many important studies on sustainable inventory and especially 

sustainable disposal, the following are the most highlighted. 
   Battini et al. (2014) considered disposing of the waste operation in a sustainable inventory system. 

This work was followed by Datta (2017) considering pricing decisions for defective items and Tsao et 

al. (2017) considering credit-dependent demand. Kazemi et al. (2018) developed a model for defective 
items with inspection considering carbon emission regulations and Tiwari et al. (2018b) expanded this 

work for deteriorating items. Mishra et al. (2019) developed an inventory model for perishable items 

considering a price/stock dependent demand and remanufacturing and disposing of processes for items. 

Mishra et al. (2020) proposed a model under carbon emission regulations considering disposing of the 
waste that was expanded by Taleizadeh et al. (2020) considering pricing decisions. Rout et al. (2020) 

provided a perishable model considering disposing of the waste and different emission policies.  

   Despite important works associated with this field of study, no paper has considered a contribution of 
perishable items with delay in payment and disposing of the waste. An indication of the abovementioned 

papers and their contribution to our work is exposed in table 1. 

 

Table 1. Literature review 

Paper 
Perishable 

items 

Delay in 

payment 

Disposing 

of waste 

Demand 

Constant 
Price-

dependent 
Credit-

dependent 

Expiration 

date-

dependent 

Sarkar 
(2012) 

      
 

Teng and 

Lou (2012) 
      

 

Wang et al. 
(2014) 

      
 

Wu et al. 

(2014) 
      

 

Wu and 
Chan (2014) 

      
 

Battini et al. 

(2014) 
      

 

Feng et al. 
(2017) 

      
 

Wu et al. 

(2017) 
      

 

Datta (2017)        

Tsao et al. 

(2017) 
      

 

Tiwari et al. 
(2018a) 

      
 

Kazemi et al. 

(2018) 
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Paper 
Perishable 

items 
Delay in 
payment 

Disposing 
of waste 

Demand 

Constant 
Price-

dependent 

Credit-

dependent 

Expiration 
date-

dependent 

Tiwari et al. 
(2018b) 

      
 

Khan et al. 

(2019) 
      

 

Tai et al. 
(2019) 

      
 

Mishra et al. 

(2019) 
      

 

Yang 2020)        

(Mishra et al. 
(2020) 

      
 

Taleizadeh et 

al. (2020) 
      

 

Rout et al. 
(2020) 

      
 

This paper        

3-Model development 

3-1- Problem description 

   The abovementioned gap in the literature can be filled by the following proposed mathematical model. 

In the developed model, items are considered perishable with specific expiration dates, and the credit 
period is considered as a stimulator for the buyer to increase his/her demand. To consider sustainable 

responsibility, waste treatment for returning items is performed to decrease the possibility of disease 

related to obsolete items that are returned to the company. The mathematical model is formulated as 

follows. 

 

3-2- Notations 

Symbols used in the model as parameters and decision variables are presented in table 2. 

 
Table 2. Notations 

Notations Descriptions 

𝑛 Trade credit period (in years) offered by the seller to the buyer 

𝑇 Buyer's replenishment cycle time (in years) 

𝑜 Ordering cost per order ($) 

𝑐 Unit purchasing cost ($) 

ℎ The holding cost for each unit ($) 

𝐶𝑝 Unit waste treatment cost for returned items ($/unit) 

𝐶𝑂𝐷𝑅 Amount of oxygen needed for oxidation on returned items (
𝑚𝑔

𝑙𝑖𝑡𝑟𝑒
) 

𝐶𝑂𝐷𝑆 Amount of oxygen accepted by environment preservation 

organization for releasing items to wastewaters or irrigation uses 

(
𝑚𝑔

𝑙𝑖𝑡𝑟𝑒
) 

𝛼 The fraction of items which are returned  

𝐼(𝑡) Available inventory level at time 𝑡 

𝜃(𝑡) The time-dependent deterioration rate (0 ≤ 𝜃 ≤ 1) 

𝑚 The maximum lifetime of items or expiration date (years) 

𝐷(𝑛) Annual demand rate as a function of the trade credit period  

𝐹(𝑛) Default risk as a function of the trade credit period 

Table 1. Continued 
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Notations Descriptions 

𝑄 Seller's economic order quantity 

Π(𝑛, 𝑇) Seller's total profit 

 

3-3- Assumptions 

1. The inventory system is studied for a single product. 

2. We assume that the demand rate 𝐷(𝑛) is a positive exponential function of trade credit period 

𝑛 (Wu et al. 2014) as 

(1) 𝐷(𝑛) = 𝑘(1 − 𝑔𝑎)𝑒𝑎𝑛 

Where 𝑘, 𝑎 and 𝑔 are positive constants with 0 ≤ 𝑎 ≤ 1 and 0 ≤ 𝑔 ≤ 1. 

3. The longer the trade credit period means the higher the default risk to the seller (Wang et al. 

2014; Wu et al. 2014). The rate of default risk giving the credit period 𝑛 is assumed as 

(2) 𝐹(𝑛) = 1 − 𝑒𝑏𝑛 

Where 𝑏 is a positive constant.  

4. The products in inventory have expiration rates. The deterioration rate tends to 1 when the time 

approaches the maximum lifetime  𝑚 (Sarkar 2012; Wang et al. 2014). 

(3) 𝜃(𝑡) =
1

1 + 𝑚 − 𝑡
        0 ≤ 𝑡 ≤ 𝑇 ≤ 𝑚 

5. Returned items are the ones that are not sold in the target market by the buyers and are brought 
back to the companies as their expiration date has arrived. As these liquid items fully 

deteriorate, they cannot be abandoned in the environment and should be purified, before leaving 

them in urban wastewater. 

6. The replenishment rate of the inventory is infinite. 
7. Lead time is negligible. 

8. Shortages are not allowed. 

 

3-4- Mathematical model 

During the replenishment cycle [0, 𝑇], the seller's inventory is depleted due to demand and deterioration. 

(4) 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐷(𝑛) − 𝜃(𝑡)𝐼(𝑡) 

With the boundary condition𝐼(𝑇) = 0, and solving the differential equation (4), we get 

(5) 𝐼(𝑡) = 𝑒−𝛿(𝑡) ∫ 𝑒𝛿(𝑡)𝐷(𝑛)𝑑𝑢
𝑇

𝑡

 

Where 

(6) 𝛿(𝑡) = ∫ 𝜃(𝑢)𝑑𝑢 = ln (
1 + 𝑚

1 + 𝑚 − 𝑡
)

𝑡

0

 

Substituting (6) into (5) we will have the inventory level at time 𝑡 as 

(7) 𝐼(𝑡) = 𝐷(𝑛)
1 + 𝑚 − 𝑡

1 + 𝑚
∫

1 + 𝑚

1 + 𝑚 − 𝑢
𝑑𝑢 = 𝐷(𝑛)(1 + 𝑚 − 𝑡) ln (

1 + 𝑚 − 𝑡

1 + 𝑚 − 𝑇
)

𝑇

𝑡

 

Consequently, the seller's ordering quantity is 

(8) 𝑄 = 𝐼(0) = 𝐷(𝑛)(1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) 

Table 2. Continued 
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Based on the above equations, the holding cost per cycle including capital cost after receiving 𝑄 units 

at time 𝑡 = 0 is 

(9) 

𝐻𝐶 =
ℎ

𝑇
∫ 𝐼(𝑡)𝑑𝑡 =

ℎ𝐷(𝑛)

𝑇

𝑇

0

∫ (1 + 𝑚 − 𝑡) ln (
1 + 𝑚 − 𝑡

1 + 𝑚 − 𝑇
) 𝑑𝑡

𝑇

0

=
ℎ𝐷(𝑛)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] 

Meanwhile, the seller provides his/her buyer an upstream credit period of 𝑛 years. Hence, the seller's 

net revenue received after the default risk is 

(10) 𝑆𝑅 = 𝑝𝐷(𝑛)[1 − 𝐹(𝑛)] = 𝑝𝑘(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 

The chemical oxygen demand (COD) is an indicative measure of the amount of oxygen that can be 
consumed by reactions in a measured solution (Sawyer et al. 2003). COD is useful in terms of water 

quality by providing a metric to determine the effect an effluent will have on the receiving body. 

Therefore, the lower the COD of water, the healthier it is. Waste treatment cost which is the unit 

refinement cost for returning items to increase 𝐶𝑂𝐷 of items, which are healthy for drop-in nature or 

irrigation use, is calculated as  

(11) 
𝑅𝐶 =

𝐼(0)

𝑇
𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)

=
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
(1 + 𝑚) ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) 𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) 

Finally, the seller's ordering cost per cycle is 𝑜, and the purchasing cost per cycle is 𝑐𝐼(0). 

Consequently, the seller's annual profit per unit time is 

(12) 

Π(𝑛, 𝑇) = 𝑝𝐷(𝑛)[1 − 𝐹(𝑛)] −
𝑐𝐼(0)

𝑇
−

𝑜

𝑇
−

ℎ

𝑇
∫ 𝐼(𝑡)𝑑𝑡 −

𝑇

0

𝐼(0)

𝑇
𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)

= 𝑝𝑘(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 −
𝑐

𝑇
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑜

𝑇

−
ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
]

−
𝑘𝑒𝑎𝑛

𝑇
(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) (1 + 𝑚) ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) 

The seller's objective is to find the optimal credit period 𝑛∗ and the optimal replenishment cycle time 

𝑇∗ such that the total annual profit per unit time Π(𝑛∗, 𝑇∗) is maximized. In the next section, we 

characterize the seller's optimal credit period and cycle time simultaneously. 

4-Solution procedure 
   For any given 𝑛 In order to find an optimal solution 𝑇∗, taking the first and second-order derivatives 

of Π(𝑛, 𝑇) with respect to 𝑇 and rearranging terms, we can get 

(13) 

𝑑Π(𝑛, 𝑇)

𝑑𝑛
= 𝑝𝑘(𝑎 − 𝑏)(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 −

𝑘

𝑇
𝑎𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑐

𝑇
𝑎𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] 

and 

https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Chemical_reaction
https://en.wikipedia.org/wiki/Solution
https://en.wikipedia.org/wiki/Water_quality
https://en.wikipedia.org/wiki/Water_quality
https://en.wikipedia.org/wiki/Effluent
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(14) 

𝑑2Π(𝑛, 𝑇)

𝑑𝑛2
= 𝑝𝑘(𝑎 − 𝑏)2(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 −

𝑘

𝑇
𝑎2𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑐

𝑇
𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] 

 

    For any given 𝑇 In order to find an optimal solution 𝑛∗, taking the first- and second-order derivatives 

of Π(𝑛, 𝑇) with respect to 𝑛 and rearranging, terms we will obtain 

(15) 

𝑑Π(𝑛, 𝑇)

𝑑𝑇
=

𝑜

𝑇2
−

𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[

(1 + 𝑚)2

2(1 + 𝑚 − 𝑇)T
+

𝑇

4
−

(1 + 𝑚)2

2𝑇
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)] 

and 

(16) 

𝑑2Π(𝑁, 𝑇)

𝑑𝑇2
= −

2𝑜

𝑇3

− 𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) [−
2(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇2
+

(1 + 𝑚)

𝑇(1 + 𝑚 − 𝑇)2

+
2(1 + 𝑚) ln (

1 + 𝑚
1 + 𝑚 − 𝑇

)

𝑇3
]

− 𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) [−
2(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇2

+
(1 + 𝑚)

𝑇(1 + 𝑚 − 𝑇)2
+

2(1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

𝑇3
]

− ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) [
2(1 + 𝑚)2

𝑇3
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) −

2(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇3

+
(1 + 𝑚)2

(1 + 𝑚 − 𝑇)2𝑇2
−

(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇2
] < 0 

 

   In order to obtain theoretical results from (13) - (16), we use two following theorems. For simplicity, 

we define a statement ∆(𝑛) as 
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∆(𝑛) = 𝑝(𝑎 − 𝑏)(1 − 𝑔𝛼) −
1

𝑇
𝑎(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚) ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
𝑐

𝑇
𝑎(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] 

 

(17) 

 And also we define a statement ∆(𝑇) as 

(18) 

∆(𝑇) = 𝑜 − 𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)(𝑚 − ln(1 + 𝑚))

− 𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)(𝑚 − ln(1 + 𝑚))

−
ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

4
[𝑚2 − 2(1 + 𝑚)2 ln(1 + 𝑚) + 2(1 + 𝑚)2] 

4-1- Theorem 1 

For any given 𝑇 > 0, if (𝑎 − 𝑏)2𝑝 − 𝑎2𝑐 − 𝐶𝑝𝑎2𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) ≤ 0, then we can get 

1. If ∆(𝑛) ≤ 0, then Π(𝑛, 𝑇) is maximized at  𝑛∗ = 0. 

2. If ∆(𝑛) > 0, there exists a unique 𝑛∗ > 0 such that maximizes Π(𝑛, 𝑇). 
See appendix A for proof. 

 

4-2- Theorem 2 

For any given 𝑛∗ ≥ 0, if  

 ln (
1+𝑚

1+𝑚−𝑇
) ≥

(2+2𝑚−3𝑇)𝑇

2(1+𝑚−𝑇)2   

And 

 

 ln (
1+𝑚

1+𝑚−𝑇
) ≥

(2+2𝑚−3𝑇)+(1+𝑚−𝑇)𝑇

2(1+𝑚−𝑇)2  

 Then we will have 

1. If ∆(𝑇) ≥ 0, then Π(𝑛, 𝑇) is maximized at  𝑇∗ = 𝑚. 

2. If ∆(𝑇) < 0, there exists a unique 𝑇∗ ∈ (0, 𝑚) such that Π(𝑛, 𝑇) is maximized. 
See appendix B for proof. 

5-Special case  
   For numerical experiments, we consider a special case in which the expiration date is approaching 

infinity as follows.  

(19) 
1 + 𝑚

𝑇
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) =

ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

𝑇
1 + 𝑚

 

Then 

(20) 

𝑑

𝑑𝑚
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) =

1 + 𝑚 − 𝑇

1 + 𝑚
[

1

1 + 𝑚 − 𝑇
−

1 + 𝑚

(1 + 𝑚 − 𝑇)2
]

=
1 + 𝑚 − 𝑇

1 + 𝑚
(

−𝑇

1 + 𝑚 − 𝑇
) 

And because 
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(21) 
𝑑

𝑑𝑚

𝑇

1 + 𝑚 − 𝑇
=

−𝑇

(1 + 𝑚 − 𝑇)2
 

Therefore  

(22) lim
𝑚→∞

1 + 𝑚

𝑇
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) = lim

𝑚→∞

𝑑
𝑑𝑚 ln (

1 + 𝑚
1 + 𝑚 − 𝑇

)

𝑑
𝑑𝑚

(
𝑇

1 + 𝑚
)

= lim
𝑚→∞

1 + 𝑚 − 𝑇

1 + 𝑚
= 1 

Consequently, the order quantity of the seller can be proposed as 

(23) 𝑄 = 𝐼(0) = 𝐷(𝑛)(1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) = 𝐷(𝑛)𝑇 

Similarly, we can obtain the following results 

(24) 

lim
𝑚→∞

[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) −

1 + 𝑚

2
𝑇] =

1

2
lim

𝑚→∞
[

ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑇
1 + 𝑚

1
(1 + 𝑚)2

]

=
1

2
lim

𝑚→∞
[

−𝑇
(1 + 𝑚 − 𝑇)(1 + 𝑚) +

𝑇
(1 + 𝑚)2

−2
(1 + 𝑚)3

]

=
1

2
lim

𝑚→∞
[

𝑇2(1 + 𝑚)

2(1 + 𝑚 − 𝑇)
] =

1

4
lim

𝑚→∞
𝑇2 =

𝑇2

4
 

 

We conclude that the holding cost of the seller at each replenishment cycle is obtained as  

(25) lim
𝑚→∞

ℎ𝐷(𝑛) [
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

1 + 𝑚

2
𝑇] =

ℎ𝐷(𝑛)𝑇2

2
 

 

Therefore, the seller's annual profit is given as  

(26) 
Π(𝑛, 𝑇) = 𝑝𝑘(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 − 𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) −

𝑜

𝑇
−

ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝑇

2
− 𝐶𝑝𝛼𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) 

With appropriate proximity, we use this simplified profit function for solving the model, numerical 

examples, and sensitivity analysis. 

6-Case study 
   In this section, a scheme is provided to obtain the optimal trade credit period and replenishment cycle 
time. The EOQ model is applied to find the optimum replenishment cycle and trade credit period. 

Behnoush is one of the first companies that started to produce beverage items in Iran. According to 

environmental regulations, beverage factories are forced to purify returning items before their disposal. 

Therefore, a purifying unit is established in the factory to purify large amounts of fluid per day. 
   We propose a numerical examples to illustrate the theoretical results as well as to provide some 

managerial insights. Let: 

𝑎 = 5, 𝑏 = 3, 𝑘 = 1000, 𝑝 = 3  
$

𝑢𝑛𝑖𝑡
, 𝑐 = 1  

$

𝑢𝑛𝑖𝑡
, ℎ = 0.1  

$
𝑢𝑛𝑖𝑡

𝑦𝑒𝑎𝑟⁄
, 𝑜 = 20  

$

𝑜𝑟𝑑𝑒𝑟
, 𝑚 = 1  𝑦𝑒𝑎𝑟, 

𝐶𝑝 = 0.01  
$

𝑢𝑛𝑖𝑡
, 𝛼 = 0.01, 𝐶𝑂𝐷𝑅 = 500  

𝑚𝑔

𝑙𝑖𝑡𝑟𝑒
, 𝐶𝑂𝐷𝑆 = 200  

𝑚𝑔

𝑙𝑖𝑡𝑟𝑒
.  

 

   Using Mathematica 11.2 in a personal computer with a 2.4 GHz processor and 6 GB RAM, the optimal 

solution will be: 
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𝑛∗ = 0.041 

𝑇∗ = 0.584 

Π(𝑛∗, 𝑇∗) = 1824.12 

    

   The largest portion of the total cost is purchasing cost and the rest of the costs including ordering, 

holding, and waste treatment costs have smaller portions. Concavity of total profit function is illustrated 

in figure 1. 

 

7-Sensitivity analysis 
   We have studied sensitivity analysis on the optimal solution with respect to each parameter in an 
appropriate unit using the same data as those in the numerical experiments in Table 3. 

 

Table 3. Sensitivity analysis 

Π(𝑛∗, 𝑇∗) 𝑇∗ 𝑛∗ Value Parameter 

1824.12 0.584 0.041 5 

𝑎 1986.44 0.455 0.118 6 

2764.85 0.297 0.194 8 

16293.9 0.079 0.842 1 

𝑏 2511 0.329 0.271 2 

1824.12 0.584 0.041 3 

1824.12 0.584 0.041 1000 

𝑘 3688.45 0.41 0.044 2000 

5559.52 0.334 0.045 3000 

1824.12 0.584 0.041 3 

𝑝 2969.96 0.457 0.139 4 

4329.46 0.378 0.215 5 

3246.47 0.283 0.331 0.4 

Fig 1. concavity of 𝛱(𝑁∗, 𝑇∗) with respect to 𝑁 and  𝑇 
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Π(𝑛∗, 𝑇∗) 𝑇∗ 𝑛∗ Value Parameter 

2289.64 0.439 0.155 0.7 
𝑐 

1824.12 0.584 0.041 1 

1833.3 0.504 0.042 15 

𝑜 1824.12 0.584 0.041 20 

1816.06 0.655 0.040 25 

1824.12 0.584 0.041 0.1 

ℎ 1795.93 0.417 0.037 0.2 

1774.48 0.343 0.034 0.3 

1824.12 0.584 0.041 0.01 

𝛼 1693.92 0.615 0.031 0.02 

1568.87 0.648 0.022 0.03 

1824.12 0.584 0.041 0.001 

𝐶𝑝 1789.86 0.598 0.032 0.002 

1757.17 0.612 0.022 0.003 

1824.12 0.584 0.041 500 

𝐶𝑂𝐷𝑅 1812.52 0.589 0.038 600 

1801.1 0.594 0.035 700 

 

   Some critical analyses have been explained as follows:  

According to figure 2 and figure 3, by increasing in 𝑐 and 𝑘, the amount of 𝑇∗ rises and 𝑛∗ decreases. 

The parameter 𝑎 can affect the demand positively and its growth causes an increase in demand. Rising 

in 𝑐 increases the purchasing cost and as the demand decreases, net revenue falls and total profit will 

be decreased as well. 
 

  

   According to figure 4 and figure 5, as 𝛼 increases, 𝑛∗ and Π(𝑛∗, 𝑇∗) will be decreased and 𝑇∗ will be 

increased. A growth in 𝛼 increases the purchasing cost and as the demand decreases, net revenue falls 
and total profit will be decreased as well. As the fraction of returning items increases, the demand will 

be decreased and this causes falling in the total profit function. 

0

0.2

0.4

0.6

0.8

0.4 0.7 1

c

n T

Fig 2. Effect of 𝑐 on decision variables 

0

1000

2000

3000

4000

0.4 0.7 1

c

TP

Fig 3. Effect of 𝑐 on objective function 

Table 3. Continued 
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Fig 4. Effect of 𝛼 on decision variables 

 

8-Conclusion 
   Green inventory and the possible purification operation of returning items under the trade credit 

period has been a vital issue in many industries. In this paper, three concepts including deterioration, 

delay in payment, and green inventory related to refining of returning items were considered 

concurrently; such that (1) Items not only deteriorate but also have expiration dates. (2) Offering a trade 
credit period increases demand and default risk. (3) Items that their expiration date has arrived, will be 

taken back to the factories and there are purification stations established in the factories for depleting 

them. In this case, we were seeking for optimal trade credit period and optimal replenishment cycle 
time. To simplify the model, the model was developed in a special case and solved by Mathematica 

11.2, by assigning values to parameters, and then running sensitivity analysis. The results showed that 

with the long expiration date, the trade credit period and replenishment cycle time will be longer and 
the total profit will be increased. Moreover, as the trade credit period increases, the total profit will be 

increased and as the replenishment cycle increases, the total profit will fall. It shows that the higher 

trade credit period stimulates demand and the higher demand results in more profit. Also, using results 

from numerical examples and by altering parameters in sensitivity analysis, we observed the effect of 

each parameter on the total profit function. Rising in parameters which scale up demand (𝑎 and 𝑘), will 

also increase the total profit. Unit selling price (𝑝) which is a parameter related to net revenue, increases 

the total profit. But the growth in the relevant unit cost parameters, decrease the total profit. 
   For future research, the mathematical model can be extended in several ways such as considering 

allowable shortages, cash discount, inflation rate, and the time value of money, etc. Also, the demand 

rate and deterioration rate can be considered stochastic. Dividing the buyers into good-credit and bad-

credit buyers can be another recommendation. The trade-credit period should be offered to only the 
good-credit buyers and the bad-credit buyers should pay immediately. This policy decreases the default 

risk and causes an increase in demand and total profit. 

   In conclusion, it should be noted that a practical model by insisting on considering the real-world 
conditions was developed in this paper. Companies can use the model developed in this paper to obtain 

the optimal replenishment cycle and trade credit period. Therefore, the number of returned items will 

be decreased and the amount of purification cost will fall down and as result, the total profit will rise. 
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Fig 5. Effect of 𝛼 on objective function 
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Corollary 1 
For any given value of 𝑚  and  𝑇, we have 

 

(27) 
(1+𝑚)

𝑇
ln (

1+𝑚

1+𝑚−𝑇
) ≥ 1          for all       𝑇 ≥ 0 

Proof  

Let us define 

(28) 𝑓(𝑇) = (1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) − 𝑇 

 

Then we have 𝑓(0) = 0  and 

 

(29) 
𝑑𝑓(𝑇)

𝑑𝑇
=

1+𝑚

1+𝑚−𝑇
− 1 > 0          for all       𝑇 ≥ 0 

 

Therefore, 

(30) 𝑓(𝑇) > 0            for all            𝑇 ≥ 0 

As a result, we know that 

(31) 
(1+𝑚)

𝑇
ln (

1+𝑚

1+𝑚−𝑇
) ≥ 1          for all       𝑇 ≥ 0 

This completes the proof of corollary 1. 
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Appendix A 
Proof of theorem 1. 

For simplicity, let's use (13) to define 

 

(A1) 

𝐹(𝑛) =
𝑑Π(𝑛, 𝑇)

𝑑𝑛
= 𝑝𝑘(𝑎 − 𝑏)(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛

−
𝑘

𝑇
𝑎𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚) ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
𝑐

𝑇
𝑎𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] 

We then have 

(A2) 

𝐹(0) = 𝑝𝑘(𝑎 − 𝑏)(1 − 𝑔𝛼) −
𝑘

𝑇
𝑎(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑐

𝑇
𝑎𝑘(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎𝑘(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
] ≠ 0 

and 

(A3) 

𝐹(∞) = lim
𝑛→∞

𝑘𝑒𝑎𝑛 {𝑝𝑘(𝑎 − 𝑏)𝑒−𝑏𝑛(1 − 𝑔𝛼) −
𝑎(1 − 𝑔𝛼)𝛼

𝑇
𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑐𝑎(1 − 𝑔𝛼)

𝑇
(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
]} = −∞ 

 

Simplifying (13) and using corollary 1, we will obtain 

(A4) 

𝑑𝐹(𝑛)

𝑑𝑛
≤ 𝑝𝑘(𝑎 − 𝑏)2(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛 −

𝑘

𝑇
𝑎2𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) −

𝑐

𝑇
𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1

+ 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[
(1 + 𝑚)2

2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) +

𝑇2

4
−

(1 + 𝑚)𝑇

2
]

≤ 𝑝𝑘(𝑎 − 𝑏)2(1 − 𝑔𝛼)𝑒(𝑎−𝑏)𝑛

− 𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) − 𝑐𝑎2𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) ≤ 0 

𝐼𝑓     (𝑎 − 𝑏)2𝑝 − 𝑎2𝐶𝑝(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) − 𝑐𝑎2 ≤ 0  

 

   Consequently, if ∆(𝑛) ≤ 0 then 𝐹(0) ≤ 0. From (A2) - (A4), we know that 𝐹(𝑛) ≤ 0 for all 𝑛 ≥ 0. 

Therefore, Π(𝑛, 𝑇) is decreasing in 𝑛, and maximized at 𝑛∗ = 0. Otherwise if ∆(𝑛) > 0 (i.e., (0) > 0 

), we use the Mean Value theorem into 𝐹(0) > 0 and 𝐹(∞) > −∞, there exists a unique 𝑛∗ > 0 such 

that 𝐹(𝑛∗) > 0 and hence Π(𝑛, 𝑇) is maximized at 𝑛∗ > 0. This completes the proof of theorem 1. 
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Appendix B 
Proof of theorem 2. 

For simplicity, let's use (15) to define 

(B1) 

𝐺(𝑇) =
𝑑Π(𝑛, 𝑇)

𝑑𝑇

=
𝑜

𝑇2
−

𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[

(1 + 𝑚)2

2(1 + 𝑚 − 𝑇)T
+

𝑇

4
−

(1 + 𝑚)2

2𝑇
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)] 

Then we have 

(B2) 

𝐺(𝑚) =
1

𝑚2
{𝑜 − 𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)[𝑚 − ln(1 + 𝑚)]

− 𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)[𝑚 − ln(1 + 𝑚)]

−
ℎ𝑘𝑒𝑎𝑛

4
[𝑚2 − 2(1 + 𝑚)2 ln(1 + 𝑚) + 2(1 + 𝑚)2]} 

and 

(B3) 

𝐺(0) = lim
𝑇→0

𝐺(𝑇)

= lim
𝑇→0

{
𝑜

𝑇2
−

𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇

+
𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆)(1 + 𝑚)

𝑇2
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)

−
ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)

𝑇
[

(1 + 𝑚)2

2(1 + 𝑚 − 𝑇)T
+

𝑇

4
−

(1 + 𝑚)2

2𝑇
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
)]}

= ∞ 
Simplifying (15) and using corollary 1, we will obtain  
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B4) 

𝑑𝐺(𝑇)

𝑑𝑇
=

𝑑2Π(𝑛, 𝑇)

𝑑𝑇2
=

= −
2𝑜

𝑇3

− 𝑐𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) [−
2(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇2
+

(1 + 𝑚)

𝑇(1 + 𝑚 − 𝑇)2

+
2(1 + 𝑚) ln (

1 + 𝑚
1 + 𝑚 − 𝑇

)

𝑇3
]

− 𝑘𝑒𝑎𝑛(1 − 𝑔𝛼)𝐶𝑝𝛼(𝐶𝑂𝐷𝑅 − 𝐶𝑂𝐷𝑆) [−
2(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇2

+
(1 + 𝑚)

𝑇(1 + 𝑚 − 𝑇)2
+

2(1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

𝑇3
]

− ℎ𝑘𝑒𝑎𝑛(1 − 𝑔𝛼) [
2(1 + 𝑚)2

𝑇3
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) −

2(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇3

+
(1 + 𝑚)2

(1 + 𝑚 − 𝑇)2𝑇2
−

(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇2
] 

 

   In order to prove theorem 2, we assume that the term in the brackets is positive, then, for any given 𝑛 

and 𝑇, this Theorem is proved. Therefore, we have 

 

(B5) −
2(1 + 𝑚)

(1 + 𝑚 − 𝑇)𝑇2
+

(1 + 𝑚)

𝑇(1 + 𝑚 − 𝑇)2
+

2(1 + 𝑚) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
)

𝑇3
≥ 0 

And 

 

(B6) 

2(1 + 𝑚)2

𝑇3
ln (

1 + 𝑚

1 + 𝑚 − 𝑇
) −

2(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇3
+

(1 + 𝑚)2

(1 + 𝑚 − 𝑇)2𝑇2
−

(1 + 𝑚)2

(1 + 𝑚 − 𝑇)𝑇2

≥ 0 
Simplifying B5 and B6, we get 

 

(B7) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) ≥

(2 + 2𝑚 − 3𝑇)𝑇

2(1 + 𝑚 − 𝑇)2
 

(B8) ln (
1 + 𝑚

1 + 𝑚 − 𝑇
) ≥

(2 + 2𝑚 − 3𝑇) + (1 + 𝑚 − 𝑇)𝑇

2(1 + 𝑚 − 𝑇)2
 

 

   Consequently, if ∆(𝑇) ≥ 0 then 𝐺(𝑚) ≥ 0. From (B1)-(B8) we know that 𝐺(𝑇) ≥ 0 for all 𝑇 ≤ 𝑚. 

Therefore, Π(𝑛, 𝑇) is increasing in 𝑇, and maximized at 𝑇∗ = 𝑚. Otherwise if ∆(𝑇) ≤ 0 (i.e., 𝐺(𝑚) ≥
0), we use the Mean Value theorem into 𝐺(𝑚) = ∞ and 𝐺(𝑚) ≤ 0, there exists a unique 𝑇∗ ∈ (0, 𝑚)  

such that 𝐺(𝑇∗) = 0 and hence Π(𝑛, 𝑇) is maximized at unique Π(𝑛, 𝑇). This completes the proof of 

theorem 2. 
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