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Abstract 
The first case of the unknown coronavirus, referred to as COVID-19, was detected 

in Wuhan, China, in late December 2019, and spread throughout China and globally. 
The total confirmed cases globally are rising day by day. This study proposes a novel 

prediction model to estimate and predict the total confirmed cases of COVID-19 in 

the next two days, according to Iran’s confirmed cases reported before. The proposed 
model is an improved adaptive neuro-fuzzy inference system (ANFIS) using a co-

evolutionary PSO-GA algorithm. PSO-GA is generally used to strike a balance 

between exploration and exploitation capabilities enhanced further by integrating the 

genetic operators, i.e., mutation and crossover in the PSO algorithm. The proposed 
model (i.e., PSO-GA-ANFIS) thus aims to enhance the efficiency of the ANFIS 

model by determining ANFIS parameters using PSO-GA. The model is assessed by 

utilizing epidemiological data provided by John Hopkins University to forecast the 
COVID-19 epidemic prevalence trend of Iran in 02.20.2020-06.10.2020-time 

window. A comparison was also made between the proposed model and a couple of 

available models. The results indicated that the proposed model outperforms the 

other models regarding MSE, RMSE, MAPE, and 𝑅2. 
Keywords: ANFIS, PSO-GA, COVID-19, prediction model, time series 

 

1-Introduction 
   As a big family of viruses, coronavirus (CoVs) are well-established pathogens of humans, known to 

cause hepatic, gastrointestinal, neurological, and respiratory infections. They can be transmitted among 
bats, humans, livestock, mice, birds, and other wild animals (Chen et al. 2020), (Ge et al. 2013) and 

(Wang et al. 2006). The outbreak of SARS-CoV in 2003 and MERS-CoV in 2012 confirmed animal-

to-animal and human-to-human transmission, respectively (Cauchemez et al. 2013). On December 

2019, the WHO was notified of many respiratory infection cases in China that had previously gone to 
a Wuhan seafood market (Sohrabi et al. 2020). The new coronavirus (COVID-19) is now spreading 

across Wuhan. As concluded by the authors. In Lu et al. (2020) COVID-19 is likely to have its origins 

in a bat species, as it is more akin to the two of bat-derived coronaviruses. COVID-19 origins, however, 
have not been approved yet, requiring further examination. On January 30, 2020, the Centers for Disease 
Control and Prevention (CDC) affirmed human-to-human COVID-19 transmission.  
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   As reported by CDC, COVID-19 can spread through the air, intimate personal contact, touching 
objects or surfaces containing viral particles, and seldom by fecal contamination. As indicated in 

Mahase (2020) COVID-19 is notorious for its incubation period, almost two weeks, during which it can 

transmit to other people. In Guan et al. (2020), a Chinese group estimated the incubation period to be 

three days, within the 0-24-day range, with the median age estimated to be 47.0 years. The confirmed 
cases have thus risen day by day. Many countries have already enacted and adopted stricter plans and 

policies against the hazardously rapid spread of COVID-19. Thus, predicting the confirmed cases in the 

days ahead is of vital importance to implement the required plans.  
   Zhao et al. (2020) suggested a mathematical model to predict the actual COVID-19 case number two 

weeks after the onset of 2020, not previously reported. They found 469 unreported cases in the first half 

of January 2020. They also estimated a 21-fold increase in cases following January 17, 2020. Nishiura 
et al. (2020) suggested a model to estimate the COVID-19 infection rate in Wuhan by employing the 

information of a total of 565 Japanese evacuees from Wuhan from 29 to January 31, 2020. As reported 

by them, the estimated infection rate was 9.5%, and the mortality rate was in the 0.3%-0.6% range. 

Nevertheless, the estimated infection and mortality rates cannot be valid due to the small number of 
Japanese evacuees from Wuhan. Tang et al. (2020) suggested a mathematical model to estimate 

COVID-19 transmission risk. They estimated the basic reproduction number to be 6.47. Furthermore, 

they forecasted total confirmed cases in seven days. They also anticipated that coronavirus would hit a 
peak in 14 days. In Thompson (2020) the information of 47 cases was utilized to predict sustained 

human-to-human COVID-19 transmission. The transmission rate was estimated to be 0.4, dropping to 

0.012 if the median time from symptom onset to hospitalization is 1/2 of the tested data. In Jung et al. 
(2020) a model was proposed to estimate COVID-19 mortality risk. According to the results, the 

mortality risk rates were 5.1% and 8.4% under two distinct scenarios. Moreover, reproduction number 

was estimated for both scenarios to be 2.1 and 3.2, respectively. Accordingly, COVID-19 is likely to 

become pandemic. 
   Iran reported its first confirmed cases of COVID-19 on February 19, 2020. Total lab-confirmed-

associated COVID-19 cases reported per week have risen daily. Failure in controlling the pandemic in 

Iran can considerably affect other countries in the region or beyond. Hence, the confirmed COVID-19 
cases must be studied, and the COVID-19 prevalence trend must be predicted to implement effective 

strategies nationally. Scant research has been done so far in the Middle East region, together with some 

outstanding work in this respect Ghaffarzadegan and Rahmandad, (2020). Based on reviewing 

preliminary studies, COVID-19 challenges have been scantily dealt with to forecast the illness. 
Recently, numerous modeling techniques have been introduced for various countries, including China 

(Roosa et al. 2020), (Li et al.2020), (Hu et al. 2020), (Liu et al. 2020) and (Peng et al. 2020). Italy 

(Fanelli and Piazza 2020), (Grasselli et al. 2020), (Russo et al. 2020) and (Wangping et al. 2020). France 
(Fanelli and Piazza 2020), (Grasselli et al. 2020), (Russo et al. 2020) and (Wangping et al. 2020) and 

(Massonnaud et al. 2020). USA (Liu et al. 2020), (Lover and McAndrew, (2020) and (Wise et al. 2020) 

and South Korea (Kim, 2020) and (Mandal et al. 2020). Analytically, several studies have been carried 
out using time-series forecast models, including autoregressive integrated moving average (ARIMA) 

(Dehesh et al.  2020), (Shi and Fang, 2020) and (Benvenuto et al. 2020) and exponential smoothing 

(Elmousalami and Hassanien, 2020), (Wu et al. 2020) and (Zheng et al. 2020). They are conventional 

methods that properly forecast time-series data rapidly. They have been chosen for this purpose since 
they are widely used by researchers and rapidly implemented by different stakeholders. Aside from the 

mathematical modeling above, no forecasting models are available for this application. Unpredictable 

and complex problems entail using highly efficient techniques, including artificial intelligence (AI), to 
figure out such problems. Because of the significance of the subject, this study examined the role of an 

AI method, i.e., GA-PSO-ANFIS, in forecasting and analyzing the trend of Iran’s confirmed COVID-

19 cases.  
   The adaptive neuro-fuzzy inference system (ANFIS) is frequently used in time-series forecasting 

problems, suggesting an excellent performance in lots of available applications (Jang, 1993). It 

functions flexibly in detecting nonlinearity in time-series data, integrating the properties of artificial 

neural networks (ANNs) and fuzzy logic systems (FLSs). It has been utilized in several forecasting 
applications. For instance, Wei (2016) proposed a stock-price prediction model using empirical mode 

decomposition (EMD) and ANFIS. Chen et al. (2013) proposed Taiwan Stock Exchange Capitalization 

Weighted Stock Index (TAIEX) time-series forecast model in accordance with hybrid ANFIS-OWA 
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(ordered weighted averaging). In Pousinho (2012), another time-series forecasting technique was 
proposed for price of electricity using ANFIS. Svalina et al. (2013) suggested an ANFIS-based forecast 

model for closing-price indices for a stock market for 5 days. Ekici and Aksoy (2011) also proposed an 

ANFIS-based forecast model for estimating building energy consumption. ANFIS is also used for 

electricity load forecasting (Cheng and Wei, 2010). Kumar et al. (2014) introduced an ANFIS-based 
model to predict product returns. Ho and Tsai (2011) used ANFIS to predict the performance of new 

product development (NPD). Nonetheless, ANFIS parameter estimation is a difficult task requiring to 

be addressed. Earlier investigations thus applied several separate swarm intelligence (SI) techniques to 
ANFIS parameters to improve the performance of time-series forecasting as these parameters 

substantially affect the performance of ANFIS. These SI techniques included PSO (Catalão et al. 2010), 

Social-Spider Optimization (SSO) (Bagheri et al. 2014), Sine-Cosine Algorithm (SCA) (Ewees et al. 
2017), and Multi-Verse Optimizer (MVO) (Al-Qaness  et al. 2018). For instance, (Ewees et al. 2017) 

applied SCA to increase the performance of the ANFIS model in forecasting petroleum consumption in 

Canada, Germany, and Japan. In Al-Qaness et al. (2018) MVO was employed to improve the 

performance of the ANFIS model in predicting petroleum consumption in two countries. Likewise, in 
El Aziz et al. (2017), PSO-ANFIS was applied to forecast the biochar yield. Nevertheless, separate SI 

algorithms may get stuck in local optima. A solution is, therefore, to utilize hybrid SI algorithms to 

overcome such a problem. In Elaziz et al. (2019) a hybrid GA-SSA (Salp Swarm Algorithm) method 
was proposed to increase the performance of the ANFIS model. The novel proposed model (i.e., GA-

SSA-ANFIS) was used for forecasting price of crude oil for long-term time-series data.  

   As indicated in the literature review, novel metaheuristic algorithms have been formulated to increase 
the performance of the ANFIS model. Notwithstanding, methods presented hitherto are limited, so that 

they may influence the performance of forecasting output. For instance, slow convergence and 

succeeding in striking a balance between the exploitation phase and the exploration phase may affect 

the quality of the final output. GA and PSO are two general examples that have been employed 
satisfactorily to solve different engineering design optimization problems effectively. Both algorithms, 

however, have their own pros and cons. In GA, the data stored by an individual is lost if it is not selected, 

while PSO has the required memory to store the information. 
   Nevertheless, in the absence of a selection operator, PSO may waste its recourses on poor individuals. 

In contrast, GA may find it difficult to find a precise solution, showing a good performance in achieving 

a global region. Group interactions in PSO boost the search for optimal solutions. Thus, exploiting the 

strengths of both algorithms encouraged the presentation of an alternative hybridization-based 
forecasting method. This concept overlooks the limitations of conventional SI methods by integrating 

the advantages of various methods, thereby generating novel SI methods that outperform conventional 

methods. Hence, this paper mainly aims to formulate an efficient hybrid PSO-GA-ANFIS approach to 
forecast and analyze Iran’s confirmed COVID-19 cases. The present study thus investigates the degree 

to which co-evolutionary algorithms can be applied to enhance the performance of the ANFIS model. 

To do so, the PSO-GA approach was proposed by exploiting both algorithms involved to solve 
nonlinear time-series forecasting problems. Here, PSO is applied to enhance the vector, whereas GA is 

applied to modify decision vectors by employing genetic operators. Notably, past studies have failed to 

use this kind of analysis. Reportedly, no research has been conducted to forecast and analyze the 

COVID-19 prevalence trend by utilizing a combination of ANFIS and coevolutionary algorithms, 
including PSO-GA. Therefore, to forecast and analyze the trend of Iran’s confirmed COVID-19 cases, 

the PSO-GA algorithm was proposed to define ANFIS parameters, referred to as PSO-GA-ANFIS. 
The primary contributions of this study include: 

1. An effective forecast model has been proposed to forecast Iran’s confirmed COVID-19 cases over 
the next 2 days in accordance with earlier confirmed cases. 

2. An improved ANFIS model has been proposed combined with a coevolutionary algorithm, i.e., PSO-
GA-ANFIS. 

3. A comparison has been made between the proposed model and the main ANFIS and available 
modified ANFIS model, PSO-ANFIS and GA-ANFIS. 



 

40 
 

   The remainder of this paper is organized as follows. In section 2, ANFIS-based theories and general 
optimization problem formulation are introduced. In section 3, the proposed approach used in this study 

is presented. In section 4, the sources of data and the experimental setup is described. In section 5, the 

experimental results are analyzed and discussed. In section 6, the paper is concluded, and future research 
directions are suggested.  

2- Material and methods 
2-1- Adaptive neuro-fuzzy inference system (ANFIS) 
   This section introduces ANFIS principles. In an ANFIS model, fuzzy logic is connected to a neural 
network (Jang, 1993). Here, a mapping is generated between input and output by implementing 'if-then' 

rules (aka Takagi-Sugeno fuzzy inference model). In Fig. 1, an ANFIS model is demonstrated, where 

𝑦 and 𝑥 denote inputs to the first layer, while 𝑜1𝑖 is the output of node 𝑖, which can be calculated as 

follows: 
The principle of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural 

network (Jang et al. 1993). It generates a mapping between the input and output by applying IF-THEN 

rules (it is also called Takagi-Sugeno inference model). Figure (1) illustrate the ANFIS model where, 𝑦 

and 𝑥 define the inputs to layer 1 whereas,𝑜1𝑖 is its output of node 𝑖 that is computed as follows: 

 

 

 

 

 

 

Fig 1.  ANFIS model structure (Al-qaness et al. 2020)  

 

𝑜1𝑖 = 𝜇𝐴𝑖
(𝑥) , 𝑖 = 1,2  , 𝑜1𝑖 = 𝜇𝐵𝑖−2

(𝑦) , 𝑖 = 3,4 (1)       

𝜇(𝑥) = 𝑒
−(

𝑥−𝜑𝑖
𝛼𝑖

)2

 
(2) 

where 𝜇 denotes the generalized Gaussian membership functions. 𝐴𝑖  and 𝐵𝑖 define the membership 

values of 𝜇. 𝛼𝑖 and 𝜑𝑖 denote the premise parameters set. 

The output of the second layer (aka the firing strength of a rule) is calculated as follows: 

𝑜2𝑖 = 𝜇𝐴𝑖
(𝑥) ∗ 𝜇𝐵𝑖−2

(𝑦)      (3) 

In the meantime, the output of the third layer (aka the normalized firing strength) is calculated as 
follows: 

𝑜3𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

∑ 𝑤𝑖
′2

𝑖=1

 
(4) 

The output of the fourth layer (aka adaptive node) is measured as follows: 
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𝑜4𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (5) 

In the equation above, 𝑟𝑖 , 𝑞𝑖, and 𝑝𝑖 indicate the following parameters of Node 𝑖. The fifth layer contains 
a single node whose output is calculated as follows: 

𝑜5 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖

 

𝑖

 
(6) 

2.2. Hybrid PSO-GA approach 

In this subsection, a novel hybrid PSO-GA approach is described to increase the performance of the 
ANFIS model. 

2-2-1- Genetic algorithm 

   GA is an adaptive heuristic search algorithm proposed in evolutionary themes in natural selection. It 
has been designed principally to model a natural system’s processes needed for evolution, especially 

those that conform to Charles Darwin’s principles to identify the survival of the fittest (Goldberg, 1989). 

GA represents an intelligent expansion of a random search in a predetermined search space to solve a 
certain problem. GA was first developed in the 1960s by John Holland. It has been extensively 

examined, tested, and used in many engineering fields. GAs was proposed as a computational analogy 

of adaptive systems. They are generally modeled in accordance with evolutionary principles by natural 
selection, using a population selected in the presence of variability-inducing operators, including 

crossover and mutation. A fitness function is employed to assess individuals and reproductive success 
changes with fitness. 

2-2-2- Particle swarm optimization   
   PSO was developed by Eberhart and Kennedy (1999) and Kennedy and Eberhart (1995). It is a 

population-based stochastic optimization (SO) strategy that is inspired by the social behavior of flocks 
of birds, schools of fish, bee swarms, and even at times, the social behavior of humans. PSO is identical 

to GA in population initialization with random solutions and finding global optima in consecutive 

generations. However, mutation and crossover are not applied to PSO, while particles move across the 
problem space following the current optimum particles. The basic idea is that the velocity of each 

particle (aka the potential solution) at any instant of time varies between its personal-best position and 

global-best position. Arithmetically, a particle swarm is randomly initialized in the search space and 

move across a D-dimensional space to find new solutions. Let 𝑥𝑘
𝑖  be the position of 𝑖𝑡ℎ particle and 𝑣𝑘

𝑖  

its velocity over the search space at 𝑘𝑡ℎ iteration. Then, the position and velocity of this particle at 

(𝑘 + 1)𝑡ℎ iteration are updated using the following equations: 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑟1(𝑝𝑘
𝑖 − 𝑥𝑘

𝑖 ) + 𝑐2𝑟2(𝑝𝑘
𝑔

− 𝑥𝑘
𝑖 ) (7) 

𝑥𝑘+
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖  (8) 

where 𝑟1 and 𝑟2 represent random numbers between 0 and 1, 𝑐1 and 𝑐2 are constant, 𝑝𝑘
𝑖  represents the 

best ever position of 𝑖𝑡ℎ particle, and 𝑝𝑘
𝑔

 corresponds to the global best position in swarm up to 𝑘𝑡ℎ 

iteration.  

2-2-3- Hybrid PSO-GA approach 

   The PSO-GA approach was developed aimed at integrating GA and PSO advantages. By 

incorporating genetic operators into the standard PSO, the balance between exploitation and exploration 
capabilities is further enhanced. Nonetheless, both models have their own advantages and 

disadvantages. In GA, the data stored by an individual is lost if it is not selected, while PSO has the 

required memory to store the information. Nevertheless, in the absence of a selection operator, PSO 
may waste its recourses on poor individuals. Thus, the underlying concept of PSO-GA is to integrate 

the local search capability of GA with the social thinking capability of PSO. Since both PSO and GA 
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are population-based, the PSO-GA approach is population-based as well, thereby proceeding to search 
for a global solution. The PSO-GA approach starts with initialization, during which swarm particles, 

along with their respective velocities, are generated randomly in the search space. The initial population 

𝑥0
𝑖  of 𝑖𝑡ℎ particles is taken 𝑥0

𝑖 ~𝑈(𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) randomly from a uniform distribution within the range 

of[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]. Here, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 denote lower and upper bounds of the decision variables, 

respectively. Nonetheless, the particle’s current position in the swarm is updated using the velocity 
vector in regard to the ''memory" obtained by each particle and the knowledge acquired by the entire 

swarm. Thus, the particle’s position in the swarm is determined according to its own experience (𝑝𝑏𝑒𝑠𝑡) 

and its neighbors’ (gbest). Following each iteration, the particle’s position is updated based on equation 

(8). After a new generation is formed in PSO iterations, a certain number of particles are selected among 
the new population on which GA is applied individually. The particle population size is huge. Thus, for 

the sake of saving time, GA is not applied to the entire population. Here arises the question as to how 

many swarms need to be evolved in a PSO renewal generation? To answer this question, among all 

swarm particles, the number determined by 𝐺𝐴𝑁𝑢𝑚 in Eq. (9) are taken, which is evolved in each PSO 
generation [58]. 

𝐺𝐴𝑁𝑢𝑚 = 𝐺𝐴𝑁𝑢𝑚𝑀𝑎𝑥 + (
𝑃𝑆𝑂𝑖

𝑃𝑆𝑂𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)𝛾 ∗ (𝐺𝐴𝑁𝑢𝑚𝑀𝑎𝑥 − 𝐺𝐴𝑁𝑢𝑚𝑀𝑖𝑛) 

(9) 

In the equation above, 𝑃𝑆𝑂𝑖 represents the current PSO’s iteration and 𝑃𝑆𝑂𝑀𝑎𝑥𝐼𝑡𝑒𝑟 represents the 

highest number of generations in PSO. First, the best individual is selected out of the population. Then, 

a new population is generated by replacing points in the existing population with better points through 
genetic principles. That is, after being selected and mutation/crossover operators are applied to them, a 

one-point crossover operator is used to recombine two parents using roulette wheel selection. 

Afterward, a kind of elitism is conducted to preserve the optimum solutions in the population using 
equation (10): 

𝑥𝑖+1 = {
𝑦𝑖                                     𝑖𝑓 𝑓(𝑦𝑖) < 𝑓(𝑥𝑖)
𝑥𝑖                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 = 1,2, … , 𝐺𝐴𝑃𝑆

 
(10) 

Upon evaluating the new population, its size, and the highest number of iterations for GA changes 
regarding PSO’s iteration and their relationship is defined as follow: 

𝐺𝐴𝑃𝑆 = 𝐺𝐴𝑀𝑖𝑛𝑃𝑆 + (
𝑃𝑆𝑂𝑖

𝑃𝑆𝑂𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)𝛾 ∗ (𝐺𝐴𝑀𝑎𝑥𝑃𝑆 − 𝐺𝐴𝑁𝑢𝑚𝑀𝑖𝑛) 

(11) 

𝐺𝐴𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 𝐺𝐴𝑀𝑖𝑛𝐼𝑡𝑒𝑟 + (
𝑃𝑆𝑂𝑖

𝑃𝑆𝑂𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)𝛽 ∗ (𝐺𝐴𝑀𝑎𝑥𝐼𝑡𝑒𝑟 − 𝐺𝐴𝑀𝑖𝑛𝐼𝑡𝑒𝑟) 

(12) 

The population is guided to a global optimum via a repeated reproduction process. Figure 2 shows a 
full representation of the proposed method. 
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Fig 2.  Hybrid PSO-GA algorithm (Garg, 2016) 

3- Theory and calculation 
   In this section, the proposed PSO-GA-ANFIS method is explained. This is a time-series approach to 
predicting Iran’s confirmed COVID-19 cases, as illustrated in figure 3. 
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Fig 3. The proposed PSO-GA-ANFIS method (Al-qaness et al. 2020) 

   Using PSO-GA, PSO-GA-ANFIS train the ANFIS model through the optimization of its parameters. 

PSO-GA-ANFIS consists of 5 layers identical to the traditional ANFIS model. The first layer includes 
input variables, i.e., historical confirmed COVID-19 cases. The fifth layer, however, generates the 

forecasted values. PSO-GA-ANFIS begins with formatting input data in a time-series format. We used 

autocorrelation function (ACF) for our case, which can be used to identify patterns in data. It provides 

information on the correlation between points that are separated by different time lags. The number of 
autoregressive (AR) terms usually employed for real-world applications has not been stated for 

nonlinear time-series problems (Zhang and Hu, 1998). Thus, the present study tested with a fairly 

greater number (2) for the order of AR terms. 
   Each dataset is split into a training set (55%) and a test set (45%). The initial number of clusters is 

determined by fuzzy C-means (FCM) to develop the ANFIS model. The parameters in the ANFIS model 

are adjusted by PSO-GA. In the training stage, the calculation error, as in equation (13), between the 

actual and predicted data, is utilized to assess the quality of parameters. 
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𝑅𝑀𝑆𝐸 = √
1

𝑁𝑠
∑(𝑇𝑖 − 𝑃𝑖)2

𝑁𝑠

𝑖=1

 

(13) 

   In the equation above, 𝑇 is real data, 𝑃 is predicted data, and 𝑁𝑠 is the sample length. The smaller 

values of the objective function (OF) suggest excellent ANFIS parameters. PSO-GA-ANFIS typically 

begins with population (𝑋) generation, followed by the calculation of the OF for each solution. The 
solution with minimum error value is stored in the subsequent iteration. This sequence is repeated until 

the stopping condition has been met (i.e., the highest number of iterations in this paper). Afterward, the 

optimum solution is passed in order to train the parameters of the ANFIS model. Upon completing the 
training stage, the testing stage begins with the optimum solution to calculate the final output. The 

performance of the proposed method is assessed by making a comparison between real and predicted 
data using performance measures. 

4- Experiments 
   In this section, the utilized dataset, parameter setting for all methods, performance measures, 
experimental results, and discussion are described.  

4-1- Dataset description 
   In the present study, the original dataset consists of Iran’s confirmed COVID-19 cases. The required 

data was gathered from the epidemiological data repository of John Hopkins University1 to forecast 
Iran’s COVID-19 epidemic prevalence trend in the time window 02.20.2020 to 06.10.2020. 55% of the 
dataset was utilized for training the model, and the remaining 45% to test the model. 

4-2- Performance measures 
   Using a group of performance measures, the quality of the proposed method was assessed as follows: 

 Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑠
∑(𝑇𝑖 − 𝑃𝑖)2

𝑁𝑠

𝑖=1

 

(14) 

Where 𝑇 is the real data, and 𝑃 is the predicted data, 𝑁𝑠 is the sample length. 

 Mean Square Error (MSE)  

It is square form of RMSE mentioned in equation (14) 

 Coefficient of determination (𝑅2) 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌𝑃𝑖)2𝑁𝑠

𝑖=1

∑ (𝑌𝑖 − 𝑌𝑖̅)2𝑁𝑠
𝑖=1

 
(15) 

Where 𝑌 is the real data, and 𝑌𝑃 is the predicted data, 𝑁𝑠 is the sample length, and 𝑌̅ represent the 

average of 𝑌. Smaller values of 𝑅𝑀𝑆𝐸 and 𝑀𝑆𝐸 indicate the superiority of the method and larger values 

of 𝑅2 indicate better correlation for the method. 

 

                                                
1 https://github.com/CSSEGISandData/COVID-19 
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 Mean absolute percentage error (MAPE) 

𝑀𝐴𝑃𝐸 = 100 ∗
∑ |

𝑌𝑖 − 𝑌𝑃𝑖
𝑌𝑖

|
𝑁𝑠
𝑖=1

𝑁
 

(16) 

 

 Smaller values of and 𝑀𝐴𝑃𝐸 indicate the superiority of the method. 

4-3- Parameter settings 
   The purpose of this paper is to evaluate the capability of PSO-GA-ANFIS to predict COVID-19 by 
comparing it with other techniques, such as the ANFIS model and the trained ANFIS model, in terms 

of its performance, using PSO and GA individually. Table 1 lists the parameters set for this model. 

Conventional parameters (e.g., population size) have been set at 25-100 iterations are applied. Each 

algorithm is then implemented for 30 independent runs for a fair comparison. Certain parameters are 
selected since they lead to desirable behaviors in the earlier experiments, such as (Catalão et al. 2010), 
(Al-Qaness et al. 2018), (Ahmed et al. 2016), (Alameer et al. 2019) and (Garg, 2016).  

Table 1. Parameters' setting 

Algorithm Parameters setting 

ANFIS Max epochs=100, Error goal=0, Initial 

step=0.01 

Decrease rate=0.9, Increase rate=1.1 

GA-ANFIS Crossover type=1, 

Crossover rate=0.4, Mutation rate=0.1 

PSO-ANFIS wMax=0.9, wMin=0.2, C1=1, C2=2, 

mp=0.01 

PSO-GA-ANFIS 𝐺𝐴𝑀𝑖𝑛𝑃𝑆 = 10, 𝐺𝐴𝑀𝑖𝑛𝐼𝑡𝑒𝑟 = 10, 𝐺𝐴𝑁𝑢𝑚𝑀𝑎𝑥 = 20 

𝐺𝐴𝑁𝑢𝑚𝑀𝑖𝑛 = 1,𝛾 = 1,𝛽 = 15 

 

5- Results and discussion 
    Table 2 depicts the results of the comparison between the proposed model (i.e., PSO-GA-ANFIS) 

and others to predict COVID-19. It may be inferred that the proposed model had a better performance 

than other models. For instance, by examining 𝐸 , 𝑀𝑆𝐸  and  𝑀𝐴𝑃𝐸 results, PSO-GA-ANFIS notably 

obtains the minimum value among other comparison algorithms, indicating excellent quality of PSO-

GA-ANFIS. Additionally, 𝑅2  value indicates a strong correlation between the prediction by the 

proposed model (i.e., PSO-GA-ANFIS) and the original COVID-19, which is close to 1. This is also 

demonstrated in figures (4-11), illustrating the performance of algorithms using the historical COVID-

19 data along with their prediction performance for 2 days. In light of the above, it may be inferred that 

the proposed model (i.e., PSO-GA-ANFIS) can significantly predict the COVID-19 dataset. The results 

above ignore the limitations of the conventional ANFIS model since it is combined with PSO-GA. 
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Table 2. Performance metric for each algorithm 

Performance 

Metrics 

𝐴𝑁𝐹𝐼𝑆 𝐺𝐴 − 𝐴𝑁𝐹𝐼𝑆 𝑃𝑆𝑂 − 𝐴𝑁𝐹𝐼𝑆 𝑃𝑆𝑂 − 𝐺𝐴 − 𝐴𝑁𝐹𝐼𝑆 

𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑠𝑡 

𝑀𝑆𝐸 

3.7412*10−6 0.02214 0.032564 0.0071505 0.023983 0.0057813 0.0026981 0.0055163 

𝑅𝑀𝑆𝐸 
0.0019342 0.14882 0.18045 0.084561 0.15486 0.0766035 0.051943 0.074272 

𝑀𝐴𝑃𝐸 
0.2754 0.2789 0.0983 0.01583 0.0675 0.0842 0.0483 0.0423 

𝑅2 
0.999 0.27053 0.911 0.79529 0.90849 0.83708 0.97468 0.82698 
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Fig 4. Comparison of actual and predicted value by ANFIS  for train  data 

 

 

Fig 5. Comparison of actual and predicted value by ANFIS  for test  data 

 

Fig 6. Comparison of actual and predicted value by GA- ANFIS  for train  data 

48 



 

38 
 

 

Fig 7. Comparison of actual and predicted value by GA- ANFIS  for test  data 

 

 

Fig 8. Comparison of actual and predicted value by PSO- ANFIS  for train  data 

 

 

Fig 9. Comparison of actual and predicted value by PSO- ANFIS  for test  data      
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Fig 10. Comparison of actual and predicted value by PSO-GA- ANFIS  for train  data 

 

 

Fig 11.  Comparison of actual and predicted value by PSO-GA- ANFIS  for test  data 

 

6- Conclusions 
   In this paper, a co-evolutionary algorithm (i.e., PSO-GA) was proposed to enhance the performance 

of the ANFIS model by defining optimal values for its parameters. The PSO-GA-ANFIS model was 
used to predict COVID-19 (a previously unknown coronavirus) detected in Wuhan, Hubei Province, 

China. The proposed model (i.e., PSO-GA-ANFIS) could substantially forecast total confirmed cases 

in 2 days. Likewise, PSO-GA-ANFIS showed a better performance compared to other forecast models 

regarding 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸, and 𝑅2. Iran’s confirmed COVID-19 cases dataset was employed to evaluate 

the performance of the proposed method, suggesting its excellent performance. Since PSO-GA-ANFIS 

yielded promising results, it can be used for various applications. This research is still in its infancy as 
there are scant historical data to guarantee the accuracy of the model. COVID-19 broke out in Iran 

nearly three months ago. Thus, the performance of the forecasting model can surely be enhanced by 
employing further epidemiological data from the outbreak of COVID-19 in the existing models.  
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