
208 
 

 

 

Cross dock scheduling under multi-period condition 

 
Sajjad Rahmanzadeh1, Seyyed Mohammad Taghi Fatemi Ghomi1*,  

Mohsen Sheikh Sajadieh1 

 

1Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran 

 
sajjad.rahmanzadeh@gmail.com, fatemi@aut.ac.ir, sajadieh@aut.ac.ir 

Abstract 
This paper proposes a truck scheduling model in a cross dock system under 
multi-period, multi-commodity condition with fixed outbound departures. In an 

operational truck scheduling problem, outbound trucks leave the cross dock 

terminals at predetermined times and delayed loads are kept as inventory that 
are sent at the next period (a time slot in a day). The proposed model optimizes 

the inbound truck scheduling problem through the minimizing cross dock 

operational costs. Accelerated Benders decomposition technique based on 

Covering Cut Bundle (CCB) strategy and a heuristic approach are developed to 
solve the model. Finally, numerical analysis introduces the sensitivity of the 

input parameters to the objective value. 

Keywords: Cross dock, scheduling, heuristic algorithm, sensitivity analysis. 

 

1-Introduction 
   By expanding the business criteria for reducing distribution costs, in the last few years, cross 

docking has played an important role in the transportation areas. Cross dock center refers to the 

facility in which products move from the manufacturing plant to the customers with no or little 

storage levels. Indeed, cross docking can decrease distribution network costs by reducing products' 
delivery time, material handling, and inventory holding costs (Kaboudani et al., 2018; Theophilus et 

al., 2019; Zarandi et al., 2014). Bartholdi & Gue (2004) expressed that firms use cross dock centers to 

reduce inventories and transportation costs in the midst of fierce price competition. Successful 
implementing of cross dock concept in different companies such as Wal-Mart (Stalk et al., 1992), 

Toyota (Witt, 1998), and Eastman Kodak Co. (Cook et al., 2005) have shown cross docking 

importance in competitive advantages. However, in spite of these advantages, there might be some 

difficulties in scheduling of inbound and outbound trucks, labors, and material resources. Chen & 
Song (2009) studied two-stage hybrid cross docking scheduling problem and assumed that multiple 

trucks can be loaded or unloaded in parallel machines at inbound and outbound stages. Moreover, in 

the cross dock scheduling systems, Soltani & Sadjadi (2010) proposed two hybrid meta-heuristic 
approaches to minimize the total system flow time. 

   In cross dock systems, products are stored in temporary storages and inventory holding costs 

significantly are reduced (Bodnar et al., 2017; Luo et al., 2019; Rahmanzadeh Tootkaleh et al., 2016; 
Shahmardan and Sajadieh, 2020; Wang and Alidaee, 2019; Yu et al., 2015). Alpan et al. (2011) 

proposed a model based on the cross dock total inventory costs, in which a bounded dynamic 

programming approach was used to solve the model. Moreover, Forouharfard & Zandieh (2010) 

scheduled receiving and shipping trucks in cross docking systems to decrease temporary storages.     
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Products are stored in cross dock centers for less than 24 hours (see, e.g., Buijs et al., 2014; Golshahi-
Roudbaneh et al., 2019; Guemri et al., 2019; Ladier and Alpan, 2016; Nassief et al., 2016; Rahbari et 

al., 2019; Shiguemoto et al., 2014). Consequently, scheduling inbound trucks affects the cross dock 

system costs, especially the temporary storage costs.  

   On the other hand, some industries, especially postal services and retailing industries use fixed 
outbound departure times for the steady and constant flow of products. Boysen & Fliedner (2010) 

expressed that in the large hub-and-spoke networks with the multi cross docking stages, a steady flow 

of trucks is essential. They correspondingly represented that in the postal services and less-than-truck 
load (LTL) services, the cross docks are scheduled based on the fixed outbound departure times. 

Moreover, according to Belle et al. (2012) research, outbound trucks have to depart in a certain due 

date in some cases. Furthermore, it has been explained that outbound trucks leave cross dock centers 
at a fixed departure time in the parcel delivery sectors. The delayed parcels must wait to the next truck 

departure for the same destination. Recently, Boysen et al. (2013) developed a model in the truck 

scheduling with fixed outbound departures and moreover, they presented a prescheduled point of time 

and a lost profit penalties for departure due dates and delayed loads respectively. They consider that 
the delayed loads must be stocked in the temporary storages until the next day. They assume that the 

outbound trucks with a determined destination leave the terminal gates only in one departure time and 

several departure times are not allowed to a specific destination in a planning horizon (24 hours). 
Indeed, lost profit of delayed loads is not clearly confirmed in cross dock systems (Ladier and Alpan, 

2013) and delayed loads are stored in the temporary storage until the next outbound truck departure 

time for the same destination (next period) (Van Belle et al., 2012). 
   In many postal services, there are several predetermined departure times less than 24 hours to a 

specific destination. Subsequently, it is acceptable for mangers to send delayed loads with the next 

outbound trucks in a planning horizon. Therefore, this paper proposes an inbound trucks scheduling 

model considering a fixed departure time for outbound trucks and temporary storage of loads in a 
cross dock facility. Additionally, it is assumed that delayed loads are stored until the next period (a 

time slot in a day). Moreover, it is considered in which each inbound truck shipment may include 

multiple products. Furthermore, it is not necessary to all trucks be available at the beginning of the 
day and it would be acceptable that trucks be available before the unloading period. Despite Boysen et 

al. (2013) research, it is assumed that the delayed loads are not stocked until the next day, but they are 

sent to the customer with the next outbound trucks with the same destination. Therefore, multi-periods 

(outbound departure times) are considered in a day and inbound truck scheduling is prepared for 
multi-period, multi-commodity problem. Additionally, in this paper, a mixed integer linear 

programming (MILP) model that minimizes total holding costs of delayed loads in a planning horizon 

(often in a day) is proposed. To the best knowledge of present authors, this work is the first paper that 
deals with multi-period, multi-commodity in a cross dock scheduling problem for the fixed outbound 

trucks departure times without substitution condition. This paper is a complementary research on 

Rahmanzadeh et al. (2016) study that investigates substitution condition in a cross dock scheduling 
problem.  This paper assumes that the information about all inbound and outbound trucks is available 

before the cross dock daily scheduling. Furthermore, capacity of outbound trucks is considered as real 

operational constraint that can affect the scheduling problem. 

    The paper is organized as follows. Section 2 provides modeling assumptions and notations and 
development of the model. Section 3 examines the problem complexity and introduces our Benders 

decomposition approach. A heuristic algorithm for large-size problems is also presented in this 

section. Section 4 shows sensitivity analysis of the input parameters and finally, Section 5 is devoted 
to the conclusions and further research directions. 

 

2-Problem statement 
   In a cross dock system, inbound trucks unload their shipments and products are then moved to the 

outbound terminals for consolidation and loading on outbound trucks. As shown in Figure 1, different 

product are sorted and moved to the outbound gates and consolidated on the shipping trucks. 
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Fig 1. Cross docking distribution center 

    Each of the inbound trucks carries different product types and the shipment is unloaded based on 

the scheduling problem. The products are then sorted and sent to the outbound gates for consolidation 
and loading on the outbound trucks, according to the fixed predefined departure times. If the 

shipments arrive late, they would miss the outbound trucks and must be stocked until the next 

outbound trucks with the same destination. This paper proposes a scheduling model for the inbound 
trucks, in which the objective function minimizes total inventory holding costs. Several papers assume 

that all inbound trucks are available at the beginning of time horizon (e.g. 24 hours). This assumption 

is not realistic and different arrival times of inbound trucks is more sensible. Thus, in this model, it is 
assumed that inbound trucks are available only at the beginning of the unloading period. Moreover, it 

is assumed that the number of inbound trucks is higher than the number of inbound terminal gates. 

Additionally, information of inbound trucks' loads corresponding to the type and quantity of products 

are available before the scheduling time horizon. For simplifying the model, it is assumed that 
transshipment time of all commodities depends only to the related inbound and outbound gates. 

Splitting of the truck loads is not allowed, i.e. the inbound trucks must unload the whole shipments, 

which are then stored near the corresponding outbound. In each period, the shipments arriving after 
the departure time of outbound trucks are stored and moved to load and consolidate at the next 

periods. Consequently, the model is formulated as a MILP problem. 

The notations used in this model are presented in the next section. 

 

2-1- Notations 

 

Indices 

T Set of scheduling periods     
It Set of inbound trucks in period t;          i =1, 2, …, lt 

O Set of outbound trucks assigned to a specific outbound gate.   

K Set of inbound gates            
N Set of commodity types 

 

Parameters 
Ptin Processing time to unload total commodity n from inbound truck i in period t 

dto Departure time of outbound truck o in period t (it includes inbound trucks loading process 

time) 

tko Time for moving from inbound gate k to outbound truck o   
Ltion Number of commodity n delivered by inbound truck i dedicated to outbound truck o in period t  

M  Large number 

htn  Holding cost rate of commodity n in period t (per unit per period) 
Capto Capacity of outbound truck o in period t 
 

Decision variables 
Qton Continuous variable; quantity of commodity n that is loaded in the outbound truck o in period t 

Ston Continuous variable; quantity of commodity n for the outbound truck o in period t stored until 
the next period 
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Cti Continuous variable; end time for unloading shipment of inbound truck i in period t 

𝑥𝑡𝑖𝑗
𝑘  Binary variable; 1 if inbound truck i is processed before inbound truck j in inbound gate 

k in period t; 0 otherwise 

𝑥𝑡0𝑖
𝑘  Binary variable; 1  if inbound truck i is the first truck processed in inbound gate k in 

period t; 0 otherwise 

𝑥𝑡𝑖(𝑙𝑡+1)
𝑘  Binary variable; 1  if inbound truck i is the last truck processed in inbound gate 

k in period t; 0 otherwise 

ytio binary variable; 1  if the shipment of inbound truck i arrives after the departure time of 

outbound truck o in period t; 0      otherwise 
 

Below, the MILP model is explained: 

 

2-2-Model 
 

Problem (1) 
 

𝑀𝑖𝑛 𝑍1 =∑∑ℎ𝑡𝑛 .∑ 𝑆𝑡𝑜𝑛
𝑜∈𝑂𝑛∈𝑁𝑡∈𝑇

 

S.t. 

∑ ∑ 𝑥𝑡𝑖𝑗
𝑘

𝑖∈𝐼𝑡∪{0}

𝑖≠𝑗
𝑘∈𝐾

= 1                                            ∀𝑗 ∈ 𝐼𝑡    , 𝑡 ∈ 𝑇                                                      (1) 

∑𝑥𝑡0𝑖
𝑘

𝑖∈𝐼𝑡

≤ 1                                                          ∀ 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                                              (2) 

∑ 𝑥𝑡𝑖𝑗
𝑘

𝑖∈𝐼𝑡∪{0}

𝑖≠𝑗

 =  ∑ 𝑥𝑡𝑗𝑖
𝑘

𝑗∈𝐼𝑡∪{𝑙𝑡+1}

𝑖≠𝑗

                               ∀ 𝑗 ∈ 𝐼𝑡   , 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                            (3) 

𝐶𝑡𝑖 ≥ 𝐶𝑡𝑗 + ∑𝑃𝑡𝑖𝑛
𝑛∈𝑁

−𝑀. (1 − 𝑥𝑡𝑗𝑖
𝑘 )            ∀ 𝑖 ∈ 𝐼𝑡  , 𝑗 ∈ 𝐼𝑡 ∪ {0}, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾                               (4) 

𝑦𝑡𝑖𝑜.𝑀 > 𝐶𝑡𝑖 − 𝑑𝑡𝑜 +∑ 𝑡𝑘𝑜
𝑘∈𝐾

 ×

(

 
 
 ∑ 𝑥𝑡𝑗𝑖

𝑘

𝑗∈𝐼𝑡∪{0}

𝑗≠𝑖

 

)

 
 
 ∀ 𝑖 ∈ 𝐼𝑡 , 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇                                        (5) 

𝑆𝑡𝑜𝑛 + 𝑄𝑡𝑜𝑛 =  𝑆(𝑡−1)𝑜𝑛 +∑𝐿𝑡𝑖𝑜𝑛
𝑖∈𝐼𝑡

               ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                 (6) 

𝑄𝑡𝑜𝑛 ≤ 𝑆(𝑡−1)𝑜𝑛 + ∑(1 −  𝑦𝑡𝑖𝑜). 𝐿𝑡𝑖𝑜𝑛
𝑖∈𝐼𝑡

         ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                 (7) 

∑𝑄𝑡𝑜𝑛
𝑛∈𝑁

≤ 𝐶𝑎𝑝𝑡𝑜                                                  ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂                                                             (8) 

∑𝐶𝑡0
𝑡∈𝑇

= 0                                                                                                                                                      (9) 
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𝑥𝑡𝑖𝑗
𝑘  ∈ {0 , 1 }                                                          ∀ 𝑖, 𝑗 ∈ 𝐼𝑡 , 𝑡 ∈ 𝑇                                                           (10)   

𝑥𝑡0𝑗
𝑘  ∈ {0 , 1 } ,  𝑥𝑡𝑖(𝑙𝑡+1)

𝑘  ∈ {0 , 1 }                           ∀ 𝑗 ∈ 𝐼𝑡 , 𝑡 ∈ 𝑇                                                         (11) 

 𝑦𝑡𝑖𝑜  ∈ {0 ,1 }                                                              ∀ 𝑖 ∈ 𝐼𝑡 , 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇                                          (12) 

𝑄𝑡𝑜𝑛   ≥ 0                                                                     ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                             (13)  
𝑆𝑡𝑜𝑛   ≥ 0                                                                      ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                        (14) 
𝐶𝑡𝑖   ≥ 0                                                                         ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝐼𝑡                                           (15) 

 

   In this model, it is assumed that outbound gates are assigned to the fixed destination for a long 
period of time (e.g. 6 months). Furthermore, outbound trucks are assigned to the outbound gates on a 

mid-term horizon. Accordingly, outbound trucks destinations are predetermined on long plan horizon 

and the proposed model schedules inbound trucks on a short time horizon (24 hours). 
    The objective function minimizes total inventory holding costs on the planning horizon. Set of 

constraints (1) show that each inbound truck must be assigned to the gates once per each period. Set 

of constraints (2) express that not more than one queue of trucks is scheduled to unload shipments in 

each inbound gate. Set of constraints (3) define the sequence of inbound trucks at each gate and set of 
constraints (4) show the completion time of unloading process of inbound trucks. Set of constraints 

(5) determine if the inbound truck shipment arrives before the departure time of outbound trucks or 

not. Set of constraints (6) check the inventory balance between the periods. In this model, each 
outbound gate is allocated to a certain destination and dedicating outbound trucks to the outbound 

gates is predefined. However, 𝐿𝑡𝑖𝑜𝑛 (quantity of commodity n that must be transmitted to the 

appropriate destination regarding outbound truck o in the period t) is determined before the problem is 
scheduled. Set of constraints (7) express that the quantity of inbound truck loads must be less than 

sum of stored loads from the previous periods and without delayed loads in the current period. Set of 

constraints (8) examine that the quantity of outbound truck loads must be less than the truck capacity. 

Constraint (9) expresses that the starting time of truck 0 must be zero. To minimize the total 
commodity stored in the cross dock center, a very large penalty applied on the inventory of the last 

period.   

   To create a connection between the periods, an inventory balancing concept was applied. As shown 
in figure 2, total incoming loads in a period must be equal to the total output loads in that period. This 

concept is considered in constraints (6). Furthermore, it is not acceptable to apply |T| separate 

minimized model to find the optimum solution in the planning horizon. Inbound trucks scheduling in 

each period is depends on the outbound trucks departure times in the next periods. Hence, the 
proposed model finds the optimum solution considering inbound and outbound trucks dependency in 

a planning time horizon (e.g. 24 hours). 

 
 

Fig 2. Inventory balancing in a cross dock center 
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3-Solution algorithm 
   The proposed model schedules inbound trucks unloading process based on minimizing cross dock 

inventory holding costs. To solve the model, first it is shown that the model is strongly NP-hard and 
then to find the model's optimum solution, an accelerated Benders' decomposition technique is 

applied. As computation time of Benders algorithm is too long, a heuristic algorithm is proposed to 

find near optimum solution. Furthermore, computational experiments are applied to compare Benders 

decomposition technique with heuristic algorithm. 
 

3-1- Computational complexity 
   As shown before, the mathematical model developed in this paper was formulated as MILP model. 

There are several papers that study cross docking problems in the format of MILP as a NP-hard 

problem (see, e.g., Feo and Resende 1989; Mosheiov 1989). This paper extended Boysen et al. (2013) 

model to multi-period, multi-commodity types. Therefore, the model presented in this paper is more 
complex. Moreover, Boysen et al. (2013) proved that their model is NP-hard in the strong sense. 

Hence, the presented model is strongly NP-hard as well. 

   In this paper, a Benders algorithm was proposed for small size problems and a heuristic approach 
was given for medium and large size problems.  

 

3-2- Benders algorithm 
   Benders algorithm is a decomposition technique, which is significantly applied in MILP to solve 

mathematical models and find optimal solutions (Benders, 1962). In more detail, Benders algorithm 

determines a lower bound and an upper bound on the optimum value. After solving the Master 
Problem (MP), based on the primal minimization (maximization) problem, a lower bound (upper 

bound) is presented on the objective function. On the other hand, by solving the Sub-Problem (SP), an 

upper bound (lower bound) is created on the original problem. Geoffrion (1972) proposed the theory 
of finite convergence of upper and lower bounds on the Benders algorithm.  

   As a brief explanation for Benders algorithm, first MP is solved using a feasible solution of 

uncomplicated variable. Then a lower bound (upper bound in the primal maximization problem) and 

integer variables values (complicated variables) are obtained. In the second step, based on the integer 
variables calculated in MP, SP is solved and an upper bound (lower bound in the primal maximization 

problem) on the original problem was built. The gap between upper and lower bounds comprised with 

a predetermined value the algorithm is finished when the calculated gap to be less. Otherwise, at the 
next iteration in the Benders algorithm, a Bender's cut based on the SP dual variables is added to the 

MP. Hence, the MP is updated and the new bounds and new values of variables are determined. 

Finally, this procedure is continued until the appropriate gap achieved. By increasing the problem 

size, Benders algorithm iterations increase significantly and accordingly, in large size problems, 
classical Benders algorithm converges to the optimum solution slowly. In the last decade, various 

techniques were developed to accelerate classical Benders algorithm. In this paper, we use CCB 

strategy to restrict Benders number of iterations and solution space of decomposed problems. Our 
accelerated Benders algorithm is based on (Saharidis et al., 2010) research on CCB generation 

method. As a brief description of CCB generation method, the problem is decomposed into Restricted 

Master Problem (RMP) and SP. RMP is the deduced form of MP in which some constraints of MP are 
relaxed. Therefore, the optimum solution of RMP is not greater than MP solution. A necessary and 

sufficient condition that RMP solution be an optimal solution of MP is RMP solution which satisfies 

all constrains of MP. In CCB strategy, a bundle of cuts is appended to RMP based on α-covered 

conditions. The detailed procedure of CCB method is presented by (Saharidis et al., 2010). 
Furthermore, an auxiliary primal problem (APP) is used in CCB generation concept. Consequently, 

first the RMP is solved and based of RMP variable solution, multiple of strength cuts based on the α-

covered conditions are added to RMP and it is resolved again to optimality. The RMP form of our 
proposed model is presented as follows: 
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RMP 

𝑴𝒊𝒏  𝒁𝟏 

S.t.  

∑ ∑ 𝑥𝑡𝑖𝑗
𝑘

𝑖∈𝐼𝑡∪{0}

𝑖≠𝑗
𝑘∈𝐾

= 1                                            ∀𝑗 ∈ 𝐼𝑡    , 𝑡 ∈ 𝑇                                                       (16) 

∑𝑥𝑡0𝑖
𝑘

𝑖∈𝐼𝑡

≤ 1                                                         ∀ 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                                                (17) 

∑ 𝑥𝑡𝑖𝑗
𝑘

𝑖∈𝐼𝑡∪{0}

𝑖≠𝑗

 =  ∑ 𝑥𝑡𝑗𝑖
𝑘

𝑗∈𝐼𝑡∪{𝑙𝑡+1}

𝑖≠𝑗

                             ∀ 𝑗 ∈ 𝐼𝑡   , 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                              (18) 

𝑍2 ≥ ∑ ∑ ∑ ∑ (∑ 𝑃𝑡𝑖𝑛𝑛 −𝑀. (1 − 𝑥𝑡𝑗𝑖
𝑘  ))𝑘𝑗

𝑗≠𝑖
𝑖𝑡 . 𝜗1(𝑖, 𝑗, 𝑡, 𝑘) + ∑ ∑ ∑ (𝑦𝑡𝑖𝑜.𝑀 + 𝑑𝑡𝑜 −𝑜𝑖𝑡

∑ (𝑡𝑘𝑜 . ∑ 𝑥𝑡𝑗𝑖
𝑘

𝑗∈𝐼∪{0}

𝑗≠𝑖
𝑘  )). 𝜗2(𝑡, 𝑖, 𝑜) + ∑ ∑ ∑ (∑ 𝐿𝑡𝑖𝑜𝑛). 𝜗3(𝑡, 𝑜, 𝑛) +𝑖𝑛𝑜𝑡 ∑ ∑ ∑ (∑ (1 −𝑖𝑛𝑜𝑡

𝑦𝑡𝑖𝑜). 𝐿𝑡𝑖𝑜𝑛). 𝜗4(𝑡, 𝑜, 𝑛) +∑ ∑ (𝐶𝑎𝑝(𝑡, 𝑜)). 𝜗5(𝑡, 𝑜)𝑜𝑡                                                                    (19) 

 ∑ ∑ ∑ ∑ (∑ 𝑃𝑡𝑖𝑛𝑛 −𝑀. (1 − 𝑥𝑡𝑗𝑖
𝑘  ))𝑘𝑗

𝑗≠𝑖
𝑖𝑡 . 𝑈1(𝑖, 𝑗, 𝑡, 𝑘) + ∑ ∑ ∑ (𝑦𝑡𝑖𝑜. 𝑀 + 𝑑𝑡𝑜 −𝑜𝑖𝑡

∑ (𝑡𝑘𝑜 . ∑ 𝑥𝑡𝑗𝑖
𝑘

𝑗∈𝐼∪{0}

𝑗≠𝑖
𝑘  )). 𝑈2(𝑡, 𝑖, 𝑜) +  ∑ ∑ ∑ (∑ 𝐿𝑡𝑖𝑜𝑛). 𝑈3(𝑡, 𝑜, 𝑛) +𝑖𝑛𝑜𝑡 ∑ ∑ ∑ (∑ (1 −𝑖𝑛𝑜𝑡

𝑦𝑡𝑖𝑜). 𝐿𝑡𝑖𝑜𝑛). 𝑈4(𝑡, 𝑜, 𝑛) +∑ ∑ (𝐶𝑎𝑝(𝑡, 𝑜)).𝑈5(𝑡, 𝑜) < 0 𝑜𝑡                                                                (20) 

𝑥𝑡𝑖𝑗
𝑘  ∈ {0 , 1 }                                                          ∀ 𝑖, 𝑗 ∈ 𝐼𝑡 , 𝑡 ∈ 𝑇                                                        (21)   

𝑥𝑡0𝑗
𝑘  ∈ {0 , 1 } ,  𝑥𝑡𝑖(𝑙𝑡+1)

𝑘  ∈ {0 , 1 }                     ∀ 𝑗 ∈ 𝐼𝑡 , 𝑡 ∈ 𝑇                                                            (22) 

 𝑦𝑡𝑖𝑜  ∈ {0 ,1 }                                                         ∀ 𝑖 ∈ 𝐼𝑡 , 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇                                                 (23) 

 𝑍1 is a continuous variable 

   In this model, constraint sets (16), (17), and (18) are the same as the primal model (Problem (1)) 

constraint sets (1), (2), and (3), respectively. In constraints (19) and (20), Bender's optimality and 

feasibility cut are added to RMP. 𝜗𝑖 and 𝑈𝑖 {𝑖 ∈ 1,2, … ,5} are sub-set of extreme points and extreme 

rays of dual SP related to constraint sets (23), (24), (25), (26), and (27), respectively. Furthermore, 
APP form of proposed model is presented as follows: (APP) 

𝑀𝑎𝑥 𝑍2 = −𝜉 −∑∑∑∑𝑈𝐵1𝑡𝑖𝑗𝑘 × 𝜃
1
𝑡𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐼𝑡𝑖∈𝐼𝑡𝑡∈𝑇

−∑∑∑𝑈𝐵2𝑡𝑖𝑜 × 𝜃
2
𝑡𝑖𝑜

𝑜∈𝑂𝑖∈𝐼𝑡𝑡∈𝑇

+∑∑∑∑𝐿𝐵1𝑡𝑖𝑗𝑘 × 𝜇
1
𝑡𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐼𝑡𝑖∈𝐼𝑡𝑡∈𝑇

+∑∑∑𝐿𝐵2𝑡𝑖𝑜 × 𝜇
2
𝑡𝑖𝑜

𝑜∈𝑂𝑖∈𝐼𝑡𝑡∈𝑇

 

S. t.: 
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𝐶𝑡𝑖 −𝑀. 𝜃
1
𝑡𝑗𝑖𝑘 +𝑀. 𝜇

1
𝑡𝑗𝑖𝑘 − 𝜉 ≥ 𝐶𝑡𝑗 +∑𝑃𝑡𝑖𝑛

𝑛

−𝑀. (1 − 𝑥′𝑡𝑗𝑖
𝑘 )   ∀ 𝑖 ∈ 𝐼𝑡  , 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐼𝑡 ∪ {0}, 𝑘

∈ 𝐾                                                                                                                                      (24) 

𝑦′𝑡𝑖𝑜.𝑀 −∑𝑡𝑘𝑜
𝑘

 .

(

 
 
 ∑ 𝜃1𝑡𝑗𝑖𝑘
𝑗∈𝐼𝑡∪{0}

𝑗≠𝑖

 

)

 
 
+∑𝑡𝑘𝑜

𝑘

 .

(

 
 
 ∑ 𝜇1𝑡𝑗𝑖𝑘
𝑗∈𝐼𝑡∪{0}

𝑗≠𝑖

 

)

 
 
+𝑀. 𝜃2𝑡𝑖𝑜 −𝑀. 𝜇

2
𝑡𝑖𝑜 − 𝜉

> 𝐶𝑡𝑖 − 𝑑𝑡𝑜 +∑𝑡𝑘𝑜
𝑘

 .

(

 
 
 ∑ 𝑥′𝑡𝑗𝑖

𝑘

𝑗∈𝐼𝑡∪{0}

𝑗≠𝑖

 

)

 
 
 ∀ 𝑖 ∈ 𝐼𝑡 , 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇                          (25) 

𝑆𝑡𝑜𝑛 + 𝑄𝑡𝑜𝑛 =  𝑆(𝑡−1)𝑜𝑛 +∑𝐿𝑡𝑖𝑜𝑛
𝐼𝑡

             ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                  (26) 

 𝑄𝑡𝑜𝑛 −∑𝜃1𝑡𝑖𝑜 × 𝐿𝑡𝑖𝑜𝑛 +∑𝜇1𝑡𝑖𝑜 × 𝐿𝑡𝑖𝑜𝑛 − 𝜉

𝐼𝑡𝐼𝑡

≤ 𝑆(𝑡−1)𝑜𝑛 + ∑(1 − 𝑦′
𝑡𝑖𝑜
). 𝐿𝑡𝑖𝑜𝑛

𝐼𝑡

                   ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁              (27) 

∑𝑄𝑡𝑜𝑛
𝑛∈𝑁

≤ 𝐶𝑎𝑝𝑡𝑜                                                 ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂                                                           (28) 

∑𝐶𝑡0
𝑡∈𝑇

= 0                                                                                                                                                   (29) 

𝑆𝑡𝑜𝑛  , 𝑄𝑡𝑜𝑛, 𝜃
1
𝑡𝑖𝑗𝑘 , 𝜇

1
𝑡𝑖𝑗𝑘 , 𝜃

2
𝑡𝑖𝑜, 𝜇

2
𝑡𝑖𝑜   ≥ 0            ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁, 𝑖, 𝑗 ∈ 𝐼𝑡               (30) 

𝐶𝑡𝑖 ,      𝜉     ≥   0                               ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼𝑡  ∪ {0}                                                                       (31)  

   In the APP model, constraints (24) - (29) correspond to constraints (4) - (9) in the primal model 

(Problem (1)), respectively. Parameters 𝑥′𝑡𝑗𝑖
𝑘  and 𝑦′𝑡𝑖𝑜 are RMP solutions for 𝑥𝑡𝑗𝑖

𝑘  and 𝑦𝑡𝑖𝑜 variables 

and additionally, 𝑈𝐵1 (𝑈𝐵2) and  𝐿𝐵1 (𝐿𝐵2) are the upper bound and lower bound on the coefficient 

of the variable decision 𝑥𝑡𝑖𝑗
𝑘  (𝑦𝑡𝑖𝑜). In the CCB strategy not only the SP is solved but also a successive 

resolution of APP using the same optimal solution of the current RMP is created. In each resolution of 

APP, the parameters LB1, LB2, UB1and UB2 are changed and fixed to a certain value for the generation 

of a new cut. The CCB procedure stops when predetermined maximum number of cuts has been 
added or when all possible decision variables of the RMP have been α-covered. After this, RMP is 

solved and optimality condition is checked by SP optimal solution. Consequently, we present SP as 

follows: (SP) 

 

𝑀𝑖𝑛 𝑍3 =∑∑ℎ𝑡𝑛 .∑ 𝑆𝑡𝑜𝑛
𝑜∈𝑂𝑛∈𝑁𝑡∈𝑇

 

S.t.: 

𝐶𝑡𝑖 ≥ 𝐶𝑡𝑗 +∑ 𝑃𝑡𝑖𝑛
𝑛∈𝑁

−𝑀. (1 − 𝑥′𝑡𝑗𝑖
𝑘 )             ∀ 𝑖 ∈ 𝐼𝑡  , 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐼 ∪ {0}, 𝑘 ∈ 𝐾                                 (32) 
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𝑦′𝑡𝑖𝑜. 𝑀 > 𝐶𝑡𝑖 − 𝑑𝑡𝑜 +∑ 𝑡𝑘𝑜
𝑘∈𝐾

 .

(

 
 
 ∑ 𝑥′𝑡𝑗𝑖

𝑘

𝑗∈𝐼𝑡∪{0}

𝑗≠𝑖

 

)

 
 
          ∀ 𝑖 ∈ 𝐼𝑡 , 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇                                    (33) 

𝑆𝑡𝑜𝑛 + 𝑄𝑡𝑜𝑛 = 𝑆(𝑡−1)𝑜𝑛 +∑𝐿𝑡𝑖𝑜𝑛
𝑖∈𝐼𝑡

             ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                         (34) 

𝑄𝑡𝑜𝑛 ≤ 𝑆(𝑡−1)𝑜𝑛 + ∑(1 − 𝑦′
𝑡𝑖𝑜
). 𝐿𝑡𝑖𝑜𝑛

𝑖∈𝐼𝑡

           ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                  (35) 

∑𝑄𝑡𝑜𝑛
𝑛∈𝑁

≤ 𝐶𝑎𝑝𝑡𝑜                    ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂                                                                                                 (36) 

∑𝐶𝑡0
𝑡∈𝑇

= 0                                                                                                                                                            (37) 

𝑆𝑡𝑜𝑛     ,      𝑄𝑡𝑜𝑛     ≥ 0          ∀ 𝑡 ∈ 𝑇, 𝑜 ∈ 𝑂, 𝑛 ∈ 𝑁                                                                                       (38) 

𝐶𝑡𝑖     ≥   0                               ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼𝑡  ∪ {0}                                                                                        (39)            

   By solving SP model, an upper bound and dual variables are calculated. If the gap between upper 
and lower bounds is greater than a predetermined value (ε), the algorithm would go to the next 

iteration and the dual variables obtained in SP model would be properly applied in RMP. To solve 

RMP, a feasible solution of SP at the first iteration is needed. By solving the RMP, 𝑥𝑡𝑖𝑗
𝑘  , 𝑦𝑡𝑖𝑜 and Z2 

values are obtained, in which Z2 represents the primal model's lower bound and 𝑥′𝑡𝑗𝑖
𝑘  and 𝑦′𝑡𝑖𝑜 are 

used in APP as the input parameters. In this paper, a heuristic algorithm was applied to find the initial 
feasible solution. As a conclusion, the algorithm steps for the model are explained below: 

 

Algorithm 

Step 0 Initialize the input parameters and set the error gap(ɛ) 

Step 1 Employ a heuristic algorithm to find a feasible solution for RMP 

Step 2 Solve RMP and determine the solution of the lower bound (Z2) and binary 

variables (𝑥𝑡𝑗𝑖
𝑘 , 𝑦𝑡𝑖𝑜) 

Step 3 Setup APP's objective function to produce multiple α-covered cuts for 
RMP 

Step 4 Solve SP and obtain the upper bound (model's objective function) and 

dual SP extreme points and extreme rays. (𝜗𝑖 and 𝑈𝑖). 
Step 5 Calculate the gap between upper and lower bounds and, if Z3-Z2 < ɛ 

(initializing in the step 0) stop. Otherwise, go to Step 2. 

 

   As mentioned before, Benders algorithm converges to the optimal value at finite iterations. Benders 

algorithm is a good approach for finding an optimal solution in the small and medium problem sizes. 

The solution time of Benders algorithm increases exponentially with the size of problem. Therefore, 
in this paper, a heuristic algorithm is proposed to solve the model in large problem sizes. 

3-3- Heuristic algorithm 
   Computation time of Benders algorithm in the real operational cases is too long and in this paper, a 

heuristic algorithm was proposed for solving the large scale problems. To find the appropriate 

Heuristic algorithm, first, the effect of the input parameters on the objective function value was 
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evaluated and more, an expression for sorting of inbound trucks in a cross dock system was then 
proposed. In the algorithm, start time and place (inbound gate) of the inbound trucks for unloading 

process were scheduled based on the inventory holding costs. Indeed, a priority was set to the trucks 

based on their load quantities as well as their product types. Hence, in this heuristic algorithm, a 

decision expression was proposed to evaluate and sorting inbound trucks. The decision expression 
(equation 40) that is used to score the inbound trucks is expressed as below: 

Sc(ti) is defined as the score of inbound truck i in period t. 

𝑆𝑐(𝑡𝑖) =
∑ (

∑ 𝐿𝑡𝑖𝑜𝑛𝑛
𝑑𝑡𝑜

)𝑜

∑ 𝑃𝑡𝑖𝑛𝑛
                                                                                                                                      (40) 

where input parameters are as follows: 

 𝐿𝑡𝑖𝑜𝑛  is quantity of commodity n transmitted from inbound truck i to outbound truck o in period t. 

Certainly, the importance of a truck is related to the quantity of its loads, therefore, 𝐿𝑡𝑖𝑜𝑛 was 

considered as a positive factor in the present decision expression. 

𝑑𝑡𝑜  is departure time of outbound truck o in period t. As explained before, the loads arrived after the 

departure time of outbound trucks are stored to be sent at the next periods. By decreasing 𝑑𝑡𝑜, the 

objective function increases and consequently, there is a reverse relationship between 𝑑𝑡𝑜and the 

truck priority. 

𝑃𝑡𝑖𝑛 is processing time of unloading total commodity n from inbound truck i in period t. When a truck 
utilizes a long unloading process time, other trucks unload commodities with a delayed timeout. 

Therefore, there is a reverse relationship between 𝑃𝑡𝑖𝑛 and truck priority. 

   In more detail, the quantity of truck loads plays a direct role in the decreasing of the inventory 
holding costs and it is reasonable to unload large load trucks first. Similarly, total inventory holding 

costs are decreased by considering the trucks' processing time as a negative feature in the scheduling 

process. Therefore, 𝐿𝑡𝑖𝑜𝑛 and  𝑃𝑡𝑖𝑛 were applied to 𝑆𝑐(𝑡𝑖) expression in direct and reverse form, 

respectively. Finally, the heuristic algorithm is proposed as follows: 
 

Algorithm 

Step 0 Determine the values of input parameters and assign t=1. 

Step 1 Find Sc(ti) for inbound truck i in period t . 

Step 2 Sort the inbound trucks as follows: 

In period t: 

For i, j ∈ It,    if Sc(ti) > Sc(tj),   then  inbound truck i  is unloaded first. 

 

Step 3 Allocate the first sorted truck to the first inbound gate and the second one to 

the second inbound gate and so on. When the entire inbound gates are 
allotted once, the next inbound truck is scheduled to the first gate and it is 

continued until the allocation of the last inbound truck.   

 

Step 4 If t=T, the algorithm is finished; otherwise, t=t+1 and go to Step 2. 

 

3-4- Computational experiments 
   To analyze the efficiency of the heuristic algorithm, it was compared with Benders decomposition 
in small and medium problem sizes. In practice, to determine the input parameters, Boysen et al. 

(2013) presented an instance generation section and proposed some input parameter formulation 

according to real-world operational consideration. These formulations were used to produce input 
parameters' values to generate the computational experiments. In this section, two experiment sets 

considering different parameter series were used. Input parameters are considered as follows: 
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   For each inbound truck, its processing time is randomly drawn following normal distribution N(μ, 
σ2) with  μ=30 minutes and σ=5. If rnd[x, y] represent a uniformly distributed random number 

between x and y, htn is chosen according to 

 

ℎ𝑡𝑛 = {
𝑟𝑛𝑑[0.2, 0.8]      if 𝑡 is not last period number
𝑟𝑛𝑑[2, 8]                    if 𝑡 is last period number

 

   Transshipment times tko are randomly drawn from interval [15; 30] minutes with equal distribution. 

Furthermore, departure time dto is determined by 

 

𝑑𝑡𝑜 = 
∑ ∑ 𝑝𝑡𝑖𝑛𝑛=1𝑖=1

|𝐾|
 × 𝑟𝑛𝑑[0.6, 1.2] 

 

where  |K| is the cardinality of  inbound gates. Then, Ltion is generated based on rnd[30, 50] and Capto 
is defined as follows: 

 

𝐶𝑎𝑝𝑡𝑜 =
∑ ∑ 𝐿𝑡𝑖𝑜𝑛𝑛=1𝑖=1

|𝑂|
 × 𝑟𝑛𝑑[0.8, 1.1] 

 

Where  |O| is the cardinality of outbound destination. 
The problem sizes were considered as follows: 

|O| = 3, |T| = 6, and |K| = 10. In experiment 1, |I| ∈ {10, 20, 30, 40}, |N|=2 and in experiment 2, |N| ∈ 

{1, 2, 3, 4}, |I|=20 are considered. The Benders algorithm is programmed with C# language in Visual 

studio 2010 software with CPLEX 10.1 library. The experiments implemented on a PC computer with 
2.6GHz CPU and 4GB RAM. 

 

    As shown in table 1 and table 2, heuristic algorithm indicates a good fitness to the optimal values 
calculated from Benders decomposition technique. However, there were some notations that are 
defined below: 

TB is the time spent by Benders decomposition technique. 

Th is the time spent by heuristic algorithm. 

Heuristic algorithm's optimality gap is defined as follows: 

 

𝐸𝑟𝑟(%) =  
(𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝑒𝑛𝑑𝑒𝑟𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝐵𝑒𝑛𝑑𝑒𝑟𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 × 100                 (41) 
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Table 1. Comparing Benders technique and heuristic algorithm via changing the number of inbound trucks 

Example Number of inbound truck 

Classical Benders 

technique 

CCB algorithm 

(α=0.1) 
Heuristics algorithm 

Time (sec) Time (sec) Time (sec) Err (%) 

Test 1 10 20 9.02 7.10 0 

Test 2 10 24 12.96 6.59 0 

Test 3 10 18 9.18 7.10 0 

Test 4 10 13 5.59 6.86 0 

Test 5 10 25 11.50 7.09 0 

Test 6 10 25 13.25 7.23 0 

Test 7 10 10 4.71 6.63 0 

Test 8 10 24 12.96 6.80 0 

Test 9 10 12 5.16 6.59 0 

Test 10 10 15 6.33 7.26 0 

Test 11 10 12 6.12 6.98 0 

Test 12 10 20 10.40 7.10 0 

Test 13 10 24 12.96 6.59 0 

Test 14 10 18 8.82 7.10 0 

Test 15 10 13 5.72 6.86 0 

Test 16 20 137 56.17 7.71 0.98 

Test 17 20 111 55.52 7.76 0.83 

Test 18 20 129 63.21 7.79 0.85 

Test 19 20 123 54.12 8.52 0.69 

Test 20 20 145 68.15 8.60 0.79 

Test 21 20 101 51.51 8.23 0.69 

Test 22 20 95 50.35 8.42 0.73 

Test 23 20 125 58.75 8.53 1.19 

Test 24 20 109 49.05 8.21 0.51 

Test 25 20 115 54.05 7.62 1.07 

Test 26 20 143 70.07 8.42 0.89 

Test 27 20 137 61.65 7.71 0.98 

Test 28 20 111 53.28 7.76 0.83 

Test 29 20 129 63.21 7.79 0.85 

Test 30 20 123 51.66 8.52 0.69 

Test 31 30 858 454.74 8.9 1.37 

Test 32 30 660 349.8 8.74 1.87 

Test 33 30 797 422.41 8.00 1.68 

Test 34 30 924 425.04 8.47 1.87 

Test 35 30 970 465.6 8.21 1.34 

Test 36 30 638 299.86 8.77 1.51 

Test 37 30 992 446.4 8.10 1.49 

Test 38 30 795 373.65 8.36 1.67 

Test 39 30 992 486.08 8.45 1.33 

Test 40 30 657 295.65 8.34 1.46 

Test 41 30 829 356.47 8.49 1.33 

Test 42 30 858 471.9 8.90 1.37 

Test 43 30 660 310.2 8.74 1.87 

Test 44 30 797 350.68 8.02 1.68 

Test 45 30 924 462.04 8.47 1.87 

Test 46 40 5951 3035.01 9.71 1.95 

Test 47 40 4543 2044.35 10.12 1.66 

Test 48 40 5541 2770.5 9.55 2.07 

Test 49 40 4899 2302.53 9.55 1.88 

Test 50 40 4579 2060.55 9.91 2.07 

Test 51 40 6405 3266.55 9.41 1.57 

Test 52 40 4365 2269.8 9.73 2.16 

Test 53 40 5292 2116.8 9.67 1.52 

Test 54 40 6615 3307.5 9.30 1.78 

Test 55 40 5718 2801.82 9.44 1.94 

Test 56 40 5158 2836.9 9.79 1.96 

Test 57 40 4951 2425.99 9.73 1.95 

Test 58 40 7543 3997.79 10.12 1.66 

Test 59 40 6541 3008.86 9.55 2.07 

Test 60 40 3899 1598.59 9.82 1.88 
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Table 2. Comparing Benders technique and heuristic algorithm via changing the number of commodity types 

Example Number of commodity type 

Classical Benders 

technique 

CCB algorithm 

(α=0.1) 
Heuristics algorithm 

Time (sec) Time (sec) Time (sec) Err (%) 

Test 1 1 20 4.75 7.15 0 

Test 2 1 24 8.41 6.65 0 

Test 3 1 22 4.47 6.66 0 

Test 4 1 31 8.09 7.54 0 

Test 5 1 34 8.87 7.65 0 

Test 6 1 30 9.30 7.44 0 

Test 7 1 31 10.85 7.81 0 

Test 8 1 24 4.80 7.32 0 

Test 9 1 28 7.00 7.20 0 

Test 10 1 30 6.30 7.53 0 

Test 11 1 25 8.75 7.59 0 

Test 12 1 27 5.67 7.27 0 

Test 13 1 21 4.20 7.24 0 

Test 14 1 36 12.24 7.13 0 

Test 15 1 31 9.92 7.13 0 

Test 16 2 81 18.66 6.71 1.4 

Test 17 2 104 30.34 8.75 4.1 

Test 18 2 112 28.15 7.99 2.93 

Test 19 2 142 41.35 8.37 1.84 

Test 20 2 123 32.06 7.75 0.54 

Test 21 2 96 29.76 7.84 0.74 

Test 22 2 130 39.00 8.11 0 

Test 23 2 149 43.21 7.68 0.36 

Test 24 2 112 22.40 7.40 0.57 

Test 25 2 106 33.92 7.97 1.37 

Test 26 2 105 36.75 7.32 0 

Test 27 2 104 24.96 7.88 1.54 

Test 28 2 141 35.25 7.79 0.69 

Test 29 2 103 36.05 7.42 0.72 

Test 30 2 123 39.36 7.42 0.84 

Test 31 3 389 105.28 9.80 1.23 

Test 32 3 419 113.18 8.01 3.21 

Test 33 3 401 140.36 8.60 0.13 

Test 34 3 736 221.04 6.99 0.98 

Test 35 3 542 119.27 7.12 0.96 

Test 36 3 381 87.63 7.72 1.34 

Test 37 3 765 191.25 8.34 0 

Test 38 3 687 240.45 8.55 0.63 

Test 39 3 642 160.50 8.50 0.63 

Test 40 3 649 181.72 8.55 1.02 

Test 41 3 347 114.51 8.47 0.21 

Test 42 3 735 154.35 8.50 1.03 

Test 43 3 666 173.16 7.83 0.52 

Test 44 3 407 81.40 8.00 0.29 

Test 45 3 418 137.94 8.05 1.21 

Test 46 4 1436 359.18 8.36 2.17 

Test 47 4 1585 412.14 7.62 2.64 

Test 48 4 1694 457.44 8.04 0.168 

Test 49 4 2150 559.25 8.10 1.19 

Test 50 4 1721 482.01 8.02 1.23 

Test 51 4 2097 482.31 7.92 1.43 

Test 52 4 1795 628.25 8.54 0.54 

Test 53 4 1514 454.20 8.23 1.74 

Test 54 4 2287 708.97 8.35 0.87 

Test 55 4 2298 528.54 7.98 1.51 

Test 56 4 1749 454.74 8.01 0.65 

Test 57 4 2358 636.66 8.29 2.34 

Test 58 4 1770 407.10 8.27 0.89 

Test 59 4 1482 459.42 8.12 1.31 

Test 60 4 1482 474.24 8.12 1.36 
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   In experiment 1, 60 test problems were implemented with different input parameters and based on 
increasing inbound trucks number. As shown in table 1, Benders classical algorithm, CCB algorithm 

with α=0.1, and heuristic algorithm were compared with each other in terms of the model's running 

time and the heuristic algorithm solution error. Furthermore, in experiment 2, the results of the 

Benders algorithm (classical and CCB method) and heuristic algorithm were calculated based on the 
change in the number of commodity types. Additionally, running time in Benders technique increased 

exponential by growth in the model's size. However, because of the nature of time consumption of 

Benders algorithm in the large size problems, it would be acceptable to apply the heuristic algorithm 
to find a near optimum solution. 

4-Sensitivity analysis 
   This section examines the effect of input parameters' values on the model objective function. In the 

cross dock sensitivity analysis, (Rahmanzadeh Tootkaleh et al., 2014) proposed sensitivity analysis on 
the cross dock network's truck capacity based on the branch and bound algorithm. Furthermore, they 

presented a bound on the objective function value based on different truck capacities. In this section, 

effects of holding cost rate (htio), outbound truck capacity (Capto), transshipment time (tko), and 

outbound truck departure time (dto) were analyzed on the optimal solution. For this purpose, four 
experiments (table 3) were employed, and the results of which are presented in figures 3-a, 3-b, 3-c, 

and 3-d. In these experiments, It, O, N, T, and K were considered to be equal to 30, 3, 3, 3, and 3, 
respectively. Moreover, in table 3, Ztc is defined as the problem objective value and Pn/b is calculated  

as 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒
 expression. 

Table 3. Sensitivity analysis range of the parameters 

Parameter Sensitivity analysis range based on Pn/b 

hto { 0.5, 0.8, 0.9, 0.95, 1,1.05, 1.1, 1.2, 1.3, 1.5, 2, 5, 10} 

Capto { 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.5, 2, 3, 4, 5, 10} 

tko { 0.5, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.5, 2, 3, 5} 

dto { 0.5, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.5, 2, 3, 5} 
 

 

Fig 3-a. Sensitivity analysis of the holding cost rate 
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   As demonstrated in figure 3-a, the problem's objective function value linearly increased by growing 
of cross dock holding cost rate. In more detail, the model only minimizes the holding cost rate and 
change of holding cost effects on the objective value directly. 

 

 

Fig 3-b. Sensitivity analysis of the truck capacity 

   Figure 3-b shows that by increasing the capacities of outbound trucks, first, the objective value are 

decreased significantly and then decreasing slop is reduced and the objective function fixed at a 
certain point. Indeed, by increasing the capacities of outbound trucks, undelayed loads that must be 

stored according to the trucks' capacity limitations are loaded and sent and the inventory level is 

decreased. This process is continued until sending the whole undelayed loads and, afterwards, 
increasing the trucks' capacities would not decrease the cross dock inventories. 

 

Fig 3-c. Sensitivity analysis of the transshipment time 
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   The experiment on the sensitivity analysis of the transshipment time expressed that the cross dock 
transshipment time increment will affect the problem's objective value directly. Indeed, by increasing 

the transshipment time, the number of delayed loads and the cross dock inventory costs are increased 
as well. 

 

Fig 3-d. Sensitivity analysis of the outbound truck's departure time 

   Figure 3-d shows, by postponing the outbound truck's departure time, first, the objective value was 

reduced with a considerable slope and the decreasing rate gradually reduced. As is clear, by delaying 
the outbound truck's departure time, delayed loads were prepared for the loading and consolidating 

process and consequently, inventory holding costs were decreased. 

   In these experiments, values of input parameter were changed according to their operational values. 
As it is shown, Figures 3-a, 3-b, 3-c, and 3-d indicate the relationship between optimal value and the 

change in the parameter's value. As a managerial result, these experiments explained several ways for 

changing the cross dock holding cost. Thus, mangers could decide about the parameters changes 
based on the problem conditions.  

   In another experiment, a cross dock with 15 inbound trucks, 3 outbound trucks, 1 inbound gate, and 

3 types of commodity were considered. Results showed that by increasing the holding cost rate of 

each commodity, the trucks with the higher density of costly commodities are scheduled first. Ratio of 
commodity type i amount to the total truck loads is defined as α(i) for each inbound truck as follows: 

𝛼(𝑖) =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 𝑖

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑢𝑐𝑘𝑠′𝑙𝑜𝑎𝑑𝑠
                                                                                                       (42) 

  Results demonstrated that by increasing the holding cost rate of commodity type i, the inbound 

trucks with the lower amount of α(i) unloaded their loads at the end of scheduling period, and 

moreover, the corresponding loads usually stocked until the next periods. In Figure 4, holding cost 

rate of commodity type 1 increased from 0.2 to 0.4. As is clear, the inbound trucks with higher α(1) 
unloaded their shipments earlier than others by increasing holding cost rate of commodity type 1. 
Furthermore, in Figure 4, the truck index is written on each rectangular. 
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Fig 4. Comparing the inbound trucks' unloading time by increasing the holding cost rate of commodity type 1  

4-Conclusion and future works 
   This paper reviewed some truck scheduling papers in cross dock centers and investigated truck 

scheduling with fixed outbound trucks departure time in more detail. Previous studies have proposed 

single period cross dock scheduling problems based on the cross dock strategic, tactical, and 

operational costs. In this paper, according to low inventory policy in cross dock systems, a multi-
period, multi-commodity scheduling model was prepared. Moreover, a mixed integer linear 

mathematical model was proposed and a heuristic algorithm and Benders decomposition technique 

were extended for this model in the large and small problem sizes, respectively. Accuracy of heuristic 
algorithm was tested and compared to the optimal value of Benders technique in two distinct series of 

experiments. Sensitivity of input parameters was evaluated and their effect on the objective function 

solution was examined. For more management decisions, effects of holding cost rate, outbound truck 

capacities, transshipment time, and outbound trucks' departure time on the cross dock holding cost 
rate were indicated. Furthermore, it was shown that by changing the holing cost rate of commodities, 

the trucks' scheduling changed according to the commodity ratios of inbound trucks. 

   In future works, the model can be extended to the cases in which operational resource constraints 
considered as vital requirements in the cross dock centers. Stochastic concepts in the unloading 

process and arriving times will be good ideas for future works. Moreover, adding material handling 

and delay costs of trucks are recommended topics for future studies. 
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