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Abstract 
The role of some factors such as efficiency, rule and regulations, and balance have 
been already investigated in the context of productivity analysis based on data 

envelopment analysis models. Along with the studies that take the role of cost 

factors into account, this paper presents a novel four-component decomposition of 
Malmquist productivity growth index from a financial point of view. The cost 

efficiency model applied here uses assurance region weight restrictions to increase 

discrimination power of basic data envelopment analysis models. In the proposed 
decomposition, the proportion of cost efficiency changes during two time periods is 

determined as a quantity measure between zero and one. A real case study from 

banking industry including 66 branches located in east Tehran is employed to show 

the applicability of the proposed methods and the results were been analyzed. 
Keywords: Data Envelopment Analysis, Malmquist index, cost efficiency, weight 

restrictions. 

1-Introduction 
   Data envelopment analysis (DEA) is a mathematical programming technique for measuring and 

comparing the relative efficiency of decision-making units with multiple inputs and outputs which was 

put forward in the form of a linear programming model in 1978 (Charnes et al., 1978). This model is 
based on the constant return to scale (CRS) and is known as CCR. In 1984, Banker et al. (1984) extended 

the model to variable return to scale (VRS). Their model was named BCC. DEA is a field of operations 

research with many tools to estimate the efficiency of Decision Making Units (DMUs). 

   The Malmquist index is a concept which was first introduced by Malmquist in 1953 for input 
consumption analysis. In 1982, Caves et al. (1982) used the index for calculating productivity changes in 

two time periods, known as CCD formula. Then in 1992, Fare et al. (1992) combined the idea of 

calculating Farrell's efficiency and CCD formula for productivity to estimate the distance functions using 
DEA. They provided the first decomposition of the index known as FGLR: efficiency change (EC) and 

technology change (TC). Applying VRS technology in addition to CRS, Fare et al. (1994) presented a 

three-component decomposition referred to FGNZ: pure efficiency change (PEC), scale efficiency change 
(SEC), and technology change (TC). In 2010, the four-parted decomposition of extended Malmquist 

index was obtained by Alirezaaee and Afsharian (2010) using VRS and CRS technologies and 

input/output trade-offs: PEC, SEC, regulation efficiency change (REC) and extended technology change 

(ETC).  
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   Afterwards Alirezaaee and Rajabi Tanha (2015) explored the balance concept for measuring to what 
extent units are aligned with the predefined strategies. Another four-parted decomposition of the extended 

Malmquist index (EMI) was obtained using VRS and CRS and balance model technologies: PEC, SEC, 

balance factor change (BFC) and ETC. 

   When we have input prices (or output prices for that matter) we can assess not only technical but also 
‘cost efficiency’. In such a case we would measure the distance of each unit from a minimum cost frontier 

(Thanassoulis and Silva, 2018). Cost efficiency (CE) evaluates the ability to produce specific outputs with 

minimal cost. The concept of cost efficiency can be traced back to Farrell in 1957 who originated many of 
the ideas underlying DEA. Where producers are cost minimizers and input prices are known, a cost 

Malmquist productivity index were developed that decomposed into cost technical and allocative 

efficiency change and cost technical change (Maniadakis and Thanassoulis, 2004). But, it is defined in 
terms of cost rather than input distance functions. A cost Malmquist index also is proposed by 

Hosseinzadeh Lotfi et al. (2007) based on interval data and prices. The main contribution of the work of 

Camanho and Dyson (2005) consists of the development of a method for the estimation of upper and 

lower bounds for the CE measure in situations of price uncertainty, where only the maximal and minimal 
bounds of input prices can be estimated for each DMU. They also, proposed an equivalent CE model to 

Farrell's CE approach using Assurance Region type I (AR-I) weight restrictions in the presence of 

different scenarios consist of situations where input prices are known exactly at each DMU and situations 
with incomplete price information. Results of the review paper of Mardani (2017) indicate that DEA 

showed great promise to be a good evaluative tool for future analysis on energy efficiency issues, where 

the production function between the inputs and outputs was virtually absent or extremely difficult to 
acquire. To impose the law of one price (LoOP) restrictions, which state that all firms face the same input 

prices, Kuosmanen et al. (2006) developed the top-down and bottom-up approaches to maximizing the 

industry-level cost efficiency. However, the optimal input shadow prices generated by the above 

approaches need not be unique, which influences the distribution of the efficiency indices at the 
individual firm level. To solve this problem, in this paper, we developed a pair of two-level mathematical 

programming models to calculate the upper and lower bounds of cost efficiency for each firm in the case 

of non-unique LoOP prices while keeping the industry cost efficiency optimal (Fang & Li, 2015). 
    Venkatesh and Kushwaha (2016) considered short and long-run cost minimizing behavior of Indian 

public bus companies using CE model of DEA. Tohidi et al. (2017) proposed a global cost Malmquist 

productivity index, new cost Malmquist productivity index, that is circular and that gives a single measure 

of productivity change. A new cost Malmquist productivity index (CMPI) in multi-output settings with 
joint and output-specific inputs is presented by Walheer (2018). The cost Malmquist productivity index 

(CMPI) has been proposed to capture the performance change of cost minimizing Decision Making Units 

(DMUs). Recently, two alternative uses of the CMPI have been suggested: (1) using the CMPI to 
compare groups of DMUs, and (2) using the CMPI to compare DMUs for each output separately 

(Walheer, 2018). The paper supposes that the data and the costs are fixed and known and uses the model 

developed by Camanho and Dyson (2005). In fact, when the effect of cost efficiency topics is significant 
for different organizations such as banks, hospitals, educational systems, production firms, etc., using 

EMI finds necessity.   

   The remaining parts of the paper are organized as follows: section 2 presents a brief summary of DEA 

CE model. Section 3 introduces the extended MI (EMI). Section 4 illustrates the application of the model 
developed within the context of the case study of the 66 branches of bank Maskan located in east Tehran. 

Section 5 summaries and concludes. 

 

2-Cost Efficiency in Data Envelopment Analysis 
   Based on Rakhshan et. al (2016), cost efficiency is one of the main approaches conducted by many 
DEA studies from 1957 until now. Cost efficiency reflects the ability of each DMU in production of the 

current outputs under minimal costs for the given price levels (Camanho and Dyson, 2008). In order to 

obtain a measure of cost efficiency, the minimum cost for the production the current level of outputs with 

https://www.sciencedirect.com/science/article/abs/pii/S0377221714005839#b0070
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known input prices is obtained by solving the following linear problem, as first formulated by Fare et al. 

(1985): 

min ∑ 𝑝𝑖0𝑥𝑖0

𝑚

𝑖=1

 
 

𝑠. 𝑡. ∑ 𝑥𝑖𝑗𝜆𝑗 = 𝑥𝑖0,   𝑖 = 1, … , 𝑚,

𝑛

𝑗=1

 
(1) 

∑ 𝑦𝑟𝑗𝜆𝑗 ≥ 𝑦𝑟0,   𝑟 = 1, … , 𝑠,

𝑛

𝑗=1

 
 

𝜆𝑗 ≥ 0,   𝑗 = 1, … , 𝑛  

𝑥𝑖0 ≥ 0,   𝑖 = 1, … , 𝑚.  

 

   Assuming that 𝑝𝑖0 is the ith input price for DMU0 under evaluation, 𝑥𝑖0
∗  is the optimal input for DMU0 

for producing the current amount of outputs at minimal costs. Then, the CE is obtained as the ratio of the 

minimal cost to the current cost as follows: 

𝐶𝐸 =
∑ 𝑝𝑖0𝑥𝑖0

∗𝑚
𝑖=1

∑ 𝑝𝑖0𝑥𝑖0
𝑚
𝑖=1

. 
(2) 

 

   Alternatively, the CE of DMU0 can be obtained by solving the following linear programming names CE 

model (CEM) which uses the AR-I weight restrictions attached to CCR model: 

𝐶𝐸𝑀: max ∑ 𝑢𝑟𝑦𝑟0

𝑠

𝑟=1

 
 

𝑠. 𝑡. ∑ 𝑣𝑖𝑥𝑖0 = 1,

𝑚

𝑖=1

 
 

∑ 𝑢𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1

,   𝑗 = 1, … , 𝑛,

𝑠

𝑟=1

 
(3) 

𝑣𝑖𝑎

𝑣𝑖𝑏
=

𝑝𝑖𝑎0

𝑝𝑖𝑏0

, 𝑖𝑎 < 𝑖𝑏 , 𝑖𝑎 , 𝑖𝑏 = 1, … , 𝑚,  

𝑢𝑟 ≥ 𝜀,   𝑟 = 1, … , 𝑠  

    

    Where 𝑣𝑖
𝑎 and 𝑣𝑖

𝑏 are the input weights corresponding to inputs 𝑖𝑎 and 𝑖𝑏. Also, 𝜀 is a non-

Archimedian infinitesimal used to ensure that all inputs and outputs are taken into account for the 

efficiency assessment. 
It can easily be shown that the above two models are equivalent. In the next section, we use this form of 

CE as the base technology in computing EMI. This model sets the relative values of the input weights as 

the relative values of the input prices observed in each DMU0. 

 

3-Extended Malmquist Index 
   Here we intend to relate MI to the financial factors such as costs and calculate the effect of cost factor 

on the productivity growth. We have considered the cost as the baseline technology, which creates a 
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boundary that is placed out of CRS boundary. In the new extended index, not only the baseline of 
productivity growth is not functional and is based on the financial index of cost type, but rather obtains it 

from CE boundary instead of estimating the technology from the CRS boundary. The EMI differs from 

MI but, this difference is not such a way that brings into question the previous results, rather it somehow 

supplementary. 
  Using the CEM of (3) instead of CRS technology in CCD formula, we have the following definition of 

EMI: 

𝐸𝑀𝐼𝐶𝐸𝑀 = [
𝐷𝐶𝐸𝑀

𝑡 (𝑥0
𝑡+1,𝑦0

𝑡+1)

𝐷𝐶𝐸𝑀
𝑡+1 (𝑥0

𝑡 ,𝑦0
𝑡)

×
𝐷𝐶𝐸𝑀

𝑡+1 (𝑥0
𝑡+1,𝑦0

𝑡+1)

𝐷𝐶𝐸𝑀
𝑡 (𝑥0

𝑡 ,𝑦0
𝑡)

]

1
2⁄

    
     

(4) 

   Where (𝑥0
𝑡 , 𝑦0

𝑡) and (𝑥0
𝑡+1 , 𝑦0

𝑡+1) are the observed inputs and outputs of DMU0 in time periods 𝑡  and 

𝑡 + 1 respectively. 𝐷𝐶𝐸𝑀
𝑡 (𝑥0

𝑡+1 , 𝑦0
𝑡+1) is calculated by solving model (3). Other measures in (4) are 

calculated in a similar manner. 

[𝐷𝐶𝐸𝑀
𝑡 (𝑥0

𝑡+1, 𝑦0
𝑡+1)] = Max ∑ 𝑢𝑟

𝑡 𝑦𝑟0
𝑡+1

𝑠

𝑟=1

 
 

𝑠. 𝑡. ∑ 𝑣𝑖
𝑡𝑥𝑖0

𝑡+1 = 1

𝑚

𝑖=1

 
 

∑ 𝑢𝑟
𝑡 𝑦𝑟𝑗

𝑡

𝑠

𝑟=1

− ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡 ≤ 0

𝑚

𝑖=1

, 𝑗 = 1, … , 𝑛 
 (5) 

𝑣𝑖𝑎
𝑡

𝑣
𝑖𝑏
𝑡 =

𝑝𝑖𝑎0

𝑝𝑖𝑏0

, 𝑖𝑎 < 𝑖𝑏 , 𝑖𝑎 , 𝑖𝑏 = 1, … , 𝑚, 
 

𝑢𝑟
𝑡 ≥ 𝜀,   𝑟 = 1, … , 𝑠  

 

Now we can develop other versions of EMI decompositions regarding CRS and CEM technologies. 

Two-component EMI can be written as 

𝐸𝑀𝐼𝐶𝐸𝑀 = 𝐸𝐸𝐶𝐶𝐸𝑀 × 𝐸𝑇𝐶𝐶𝐸𝑀                                                                                                                (6) 

Where 

𝐸𝐸𝐶𝐶𝐸𝑀 =
𝐷𝐶𝐸𝑀

𝑡+1 (𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)

𝐷𝐶𝐸𝑀
𝑡 (𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 )

, 𝐸𝑇𝐶𝐶𝐸𝑀 = [
𝐷𝐶𝐸𝑀

𝑡 (𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)

𝐷𝐶𝐸𝑀
𝑡+1 (𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1)

×
𝐷𝐶𝐸𝑀

𝑡 (𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 )

𝐷𝐶𝐸𝑀
𝑡+1 (𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 )

]

1
2⁄

 
 

(7) 

The novel three-component decomposition that specifies CEC portion in productivity index is 

developed regarding CRS technology and CEM as follows: 

𝐸𝑀𝐼𝐶𝐸𝑀 = 𝐸𝐶 × 𝐶𝐸𝐶 × 𝐸𝑇𝐶𝐶𝐸𝑀                                                                                                             (8) 

Where 

𝐸𝐶 =
𝐷𝐶𝑅𝑆

𝑡+1(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)

𝐷𝐶𝑅𝑆
𝑡 (𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 )

, 𝐶𝐸𝐶 =
𝐶𝐸𝑡+1(𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1)

𝐶𝐸𝑡(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 )
 (9) 

  This is obtained from CEM in (3) and the following CRS model. Also, 
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𝐷𝐶𝑅𝑆
𝑡 (𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 ) = 𝑚𝑎𝑥 ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑘
𝑡

𝑠

𝑟=1
 

 

𝑠. 𝑡. ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡
𝑚

𝑖=1
= 1 

 

∑ 𝑢𝑟
𝑡 𝑦𝑟𝑗

𝑡
𝑠

𝑟=1
− ∑ 𝑣𝑖

𝑡 𝑥𝑖𝑗
𝑡

𝑚

𝑖=1
≤ 0, 𝑗 = 1, … , 𝑛 

(10) 

𝑢𝑟
𝑡 ≥ 𝜀, 𝑟 = 1, … , 𝑠  

𝑣𝑖
𝑡 ≥ 𝜀, 𝑖 = 1, … , 𝑚  

 

In addition, if we consider VRS technology in addition to CRS and CEM, other novel four-component 

decomposition of EMI will be obtained as follows: 

𝐸𝑀𝐼𝐶𝐸𝑀 = 𝑃𝐸𝐶 × 𝑆𝐸𝐶 × 𝐶𝐸𝐶 × 𝐸𝑇𝐶𝐶𝐸𝑀 ,                                                                                             (11) 

Where PEC is obtained by solving BCC model as follows: 

𝐷𝑉𝑅𝑆
𝑡 (𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 ) = 𝑚𝑎𝑥 ∑ 𝑢𝑟

𝑡 𝑦𝑟𝑘
𝑡 − 𝑢0

𝑠

𝑟=1
 

 

𝑠. 𝑡. ∑ 𝑣𝑖
𝑡𝑥𝑖𝑘

𝑡 = 1

𝑚

𝑖=1

 
 

∑ 𝑢𝑟
𝑡 𝑦𝑟𝑗

𝑡

𝑠

𝑟=1

− ∑ 𝑣𝑖
𝑡𝑥𝑖𝑗

𝑡 − 𝑢0
𝑡 ≤ 0

𝑚

𝑖=1

, 𝑗 = 1, … , 𝑛 
   (12) 

𝑢𝑟
𝑡 ≥ 𝜀, 𝑟 = 1, … , 𝑠,  𝑢0

𝑡   free  

𝑣𝑖
𝑡 ≥ 𝜀, 𝑖 = 1, … , 𝑚  

Also, we have 

𝑆𝐸 =
𝐷𝐶𝑅𝑆

𝐷𝑉𝑅𝑆
, 𝑆𝐸𝐶 =

𝑆𝐸𝑡+1(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)

𝑆𝐸𝑡(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 )
 (13) 

   We describe the above decompositions with an example: 

Consider the data of 8 DMUs taken from Alirezaaee and Afsharian (2010) with one input and two outputs 

in two time periods, as in table 1. 

Table 1. The data of 8 DMUs in two time periods 

Second period First period 
Units 

Output 2 Output 1 input Output 2 Output 1 input 

700 

600 

400 

1000 
1000 

2400 

2100 

2700 

1100 

1300 

1500 

1600 
2800 

900 

4200 

900 

100 

100 

100 

200 
200 

300 

300 

300 

1000 

600 

100 

800 
600 

2850 

1200 

2100 

200 

1200 

1600 

1000 
2600 

300 

3600 

2100 

100 

100 

100 

200 
200 

300 

300 

300 

DMU 1 

DMU 2 

DMU 3 

DMU 4 
DMU 5 

DMU 6 

DMU 7 

DMU 8 

 

   The results of MI and EMI with their decompositions using GAMS programming is shown in tables 2 

and 3. 
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Table 2. MI and its components 

Units PEC SEC TC MI 

DMU1 1.00 0.94 1.00 0.95 

DMU2 1.00 0.92 1.16 1.06 

DMU3 1.00 1.00 1.01 1.01 

DMU4 1.14 1.06 1.10 1.34 

DMU5 0.98 1.06 1.09 1.14 

DMU6 0.89 1.05 0.92 0.87 

DMU7 1.00 1.10 1.14 1.26 

DMU8 1.00 1.10 0.99 1.09 

 

Table 3. EMI and its components 

Units PEC SEC CEC ETC EMI 

DMU1 1.00 0.94 1.12 1.00 1.06 

DMU2 1.00 0.92 1.19 0.86 0.94 

DMU3 1.00 1.00 1.00 0.99 0.99 

DMU4 1.14 1.06 0.67 0.91 0.75 

DMU5 0.98 1.06 0.91 0.92 0.88 

DMU6 0.89 1.05 1.13 1.08 1.15 

DMU7 1.00 1.10 0.82 0.88 0.80 

DMU8 1.00 1.10 0.82 1.01 0.91 

 

    Comparing the three-parted and four-parted decompositions, PEC and SEC are clearly common in both 

of them and remain unchanged. Therefore, we need to focus on technological changes as well as on CEC 

effect as a new component.  
   In the three-parted decomposition, the effect of technology on PEC and SEC is considered, while in the 

four-parted decomposition, a new factor titled the cost efficiency along with the technological changes, 

increase the accuracy of results and help the managers in providing an effective developmental solution 

for their units. As shown in tables 2 and 3, in DMUs 1 and 6, comparing MI and EMI and considering the 
CEC factor, their status has been changed from unproductive to productive ones. On the other hand, the 

DMUs 4 and 7 are unproductive units, as the rate of cost efficiency growth is negative for them; in other 

words, by applying MI, the negative growth in technology change might lead to negative growth of 
productivity, while by using the four-parted decomposition it precisely estimates that whether the 

negative growth results from negative growth of CEC or is due to technology change. 

 

4-Case study 
   In this section, we calculate and analyze the proposed EMI novel decompositions for 66 branches of an 
expertise bank in Iran located in east region of Tehran for two time periods 2017-2018 as a real-world 

case study. It is noted that the chosen bank is the largest Iranian governmental bank operating in the 

housing sector. This bank has more than 1300 branches in 38 regions in Iran. 

4-1-Data 
   Considering the production approach of bank branches (Paradi and Zhu, 2013), two inputs and three 

outputs are considered as follows: Human resources and location index are inputs and deposits, loans and 
services are outputs in this case study. 

   The input of human resources has to include all the quantities and qualities entities related to the staff of 

a branch. The input of location has to include all the quantities and qualities entities related to the physical 

location of a branch. The planning and programming department of bank has done a project for this index 
and they considered all the related factors in the developed location index and we used the data of the 

location index in our evaluation. 



204 
 

    The output of deposit has to include all kinds of methods of gathering money by a branch. The 
planning and programming department of bank has done a project for this index and they considered a 

weighted sum of all kinds of accounts considering their values and number of transactions for calculation 

of the deposit index and we used the data of the deposit index in our evaluation. The output of loans 

includes all the money gave as all kinds of loans and mortgages by a branch and similar to deposit index 
some calculations have been done. Finally the output of services is an index which includes all kinds of 

services presented by a branch to its customers. Descriptive statistics of inputs and outputs for two time 

periods are given in Table 4. Measurement unit of personnel expenses is 1000000 Rials. Other indices 
have no units because they are normalized indices. All the values and results are rounded in two digits. 

 
Table 4. Descriptive statistics of data 

 2017 2018 

Min Max Mean STD. Min Max Mean STD. 

Inputs         

Personnel expenses 1535.43 12539.22 4153.86 2399.01 1628.98 16214.78 5475.94 2743.41 

Location index 384 1194 951 152.21 384 1194 951 152.21 

Outputs         

Deposits 172.40 5518 1425.71 1024.05 154.50 5620 1274.35 783.09 

Loans 77.39 9909 1134.33 1316.38 79 18300 1274.53 1661.72 

Services 125.20 5637 948.95 741.90 134.10 22045 1117.98 1729.67 

   Also, descriptive statistics of input costs are given in table 5. P1 is the cost of human resources that is 

replaced by personnel expenses which contain all expenses related to staff of branch such as pay, pension 
and etc. P2 is the cost of the project for implementing and computing location index for each branch. 

Since the cost information is used in the form of proportion in the model, so their relative value is only 

important. 

Table 5. Descriptive statistics of input costs 

 

2017 2018 

Min Max Mean STD. Min Max Mean STD. 

P1 1.00 5.10 1.71 0.91 1.00 6.00 2.18 1.20 

P2 2.00 5.00 3.84 0.68 2.00 5.00 3.84 0.68 

4-1-Extended Malmquist index results 
   Both MI and EMI with their components were calculated for all branches. Since expressing the 

results for all 66 branches is not possible, we only provide descriptive statistics of the results for all 

branches and the results for selected branches. Descriptive results are listed in table 6. 

Table 6. Descriptive statistics of MI and EMI decompositions 

 Min Max Mean STD. 

PEC 0.57 1.36 1.03 0.16 

SEC 0.51 1.63 0.98 0.15 

TC 0.69 1.48 1.04 0.16 

ETC 0.68 1.15 0.90 0.09 

CEC 0.38 3.86 1.19 0.49 

MI 0.69 1.77 1.02 0.17 

EMI 0.56 1.41 0.99 0.18 
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   Now, regarding increasing or decreasing EMI relative to MI in all 66 branches, we divide them into 
three groups: branches with EMI-MI>0, EMI-MI<0, and EMI-MI≈0. Then analyze the three groups 

performance separately. 

 Branches with EMI-MI>0: 

   27 branches located in this group. Between them, the branches 2, 5, 16, 29, 34, 47, 49 have the largest 

value for EMI-MI that is listed in table 7. Considering the CEC, these branches show a higher 
productivity index than MI. For example, the dramatic growth of EMI of branch #2 relative to MI is due 

to CEC that is equal to 1.66. It means that CE of the branch has 66% growth in the two periods. Also, the 

same analysis is possible for other branches in table 7. 

Table 7. The results for Branches with highest EMI-MI 

DMUs PEC SEC TC MI EMI ETC CEC 

DMU02 1.00 1.00 0.70 0.69 1.41 0.85 1.66 

DMU05 1.00 1.00 0.72 0.72 1.41 0.90 1.58 

DMU16 1.00 0.51 1.48 0.75 1.33 0.68 3.87 

DMU29 0.94 1.00 0.85 0.79 1.24 0.72 1.84 

DMU34 0.90 1.00 0.77 0.70 1.41 0.84 1.86 

DMU47 0.98 0.99 0.77 0.74 1.31 0.89 1.50 

DMU49 0.75 1.00 0.93 0.70 1.40 0.94 1.94 

 

Note that the value of PEC and SEC are equal in both decompositions MI and EMI. The changes of EMI 

relative to MI are due to growth or decline of CEC or ETC relative to TC. 

 Branches with EMI-MI<0: 

Among 21 branches belong to this group, the branches 7,14,22,39,45,51,66 have the lowest value of EMI-

MI that are listed in table 8. 

Table 8. The results for Branches with lowest EMI-MI 

DMUs PEC SEC TC MI EMI ETC CEC 

DMU07 1.27 0.99 1.01 1.27 0.78 0.99 0.63 

DMU14 1.03 1.02 1.06 1.11 0.69 0.81 0.82 

DMU22 1.36 0.91 1.09 1.35 0.63 0.83 0.62 

DMU39 1.15 0.91 1.15 1.21 0.82 0.86 0.91 

DMU45 0.93 0.97 1.34 1.21 0.82 0.74 1.22 

DMU51 1.05 1.01 1.17 1.24 0.80 0.85 0.89 

DMU66 1.00 1.63 1.09 1.77 0.56 0.92 0.38 

 

   As can be seen from table 8, the reason of decreasing EMI relative to MI is due to negative rate of ETC 

or CEC. For example, the decline of EMI relative to MI of branch #7 is due to negative growth of CEC 

that is equal to 0.63. 

 Branches with EMI-MI≈0: 

   Regardless of efficient or inefficient, 18 branches have no significant relative changes in EMI. Among 

them, for example, we consider branches number 8, 15, 26, 27, 33, and 61. The results for these branches 

are given in table 9 below. In these branches, the CEC and ETC have compensated each other. In other 

words, the negative growth of CEC is offset by the positive growth of ETC and vice versa. For example, 

branch #8 has 62% growth in CEC and in other hand 52% decrease in ETC relative to TC. 



206 
 

Table 9. The results for Branches with EMI-MI≈0 

DMUs PEC SEC TC MI EMI ETC CEC 

DMU08 1.00 0.79 1.30 1.01 0.99 0.78 1.62 

DMU15 0.98 0.98 1.05 1.00 1.00 0.95 1.09 

DMU26 1.13 0.94 0.97 1.03 0.97 1.03 0.89 

DMU27 1.11 0.95 0.95 1.00 1.00 1.03 0.91 

DMU33 0.96 1.00 1.05 1.02 0.98 0.96 1.06 

DMU61 0.66 1.31 1.17 1.01 0.99 0.85 1.34 

 

   Since in both decompositions of MI and EMI, the components of SEC and PEC are the same, therefore 

it can be concluded that for these branches, the product of ETC with CEC is approximately equal to TC. 

The importance of CE analysis is more apparent in branches that have MI<0 but EMI>0, or MI>0 but 

EMI<0. This means that the CEC could make the branch's status be changed from non-productive to 

productive or vice versa.  

 

5-Conclusion 
   The cost information of each decision making unit made us to develop a new extension of Malmquist 

productivity index that determine the role of cost efficiency changes in productivity growth or decline in 

two time periods. This paper applies the DEA cost efficiency model as the base technology and presents a 
four-component decomposition of Malmquist index. The cost efficiency model uses weight restrictions to 

increase discrimination power of basic DEA models. Finally, we approved the models presented in the 

paper with a real case study from banking industry with 66 branches. The results show that the extended 
decomposition provides more accurate analysis of contribution of each factor of technology change, 

efficiency change, and cost efficiency change in productivity growth index. 

As a future work offer, one can consider the role of profit or revenue efficiency in productivity analysis. 
Also, VRS technology instead of CRS technology could be used. 
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