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Abstract 
This paper addresses a bi-objective mixed integer optimization model under 

uncertainty for population partitioning problem. The objective functions are to 

minimize the number of communications between partitions and to balance their 
population. The main constraints are defined for creating contiguous and 

compact partitions as well as assigning uniquely each basic unit to one partition. 

To deal with the uncertainty of parameters, a robust programming method is 
proposed that causes the uncertainty parameters lie between the interval of best-

case (the deterministic mode) and worst-case (the highest uncertainty level for 

all parameters). As the suggested method is NP-Hard, three meta-heuristic 

algorithms NSGAII, PESA, and SPEA are developed and, to evaluate the 
efficiency of the algorithms, 10 small-size examples, 10 medium-size examples 

and, 10 large-size examples are generated and solved. According to 

computational results, the SPEA has the best performance. The method is 
examined for a real-world application, as a case study in Iran. 

Keywords: Partitioning, interval uncertainty, multi-objective optimization, 

robust programming. 
 

 

1-Introduction  
   Population partitioning problem is generally defined as grouping basic units to partitions (Garfinkel & 

Nemhauser, 1970). Optimal partitions in a territory should have features, such as balance (population size, 

distance from each other and unemployment rate), contiguousness, compactness, and the absence of holes 
(Baqir, 2002). To solve partitioning problems in real-world applications, it is necessary to show 

connections between territories as a network structure (Liberatore & Camacho-Collados, 2016). This 

structure is an undirected graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 (cities or basic units) and connection set 𝐸. 
Any population partitioning problem can be regarded as a graph partitioning problem (Tran, Dinh, & 

Gascon, 2017). 

   Many studies have been done on partitioning application in different fields. One of the earliest studies 

belongs to Ghiggi et al. (Ghiggi, Puliafito, & Zoppoli, 1975). There, each partition is composed of a 
certain number of inseparable communities with centralized population. Minciardi et al. studied 

decomposition of a geographic territory into an indefinite number of non-overlapping partitions.  
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   They introduced two heuristic algorithms to achieve compact primary areas for reducing calculations 
process in partitions (Minciardi, Puliafito, & Zoppoli, 1981). Pezzella et al. addressed partitioning 

problem with optimal allocation of services (Pezzella, Bonanno, & Nicoletti, 1981). Lin and Kao 

introduced a mixed integer optimization model to partition municipal solid waste collection sites (H.-Y. 

Lin & Kao, 2008). Chen and Yum presented a new public security criterion to define security function 
level (Chen & Yum, 2010). Benzarti et al. addressed partitioning problem to deal with home health care 

services. Their contribution was formulating home health care partitioning problem as a mixed integer 

programming model with some criteria, such as basic units separation, compactness, workload balance 
between human resources, and consistency (Benzarti, Sahin, & Dallery, 2013). De Assis et al. 

investigated balanced multi-criteria partitioning problem for electricity meter reading based on 

compactness and homogeneity criteria of partitions (De Assis, Franca, & Usberti, 2014). Butsch et al. 
proposed a heuristic algorithm for arc routing districting problem (Butsch, Kalcsics, & Laporte, 2014). 

Camacho-Collados et al. studied multi-criteria police districting problem for the first time. They 

considered some area criteria, such as  risk, compactness, and mutual support (Camacho-Collados, 

Liberatore, & Angulo, 2015). García‐Ayala et al. solved road network partitioning problem with a certain 
number of partitions by an integer mathematical model.. 

 
Table 1. Studies in the field of graph partitioning with emphasize on solution methods 

Author(s) Year  Application  
Type of 

model 

Approach type 

Exact  Heuristic  
Meta-

heuristic 

)Shirabe, 2012) 2012 
Bus transportation 

problem 

Single 

objective 
   

)D Datta, Figueira, Gourtani, & 

Morton, 2013) 
2013 Health care 

Multi-

objective 
   

(Benzarti et al., 2013) 2013 Home health care 
Multi-

objective 
   

)Ríos-Mercado & López-Pérez, 2013) 2013 Distribution problem 
Single 

objective 
   

)De Assis et al., 2014) 2014 
Electricity meter 

reading 

Multi-

objective 
   

)Li, Church, & Goodchild, 2014) 2014 Urban land use 
Single 

objective 
   

)Steiner, Datta, Neto, Scarpin, & 

Figueira, 2015) 
2015 Health care 

Multi-

objective 
   

)M. Lin, Chin, Fu, & Tsui, 2017) 2017 Health care 
Single 

objective 
   

)Tran et al., 2017) 2017 Health care 
Single 

objective 
   

)Kong, Zhu, & Wang, 2018) 2018 Distribution system 
Single 

objective 
   

)Zhao, Wang, & Peng, 2018) 2018 
Rail transportation 

system 

Single 

objective 
   

The current study - Distribution system 
Bi-

objective 
   
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   This problem was taken into consideration by many organizations including post offices, municipalities 

for urban and winter services, road maintenance, and urban waste disposal sections (García‐Ayala, 

González‐Velarde, Ríos‐Mercado, & Fernández, 2016) 

   To solve partitioning problems, many methods have been developed mainly based on meta-heuristic 

algorithms. In addition to the well-known genetic algorithm, some other meta-heuristic algorithms have 
been used to solve partitioning problem, such as simulated annealing (Brooks & Morgan, 1995), tabu 

search (Bozkaya, Erkut, & Laporte, 2003), hybrid simulated annealing and tabu-search (Baños, Gil, 

Paechter, & Ortega, 2007), particle  swarm (Wang, Wu, & Mao, 2007), and differential evolution (Dilip 
Datta & Figueira, 2011). 

    In this paper, population partitioning problem is proposed as a bi-objective problem with the aim of 

minimizing connections between basic units outside a partition and balancing the population in partitions 

under uncertainty conditions. To deal with uncertainty of parameters, the optimization method provided 
by Sim and Bertsimas (Bertsimas & Sim, 2004) is applied.  

   The remainder of this paper is organized as follows. The problem definition is given in section 2. 

Solution methods and the related explanations are presented in section 3. In section 4, the proposed 
algorithms are compared with the mathematical model. The efficiency of algorithms is assessed in section 

5. The case study is investigated in section 6. Finally, conclusions are presented in section 7.  

2-Problem statement 
   Assume 𝐺 = (𝑉, 𝐸) is an undirected graph with vertex set 𝑉 (basic units) and edge set 𝐸. The vertex set 

𝑉 contains 𝑁 vertices 𝑣1, 𝑣2, … , 𝑣𝑁. Each vertex 𝑣𝑖 is represented by a pair (𝑥𝑖 , 𝑦𝑖) of vertical and 

horizontal coordinates.  Any edge of G with two endpoints 𝑣𝑖 and 𝑣𝑗 is denoted by (𝑣𝑖, 𝑣𝑗). Each vertex 𝑣𝑖 

has a weight 𝑤𝑖 ≥ 0, and it can be considered as  𝑤𝑖𝑗 = 𝑤𝑖 + 𝑤𝑗  for each pair of vertices 𝑣𝑖 and 𝑣𝑗. These 

weights represent some characteristics, such as population and demand for each vertex. Since the 

adjacency matrix corresponding to G is symmetric, it follows that𝑤𝑖𝑗 = 𝑤𝑗𝑖. We can also consider 𝑊 =

(𝑤𝑖𝑗) as an adjacency matrix. If 𝑤𝑖𝑗 > 0, then there is an edge between vertices 𝑣𝑖 and 𝑣𝑗. If 𝑤𝑖𝑗 = 0, 

there is not any edge joining vertices 𝑣𝑖 and 𝑣𝑗. In addition, another parameter 𝑝𝑖𝑗 represents the 

population difference between vertices 𝑣𝑖 and 𝑣𝑗. In fact, this serves as a parameter to balance the 

population in partitions. 

   Suppose that the goal is to divide vertices into the set of partitions P. We denote by |𝑃| the number of 

elements belonging to P. So 𝑃 = {1,2, … , |𝑃|}. Let the values 𝐶𝑚𝑖𝑛  and 𝐶𝑚𝑎𝑥  respectively represent the 

minimum and maximum number of vertices that can be placed in a partition. It is clear that 𝑃 ∈
{2, … , 𝑁 − 1}, 𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥 ∈ {1, … , 𝑁} and 𝐶𝑚𝑖𝑛 ≤ 𝐶𝑚𝑎𝑥 . Let 𝑋𝑖𝑝 be a binary variable that equals to one 

if vertex 𝑣𝑖 is assigned to partition 𝑝 ∈ {1, … , |𝑃|}, and otherwise 𝑋𝑖𝑝 = 0. Another binary variable 𝑌𝑖𝑗 

equals to one if vertices 𝑣𝑖 and 𝑣𝑗 are not assigned to the same partition, and otherwise 𝑌𝑖𝑗 = 0. The 

objective function of partitioning problem is to minimize the total weight of edges that are considered as 

connections between two partitions. Since the adjacency matrix corresponding to G is symmetric, the 

objective function can be defined as min
1

2
∑ 𝑌𝑖𝑗𝑤𝑖𝑗𝑖,𝑗  or min ∑ 𝑌𝑖𝑗𝑤𝑖𝑗𝑖≤𝑗 . According to these definitions, 

the mathematical model of the problem is expressed in equations (1) to (7). 

Input parameters 

𝑤𝑖𝑗  Number of required transfers between vertices 𝑣𝑖 and 𝑣𝑗 (the transferred population between 

vertices). 

𝑝𝑖𝑗 Difference between populations of vertices 𝑣𝑖 and 𝑣𝑗. 

M A positive and large enough scalar 
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2-1-Mathematical formulation 

 
Model 1 

(1.a) 𝑀𝑖𝑛 ∑ ∑ 𝑌𝑖𝑗𝑤𝑖𝑗

𝑗=𝑖+1𝑖∈𝑉

, 

(1.b) 𝑀𝑖𝑛 ∑ ∑ 𝑌𝑖𝑗𝑝𝑖𝑗

𝑗=𝑖+1𝑖∈𝑉

, 

 𝑠. 𝑡. 

(2) ∀𝑖 ∈ 𝑉, ∑ 𝑋𝑖𝑝

𝑝∈𝑃

= 1, 

(3) ∀𝑝 ∈ 𝑃, 𝐶𝑚𝑖𝑛 ≤ ∑ 𝑋𝑖𝑝

𝑖∈𝑉

≤ 𝐶𝑚𝑎𝑥 , 

(4) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 − 𝑋𝑖𝑝 + 𝑋𝑗𝑝 ≤ 0, 

(5) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 + 𝑋𝑖𝑝 − 𝑋𝑗𝑝 ≤ 0, 

(6) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, ∑ 𝑋𝑟𝑝

𝑟∈𝐻𝑖𝑗

≥ 𝑆𝑃𝑖𝑗 − 𝑀 (2 − (𝑋𝑗𝑝 + 𝑋𝑖𝑝)), 

(7) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑋𝑖𝑝 ∈ {0,1}, 𝑌𝑖𝑗 ∈ {0,1}, 

    The first objective function is to minimize the total weight of connections between partitions. The 

second objective function balances the population in partitions as much as possible. Constraint (2) ensures 

that each vertex is assigned to only one partition. Constraint (3) guarantees that the number of vertices in 

each partition is between the upper and lower bounds. Constraints (4) and (5) state that if vertices 𝑣𝑖 and 

𝑣𝑗 are not in the same partition, then 𝑌𝑖𝑗 = 1, otherwise 𝑌𝑖𝑗 = 0. Constraint (6) is the first provided 

mathematical formulation maintaining continuity, compactness, and the absence of holes. 𝑆𝑃𝑖𝑗 is the set 

of vertices on the shortest path between vertices 𝑣𝑖 and 𝑣𝑗, and |𝑆𝑃𝑖𝑗| is the number of its vertices. 

Constraint (7) specifies the range of variables. 

   One of the most prominent characteristics of this model is that it considers the fundamental constraints 

of the partitioning problem (contiguity and compactness partitions). No integrated, specific mathematical 
model has been presented yet since the constraints are difficult to design (Kalcsics. J, 2015). The 

constraint (6) states that the shortest path between each two basic units belonging to a single partition 

must be located inside that partition. Thus, all of the points on the shortest path between the two basic 

units are inside that partition as well. This constraint not only assures contiguity and avoidance of unusual 
partition allocations but also causes partitions with the feature of compactness to be generated. In the final 

partitioning, therefore, the generated partitions are expected to be convex as far as possible, and no 

unusual allocation is expected to exist. However, points on shortest path between each two basic units can 
be specified using some common algorithms like Dijkstra’s algorithm. In this algorithm, the shortest-path 

tree will be formed if the algorithm is run for all the points in the area under investigation. It should be 

noted that there is not one communication path between each of the two points (corners) in the graph 

network used in this research, unlike in communication networks between populated areas. The relations 
between points will be in the form of a graph network. This can be observed more clearly in the case 

study of the research. However, a question that may be raised is how path selection will work if there is 

more than one shortest path between two different vertices. To respond to this question, one can consider 
the structure of the algorithm used for finding the shortest path (Dijkstra’s algorithm in this research). As 

stated, the shortest-path tree will be generated if the algorithm is run for all the vertices in the area. 

Therefore, two shortest paths are never identified between two specific vertices, since the eventual 
structure would then involve a cycle, and would no longer be a tree, and this would be a contradiction in 
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the algorithm structure. It can, therefore, be assured that the points on the shortest path between two 
vertices are identified by the algorithm that is used.  

   A point to must be clarified is the difference between the parameters 𝑝𝑖𝑗 and 𝑤𝑖𝑗  and their 

computational structure in the mathematical model. Let us illustrate it by one example. Assume that the 
network contains 5 vertices with populations of 10, 20, 15, 25, and 30 shown in figure 1. 

 
Fig 1. A graphic structure of problem 

   Therefore, one can say that 𝑝12 = 𝑝21 = 10, 𝑝23 = 𝑝32 = 5, 𝑝34 = 𝑝43 = 10, 𝑝45 = 𝑝54 = 5, 𝑝14 =
𝑝41 = 15, 𝑝13 = 𝑝31 = 5, and 𝑝15 = 𝑝51 = 20. Moreover, parameter 𝑤𝑖𝑗  is randomly  specified 

according to the following numbers. 

𝑤12 = 𝑤21 = 20 

𝑤23 = 𝑤32 = 15 

𝑤34 = 𝑤43 = 15 

𝑤45 = 𝑤54 = 20 

𝑤14 = 𝑤41 = 10 

𝑤13 = 𝑤31 = 15 

𝑤15 = 𝑤51 = 10 

   As stated before, 𝑝𝑖𝑗 can be calculated through the population of vertices; however, 𝑤𝑖𝑗  is a parameter 

that is independently entered by the decision maker. For example, it can indicate the amount of demands 
that should be moved between adjacent vertices. This work has several practical applications in health 

care system management and supply chain management. In fact, 𝑝𝑖𝑗 is used to create population balance 

in partitions while 𝑤𝑖𝑗  aims to minimize the number of trips between partitions. For example, in 

healthcare system, it is assumed that some people from a certain basic unit have to go to adjacent basic 

units to receive healthcare services. If vertices 1, 2, and 3 are supposed to be in a partition and vertices 4 
and 5 in another partition, value of the first and the second objective functions will be 45 and 35 based on 

objective functions (a.1) and (b.1), respectively. If the partition structure is changed and vertices 1 and 2 

are located in one partition and vertices 3, 4, and 5 in the other partition, then the first and the second 
objective values will be 35 and 50, respectively. As can be seen, different partition structures are non-

dominated; therefore, one cannot choose an ideal solution definitely. In fact, this example demonstrates 

that the provided objective functions are generally contradictory and can be considered as different 

objective functions.  

2-2- Robust mathematical formulation  

   In this paper, the investigated uncertainty is related to matrices 𝑊 = (𝑤𝑖𝑗)
𝑁×𝑁

and 𝑃 = (𝑝𝑖𝑗)
𝑁×𝑁

. Each 

component 𝑤𝑖𝑗  is modeled randomly as an indeterminate symmetric distribution parameter bounded to 

𝑤̂𝑖𝑗  which varies in the interval [𝑤𝑖𝑗 − 𝑤̂𝑖𝑗 , 𝑤𝑖𝑗 + 𝑤̂𝑖𝑗]. It is noteworthy that parameter 𝑤̂𝑖𝑗  is the constant 
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part and 𝑤𝑖𝑗  is the variable part. Therefore, one can state 𝑤̂𝑖𝑗 = 𝑤̂𝑗𝑖 for 𝑖, 𝑗 = 1, … , 𝑁. Similarly, the same 

definitions can be proposed for parameter 𝑝𝑖𝑗. Based on Sim and Bertsimas robust programming 

(Bertsimas, 2004), the uncertainty conditions for parameter 𝑤𝑖𝑗  is first described, and then it is considered 

similarly for parameter 𝑝𝑖𝑗. 

   Robust optimization is proposed to investigate uncertainty of weight matrix W by means of 𝑤̃𝑖𝑗 =

[𝑤𝑖𝑗 − 𝑤̂𝑖𝑗, 𝑤𝑖𝑗 + 𝑤̂𝑖𝑗], where 𝑤𝑖𝑗  is the nominal value of edge (𝑣𝑖 , 𝑣𝑗). J is the set of indices related to W 

with uncertain changes i.e. 𝐽 = {(𝑖, 𝑗): 𝑤̂𝑖𝑗 > 0, 𝑖 = 1, . . , 𝑁, 𝑗 = 𝑖 + 1, … , 𝑁}. It is supposed that 𝛤 is a 

parameter that is not necessarily integer and gets value in the interval [0, |𝐽|]. This parameter was 
introduced by Bertsimas and Sim (Bertsimas & Sim, 2003) to adjust robustness of the proposed method 

against conservative level of introduced solution. The number of coefficients 𝑤𝑖𝑗  and 𝑤𝑖𝑡𝑗𝑡
are allowed to 

be changed at most ⌊𝛤⌋ and (𝛤 − ⌊𝛤⌋), respectively. The subscript of i and j is t which is explained in the 

following. In Bertsimas robust programming, the number of uncertain parameters varies proportional to 
value of the robustness parameter, so there should be a counter in the set of main counters that counts the 

uncertain parameters. For instance, if we have 10 basic units, there will be 100 number of w. Assume that 

based on value of the robustness parameter, only 10 of them are uncertain, and the rest remain at the 

upper bound. Hence, a counter is required to count those 10. The index t does the same as explained. 

Therefore, robust partitioning problem can be formulated as follows.  

Model 2  

min
(𝑋𝑖𝑝,𝑌𝑖𝑗)

(∑ ∑ 𝑌𝑖𝑗𝑤𝑖𝑗

𝑗=𝑖+1𝑖∈𝑉

+ max
{
𝑆:𝑆⊆𝐽,|𝑆|≤𝛤
(𝑖𝑡𝑗𝑡)∈𝐽/𝑆

}

( ∑ 𝑌𝑖𝑗𝑤̂𝑖𝑗

(𝑖,𝑗)∈𝑆

+ (𝛤 − ⌊𝛤⌋) 𝑤̂𝑖𝑡𝑗𝑡
𝑌𝑖𝑡𝑗𝑡

)),        (8) 

𝑠. 𝑡.  

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6).  

 

Notice that there are different conditions based on the selected value 𝛤. 

 If 𝛤 = 0, no change is allowed and the problem is decreased to a nominal one like to Model 1. 

  If 𝛤 is selected as an integer number, the value of the objective function (8) will equal to 

max
{𝑆|𝑆⊆𝐽,|𝑆|≤𝛤 }

∑ 𝑌𝑖𝑗𝑤̂𝑖𝑗(𝑖,𝑗)∈𝑆  at most. 

  If 𝛤 = |𝐽|, the problem can be solved by the Swister method (Fan, Zheng, & Pardalos, 2012). As 

stated in (Fan et al., 2012), the objective function (8) can be equivalently formulated as a mixed 
binary linear programming.  

The method used in the proof of the following theorem was proposed by (Bertsimas & Sim, 2004) for the 

first time. 

Theorem: Model 2 is equivalent to the following mixed binary linear programming formulation. 

 Model 3 

(9) 𝑀𝑖𝑛 ∑ ∑ 𝑌𝑖𝑗𝑤𝑖𝑗

𝑁

𝑗=𝑖+1𝑖∈𝑉

+ 𝛤 𝑈0 + ∑ 𝑈𝑖𝑗

(𝑖,𝑗)∈𝐽

, 

 𝑠. 𝑡. 
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(10) ∀𝑖 ∈ 𝑉, ∑ 𝑋𝑖𝑝

𝑝∈𝑃

= 1, 

(11) ∀𝑝 ∈ 𝑃, 𝐶𝑚𝑖𝑛 ≤ ∑ 𝑋𝑖𝑝

𝑖∈𝑉

≤ 𝐶𝑚𝑖𝑛 , 

(12) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 − 𝑋𝑖𝑝 + 𝑋𝑗𝑝 ≤ 0, 

(13) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 + 𝑋𝑖𝑝 − 𝑋𝑗𝑝 ≤ 0, 

(14) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈0 + 𝑈𝑖𝑗 − 𝑌𝑖𝑗𝑤̂𝑖𝑗 ≥ 0, 

(15) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, ∑ 𝑋𝑟𝑝

𝑟∈𝐻𝑖𝑗

≥ 𝑆𝑃𝑖𝑗 − 𝑀 (2 − (𝑋𝑗𝑝 + 𝑋𝑖𝑝)), 

(16) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈𝑖𝑗 ≥ 0, 

(17)  𝑈0 ≥ 0, 
(18) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃. 𝑋𝑖𝑝 ∈ {0,1}, 𝑌𝑖𝑗 ∈ {0,1} , 

 

Proof: For any given value of (𝑌𝑖𝑗)
𝑖=1,…,𝑁 ,𝑗=𝑖+1,…,𝑁

in Model 2, max
{
𝑆:𝑆⊆𝐽,|𝑆|≤𝛤
(𝑖𝑡𝑗𝑡)∈𝐽/𝑆

}

(∑ 𝑌𝑖𝑗𝑤̂𝑖𝑗(𝑖,𝑗)∈𝑆 +

(𝛤 − ⌊𝛤⌋) 𝑤̂𝑖𝑡𝑗𝑡
𝑌𝑖𝑡𝑗𝑡

) can be linearized by introducing 𝑧𝑖𝑗 for all (𝑖, 𝑗)  ∈  𝐽 subject to constraints 

∑ 𝑧𝑖𝑗(𝑖,𝑗)∈𝐽 ≤ 𝛤and 0 ≤ 𝑧𝑖𝑗 ≤ 1, as shown in Model 4. 

Model 4 

𝑚𝑖𝑛 ∑ 𝑌𝑖𝑗𝑤̂𝑖𝑗(𝑖,𝑗)∈𝑆 𝑧𝑖𝑗,  (19) 

𝑠. 𝑡.   

∑ 𝑧𝑖𝑗(𝑖,𝑗)∈𝐽 ≤ 𝛤,  (20) 

0 ≤ 𝑧𝑖𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐽. (21) 

 

   This formulation is a fractional knapsack problem with bound constraints. The optimal solution of this 

formulation should have ⌊𝛤⌋ variables 𝑧𝑖𝑗 = 1 and one 𝑧𝑖𝑗 = 𝛤 − ⌊𝛤⌋ that is equivalent to the optimal 

solution in maximization part of Model 2. Model 4 is linear for the given values of (𝑌𝑖𝑗)
𝑖=1,…,𝑁 ,𝑗=𝑖+1,…,𝑁

. 

Its duality can be formulated as follows: 

 Model 5 

(22) 𝑀𝑖𝑛 𝛤 𝑈0 + ∑ 𝑈𝑖𝑗

(𝑖,𝑗)∈𝐽

, 

 𝑠. 𝑡. 
(23) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈0 + 𝑈𝑖𝑗 − 𝑌𝑖𝑗𝑤̂𝑖𝑗 ≥ 0, 

(24) ∀(𝑖, 𝑗) ∈ 𝐽. 𝑈𝑖𝑗 ≥ 0, 

(25)  𝑈0 ≥ 0, 
 

Model 3 can be obtained by combining models 5 and 2. This completes the proof. 

On account of the fact that the proposed model has a linear structure, it can be solved as a mixed binary 

programming model by CPLEX solver. The final structure of the model is as follows: 
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   Model 6 

(26) 𝑀𝑖𝑛 ∑ ∑ 𝑌𝑖𝑗𝑤𝑖𝑗𝑗=𝑖+1𝑖∈𝑉 +  𝛤1 𝑈10 + ∑ 𝑈1𝑖𝑗(𝑖,𝑗)∈𝐽 , 

(27) 𝑀𝑖𝑛 ∑ ∑ 𝑌𝑖𝑗𝑝𝑖𝑗𝑗=𝑖+1𝑖∈𝑉 +  𝛤2 𝑈20 + ∑ 𝑈2𝑖𝑗(𝑖,𝑗)∈𝐽 , 

 𝑠. 𝑡 

(28) ∀𝑖 ∈ 𝑉, ∑ 𝑋𝑖𝑝

𝑝∈𝑃

= 1, 

(29) ∀𝑝 ∈ 𝑃, 𝐶𝑚𝑖𝑛 ≤ ∑ 𝑋𝑖𝑝

𝑖∈𝑉

≤ 𝐶𝑚𝑎𝑥 , 

(30) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 − 𝑋𝑖𝑝 + 𝑋𝑗𝑝 ≤ 0, 

(31) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, −𝑌𝑖𝑗 + 𝑋𝑖𝑝 − 𝑋𝑗𝑝 ≤ 0, 

(32) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃, 
∑ 𝑋𝑟𝑝

𝑟∈𝐻𝑖𝑗

≥ 𝑆𝑃𝑖𝑗 − 𝑀 (2 − (𝑋𝑗𝑝 + 𝑋𝑖𝑝)), 

(33) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈10 + 𝑈1𝑖𝑗 − 𝑌𝑖𝑗𝑤̂𝑖𝑗 ≥ 0, 

(24) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈1𝑖𝑗 ≥ 0, 

(34)  𝑈10 ≥ 0, 

(35) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈20 + 𝑈2𝑖𝑗 − 𝑌𝑖𝑗𝑃̂𝑖𝑗 ≥ 0, 

(36) ∀(𝑖, 𝑗) ∈ 𝐽, 𝑈2𝑖𝑗 ≥ 0, 

(37)  𝑈20 ≥ 0, 

(38) ∀𝑖, 𝑗 ∈ 𝑉, 𝑝 ∈ 𝑃. 𝑋𝑖𝑝 ∈ {0,1}, 𝑌𝑖𝑗 ∈ {0,1}, 

 

3-Solution method 
   In this paper, small-size instances are solved by the epsilon-constraint method using CPLEX solver, 

Version 12.1. On account of the fact that partitioning problem is NP-hard, meta-heuristic algorithms 
including NSGAII, PESA, and SPEA are developed to solve large-size instances. The key point in using 

meta-heuristic algorithms is design of solution representation. Therefore, algebraic structure of the 

solution representation and the proposed algorithms are presented in the next section. 

3-1-Solution representation  

   The solution representation for the present partitioning problem is an array of basic units. The value of a 

member of the solution is equal to the number of partitions that the basic unit belongs to it. An example of 

solution structure is shown in Figure 2. 

 
Fig 2. An example of solution structure 
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   Each number represents a partition, and position of each number represents a basic unit. The length of 
each solution indicates the number of basic units. For example, the above solution shows a four-partition 

vector with the following basic units in each partition. 

Partition 1: Basic units 1 and 4. 

Partition 2: Basic units 3 and 6. 

Partition 3: Basic units 5 and 8. 

Partition 4: Basic units 2 and 7. 

Since some meta-heuristic algorithms require continuous representation, the above solution representation 

can be converted to continuous form. Firstly, a real random number is generated in [0, |𝑃| − 1]. Each 

generated number is rounded to an integer number greater or equal to itself. For instance, the solution 

representation related to |𝑃| = 5 is shown in figure 3. 

 

 

 

Fig 3. An example of solution representation 

   Since it is hard to determine a feasible solution for the partitioning problem by random assignment, a 

greedy algorithm is applied to initialize solutions for algorithms. If partition contiguity constraints are not 
satisfied by the cross-over operator, it will be corrected by a labeling procedure in a way that an 

unconnected component of a partition would be labeled as a new partition. Other constraints may not be 

satisfied at any step of initialization and solution production processes. Therefore, a constructive/repair 

mechanism is applied to those constraints according to the algorithm presented in (Steiner et al., 2015). 

3-2-Structure of NSGAII algorithm 
   The multi-objective genetic algorithm is one of most widely used and powerful algorithms to solve 
multi-objective optimization problems and has been proven to be effective in solving various problems. 

Deb et al. developed the second version of bi-objective genetic algorithm (Deb, Agrawal, Pratap, & 

Meyarivan, 2000). They studied both quality and variety of Pareto optimal solutions to eliminate the 
defects of the first version. In this algorithm, two main criteria of quality and order of solutions are 

followed. Qualified solutions are first selected; if two identical solutions exist, the solution having more 

order will be selected. The NSGA-II algorithm has two known phases. The first phase uses the ranking 

criterion and the concept of domination. The second phase which is related to solutions order uses the 
congestion distance. In the first phase, solutions are ranked, and two values are calculated for each 

solution: the number of times that a solution is dominated and the number of solutions dominated by the 

current solution. To determine the two values, all solutions must be compared to each other. If there are 
solutions with zero number of dominations, these solutions are non-dominated, and they are Pareto 

optimal. 
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Initialize Population 

Generate N feasible solution and insert them into Population 

While Stopping criteria is not met Do 

Generate ChildPopulation of Size N 

Select Parents from Population 

Create Children from Parents 

Mutate Children 

Repair Solution using repair mechanism 

Merge Population and ChildPopulation with size 2N 

For each individual in CurrentPopulation Do 

Assign rank based on Pareto-Fast non-dominates sort 

end  

Generate sets of non-dominated vector along 𝑃𝐹𝑘𝑛𝑜𝑤𝑛 

Loop (inside) by adding solution to next generation of Population starting from the best front 

Until N solution found and determine crowding distance between points on each front 

end 

Report results 

Fig 4. Multi-objective genetic algorithm pseudo code 

Figure 5 shows the flowchart of the NSGAII that is extended in this paper. 

 
Fig 5. Flowchart of the NSGAII 
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3-3- SPEA-II algorithm 

   SPEA and SPEA-II are efficient algorithms that use an external archive to store non-dominated 

solutions found during the search algorithm. SPEA algorithm has some weaknesses in the calculation of 

strength and fitness, and there was not any secondary criterion for comparison of non-dominated 
solutions. Hence, Zitzler et al. presented the second version of the algorithm that solved the mentioned 

weaknesses. The framework of SPEA-II algorithm is described below (Zitzler, Laumanns, & Thiele, 

2001).  

𝑁𝐸 Maximum archive size of non-dominated solutions E 

𝑁𝐹 Population size 

K Density computation parameter. (𝐾 = √𝑁𝐸 + 𝑁𝐹) 

Step 1: Create initial solutions population 𝑃0 and let 𝐸0 = ∅ and 𝑡 = 0. 

Step 2: Calculate fitness of each solution i in 𝑃𝑡 ∪ 𝐸𝑡 as follows. 

Sub-step 2-1: Firstly, calculate raw fitness of solution i as follows. 

(39)  𝑅(𝑖) = ∑ 𝑠(𝑗)

𝑗∈𝑃𝑡

, ∀ 𝑗 > 𝑖 ∈ 𝑃𝑡 ,  

Where 𝑗 > 𝑖 means that solution j dominates solution i. Moreover, s(j) shows strength value of solution, 

which is the number of solutions that are dominated by solution j. 

Sub-step 2-2: Calculate fitness of solution i as follows. 

(40)  𝐷(𝑖) =
1

𝜎𝑖
𝑘 + 2

, ∀ 𝑖 ∈ 𝑃𝑡 ,  

Where 𝜎𝑖
𝑘 is the distance between solution i and the kth nearest neighbor to it.  

Sub-step 2-3: Obtain the fitness value by the sum of the raw fitness and the density of solution i, i.e., 

(41)  𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖), ∀ 𝑖 ∈ 𝑃𝑡 .  

Step 3: Copy all non-dominated solutions in 𝑃𝑡 ∪ 𝐸𝑡 to 𝐸t+1. Two possible states may occur. 

State 1: If |𝐸𝑡+1| > 𝑁𝐸, |𝐸𝑡+1| − 𝑁𝐸 number of solutions are eliminated by the repetitive method of 

deleting the response with the criterion 𝜎𝑘. In fact, the solution that has the minimum distance of 𝜎𝑘 from 
other solutions is first eliminated. However, if more than one solution has the minimum distance, the 

second lowest distance can be determined and thus the additional solutions will be deleted similarly (this 

criterion will cause to delete similar or closely related solutions that do not care about the solutions 

density).  

State 2: If |𝐸𝑡+1| ≤ 𝑁𝐸 , 𝑁𝐸 − |𝐸𝑡+1| number of dominated solutions are moved from 𝑃𝑡 ∪ 𝐸𝑡 to 𝐸𝑡+1 in 

order of their fitness value.  
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Step 4: If the stop condition is provided, the algorithm will stop, and it will return |𝐸𝑡+1| solutions.  

Step 5: Use the Dual Competition Method to choose parents from set 𝐸𝑡+1. 

Step 6: Apply cross-over and mutation operators on parents and produce 𝑁𝑃 children. The children are 

added to 𝑃𝑡+1, and one unit will added to the counter (𝑡 = 𝑡 + 1). Then return to step 2. 

It should be noted that this algorithm also uses the same method of cross-over and mutation used in the 

NSGAII algorithm. 

Figure 6 shows the flowchart of the SPEAII that is extended in this paper. 

 

 
 

Fig 6. Flowchart of the SPEAII 
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3-4-PESA-II algorithm 
   Another of most well-known multi-objective algorithms is the second version of the Pareto-based 

selection algorithm (PESA-II) which uses genetic algorithm functions to generate new solutions. The first 

version of this algorithm, presented by (Corne, Jerram, Knowles, & Oates, 2001), had some weaknesses 
in the selection phase. The developed version of the algorithm, PESA-II, was presented in 2001. Steps of 

PESA-II algorithm are as follows. 

𝑁𝐸 The largest archive of undesirable solutions E. 

𝑁𝑃 Population size. 

𝑁 Number of networks in each axis of the objective function. 

Step 1: Start with a random initial population 𝑃0, set the external archive 𝐸0 to null, and let t = 0. 

Step 2: Divide the space into 𝑛𝑘 cloud cubicles where n is the number of networks in each axis of the 

objective function, and k is the number of objectives. 

Step 3: Combine non-dominated solutions archive 𝐸𝑡 with new solutions of 𝑃𝑡. Three possible states may 

occur. 

State 1: If a new solution is dominated by at least one of the solutions in archive 𝐸𝑡, delete the new 

solution. 

State 2: If a new solution dominates several solutions in 𝐸𝑡, delete the dominated solutions from the 

archive, add the new solution to archive 𝐸𝑡, and update the cloud cube members. 

State 3: If a new solution is not dominated by any solution in 𝐸𝑡 and does not dominate any solution in 𝐸𝑡, 

add the solution to 𝐸𝑡. If |𝐸𝑡| = 𝑁𝐸+1, choose an arbitrary cube randomly (the selection is done using the 

roulette wheel so that the busy arbitrary cube would be more likely to be selected). Select an available 

solution randomly and delete it. Finally, update the arbitrary cube members. 

Step 4: If the stop criterion is met, stop and show the final 𝐸𝑡. 

Step 5: Let 𝑃𝑡 = ∅, combine some solutions of 𝐸𝑡, and select the mutation based on the information 

density of the arbitrary cubes. Use the cross-over and mutation to generate 𝑁𝑃 children and copy it to 

𝑃𝑡+1. 

Step 6: Set t to t + 1 and go to step 3. 

It should be noted that this algorithm also uses the same method of cross-over and mutation used in the 

NSGAII algorithm. 

Figure 7 shows the flowchart of the SPEAII that is extended in this paper. 
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Fig 7. Flowchart of the PESAII 

4-Comparison of proposed algorithm with mathematical model 
   After solving the problem by the algorithms coded in Visual C ++ using the Visual Studio system with a 

3.2GHz processor, the random-access memory of 4GB in Windows 10 operating system, the obtained 

results are presented. In this section, to examine the results of the proposed algorithms in comparison with 
the results of the mathematical model, a number of numerical examples are generated, and the efficiency 

of the proposed algorithms is evaluated using the MID index. In this index, the Euclidean distance 

between the final non-dominated solutions generated by the algorithm and the optimal Pareto set 

produced by CPLEX is calculated as follows.  

(42) 
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   Where 𝑓𝑖
𝑗
 represents the jth objective value of the ith solution. In addition, 𝑓𝑏𝑒𝑠𝑡

𝑗
 is the ideal point of the 

jth objective function. 𝑓𝑚𝑎𝑥
𝑗

 and 𝑓𝑚𝑖𝑛
𝑗

are respectively the highest and the lowest values of all Pareto 

solutions for the jth objective function. |𝑄| and 𝑛𝑜𝑏𝑗  are respectively the number of points in the Pareto 

optimal front and the number of objective functions. Since the optimal front is different from that of the 

algorithm, there is no regularity. Therefore, in this formulation, each member of the algorithm front is 

calculated with that of the optimal front. 

Table 2. Comparison of results of the mathematical model and the proposed algorithm 
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1.55 72 26 27 167 3.76 41 48 25 162 3.41 50 31 50 153 SM1 

Small 

1.71 73 43 32 323 4.90 54 79 46 192 3.76 77 37 53 201 SM2 

2.61 97 83 69 357 6.52 63 113 121 309 5.74 84 62 72 302 SM3 

3.67 100 98 99 341 6.64 70 175 125 326 8.07 88 170 78 330 SM4 

4.43 151 128 108 343 7.46 81 182 133 348 9.75 94 186 89 335 SM5 

4.46 168 165 148 358 9.04 251 197 181 363 9.81 167 200 91 337 SM6 

5.83 199 168 155 362 
12.0

8 
280 218 187 368 

12.8

3 
192 208 117 361 SM7 

6.00 202 247 163 311 
13.1

2 
305 221 200 357 13.2 192 230 162 383 SM8 

6.04 208 277 165 322 
15.1

8 
320 228 243 481 

13.2

9 
217 233 257 394 SM9 

8.57 216 296 178 422 
15.4

0 
329 236 246 484 

18.8

5 
238 237 297 447 SM10 

9.32 241 306 224 427 
17.3

2 
341 304 331 501 20.5 265 248 304 549 ME1 

Mediu

m 
9.97 251 343 358 432 

17.4

6 
346 350 347 519 

21.9

3 
331 255 315 582 ME2 
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   According to the above table, increasing the denominators of 𝜞𝟏 and 𝜞𝟐 fractions results in significant 

changes of running time. Its reason is that the number of constraints is reduced if the level of uncertainty 

parameters is decreased. Figures 8, 9 and 10 show these changes.  

 

 

 

Fig 8. The comparison of running time in Γ1=|J1|/2  and Γ2=|J2|/2 

 

 

 

Fig 9. The comparison of running time in Γ1=|J1|/3  and Γ2=|J1|/3 

 

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

PESA SPEA NSGAII

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

PESA SPEA NSGAII



188 
 

 
Fig 10. The amount of solving time for Γ1=|J1|/5  and Γ2=|J1|/5 

  

  As can be seen, the reduction of uncertainty level in the above figures yields that the algorithms’ times 

are closer to each other, and the reason is reducing the solving space and consequently, decreasing the 

number of computations in different repetitions. Therefore, one cannot rank the algorithms from the 

aspect of their running time; however, decreasing the amount of uncertainty leads to the reduction of MID 
value, and consequently the obtained solutions of different instances become closer to the exact solutions 

produced by CPLEX. Figure 8 displays the trend of these changes. 

 

 
Fig 11. The change of MID values for different values of  Γ1 and Γ2 
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   According to figure 11, it can be seen that solutions produced with Γ1 =
|J1|

5
and Γ2 =

|J1|

5
  are closer to 

the solutions produced by CPLEX which is due to the small number of uncertain parameters, solving 

space reduction, and decreasing the number of calculations per iteration. In conclusion, one cannot choose 

an algorithm as the best to solve real-world problems. In other words, obtained results of small-size 
instances are similar to CPLEX results. To investigate behavior of the proposed algorithms in larger-

dimensional problems, a number of numerical examples with different uncertainty level are generated, 

and the obtained results are examined in the next section.  

5-Evaluation of the proposed algorithms efficiency 
   To evaluate the efficiency of the proposed algorithms regarding generation of appropriate solutions, 10 

small-size examples, 10 medium-size examples, and 10 large-size examples are generated and compared 
using the Spread of Non-Domination Solution (SNS) (Maghsoudlou, Kahag, Niaki, & Pourvaziri, 2016) 

and Maximum Spread (MS) (Samadi, Mehranfar, Fathollahi Fard, & Hajiaghaei-Keshteli, 2018). The 

SNS and MS indices are calculated as follows: 

    (43) 

2

1 1

1

 

 
  

 


,

objnQ
j
i

i j

MID f

SNS
Q

 

    (44)  
2

1

  max min .
objn

j j

j

MS f f  

 

 

 

   According to table 3, it can be clearly seen that the SPEA algorithm has larger values of SNS and MS 

criteria which indicates the higher efficiency of this algorithm than the other proposed algorithms; 

therefore, to solve large-scale problems, it is convenient to use this Algorithm. 
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Table 3. Results of sensitivity analysis of the robustness parameter 

Problem Size 

Robust Parameters 
 

Results 

|𝑱𝟏| 𝜞𝟏 |𝑱𝟐| 𝜞𝟐 
NSGAII PESA SPEA 

 SNS MS SNS MS SNS MS 

1 54 13 60 22  900646 5447 1350969 7625.8 2026454 9150.96 

2 66 19 105 31  684040 5823 889252 7569.9 889252 9840.87 

3 72 18 111 14  601712 5476 782225.6 8214 938670.7 12321 

4 92 11 112 31  235710 6213 235710 6213 329994 9319.5 

5 130 19 115 18  642520 7444 899528 11166 1349292 16749 

6 144 21 133 27  84891 9459 110358.3 14188.5 110358.3 14188.5 

7 146 17 190 43  993107 7292 1191728 10208.8 1787593 11229.68 

8 156 45 269 67  129627 9796 168515.1 13714.4 168515.1 20571.6 

9 186 24 304 42  308880 7871 401544 9445.2 401544 10389.72 

10 199 59 339 71  367890 6124 515046 8573.6 618055.2 9430.96 

11 233 30 347 79  312993 5956 312993 5956 375591.6 6551.6 

12 284 28 355 78  290586 6970 348703.2 9061 488184.5 12685.4 

13 292 49 360 93  668889 6095 802666.8 6095 1043467 9142.5 

14 339 101 369 70  342566 5714 479592.4 6856.8 479592.4 8228.16 

15 339 40 392 101  916787 9059 1100144 9059 1650217 9059 

16 385 127 394 114  789653 6526 868618.3 9136.4 955480.1 10050.04 

17 391 148 400 108  641945 9729 641945 13620.6 834528.5 16344.72 

18 420 163 413 74  643529 8533 900940.6 11946.2 1171223 14335.44 

19 435 143 436 87  480899 9413 673258.6 10354.3 875236.2 14496.02 

20 466 121 485 155  881236 9629 1145607 14443.5 1489289 15887.85 

21 482 106 489 185  293192 7465 439788 7465 527745.6 9704.5 

22 487 165 493 69  556841 7130 612525.1 7843 673777.6 11764.5 

23 493 108 494 128  385585 6658 385585 9987 578377.5 12983.1 

24 502 190 518 67  205631 5815 267320.3 7559.5 320784.4 10583.3 

25 521 67 532 133  189897 6563 208886.7 8531.9 229775.4 11944.66 

26 532 164 540 210  401992 5115 562788.8 6138 562788.8 6751.8 

27 556 150 546 98  672824 9182 1009236 11018.4 1009236 13222.08 

28 562 89 558 200  581954 9197 640149.4 11956.1 704164.3 17934.15 

29 569 85 574 103  13254 9717 14579.4 11660.4 21869.1 16324.56 

30 590 171 594 130  869273 5944 1216982 7132.8 1582077 8559.36 
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6-Investigation of case study 
   In this section, a case study in Iran is investigated. Table 4 and figure 12 show the population and 

geographical coordinates of the considered basic units in Iran. 

  

b.Graph structure of basic units. a.Basic units structure 

Fig 12. Graphical structure of the case study 

   Since connections between basic units are considered as complete graphs in partitioning problem, the 
basic units in (a) are converted to the structure of the graph (b). The distance between basic units based on 

the connections and population of each basic unit are available through the data sets of the Iranian Center 

for Statistics and other legal geographical information sites. Some data used to solve the problem is 

presented in table 4. 

Table 4. Some information about population, coordinates, and connections between vertices 

Connectivity 
Number of 

inhabitants 

Centroid Coordinates 

(x,y) 

 Municipality 

ID 

1022 1021 … 3 2 1   

0 0 … 1 1 0 1780 (47.754331,39.042881)  1 

0 0 … 1 0 1 41165 (48.53135,37.624719)  2 

0 0 … 0 1 1 2841 (48.71865,37.388331)  3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

0 0 … 0 0 0 5417 (49.906411,36.888306)  1021 

0 0 … 0 0 0 18756 (50.174514,37.152006)  1022 

 

    The following results are the best 10 results of independent implementation of each algorithm. The 

number of iterations is 200. It is also considered that 𝛤1 =
|𝐽1|

2
, 𝛤2 =

|𝐽2|

2
, and |𝑃| = 10. 

   After solving the problem with the SPEA algorithm, which has the best performance, variation interval 

of the obtained Pareto front are (120, 2506423) and (242, 1031562). Interval of the objective function 

values are (120, 242) and (2506423, 1031562). The Pareto front structure is considered as figure 13. 
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Fig 13. The Pareto front obtained from solving the SPEA algorithm for the case study 

   As can be seen, 46 non-dominated Pareto members are generated. To implement the final results in the 

case study structure, the Pareto member with the first objective function value of 146 and the second 

objective function value of 2015013 is considered, and the final partitioning is demonstrated in figure 14.  

 
Fig 14. The final partitioning structure of the case study 

   To analyze sensitivity of the proposed algorithm performance in solving the case study, numerical 

results for different values of 𝛤1 =
|𝐽1|

2
  𝛤2 =
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2
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4
  𝛤2 =
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4
, and 𝛤1 =

|𝐽1|

5
  𝛤2 =

|𝐽1|

5
 are reported. Table 5 shows the objective function values for each created partitions.  
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Table 5. The objective function values for the partitions 

په

 نه

 𝜞𝟏 =
|𝑱𝟏|

𝟐
  𝜞𝟐 =

|𝑱𝟏|

𝟐
  𝜞𝟏 =

|𝑱𝟏|

𝟑
  𝜞𝟐 =

|𝑱𝟏|

𝟑
 

 
𝜞𝟏 =

|𝑱𝟏|

𝟒
  𝜞𝟐 =

|𝑱𝟏|

𝟒
 

 
𝜞𝟏 =

|𝑱𝟏|

𝟓
  𝜞𝟐 =

|𝑱𝟏|

𝟓
 

 F1 F2  F1 F2  F1 F2  F1 F2 

1  185 1522488  153 1268490  172 1251046  177 1327309 

2  198 1450048  149 1336178  152 1299656  197 1374532 
3  288 933640  246 847842  243 880579  266 711917 

4  275 1855679  202 1441249  210 1346297  237 1570229 

5  207 790832  178 654728  152 635829  186 722323 

6  301 1507125  286 1367168  258 1288178  259 1181550 

7  283 930131  261 829630  260 846349  255 863209 

8  282 660395  268 564261  275 541937  255 645863 

9  283 1081343  260 988316  223 893226  248 918347 

1

0 
 209 726486  197 663846  186 644481  169 711672 

  
𝑀𝑎𝑥 − 𝑀𝑖𝑛
= 1195284 

 
𝑀𝑎𝑥 − 𝑀𝑖𝑛
= 876988 

 
𝑀𝑎𝑥 − 𝑀𝑖𝑛
= 804360 

 
𝑀𝑎𝑥 − 𝑀𝑖𝑛
= 924366 

   As can be seen, the more the uncertainty level, the greater the balance in the partitions. It indicates that 

decreasing the uncertainty level leads to better results in solving the problem. In fact, decision making 

process becomes more appropriate, and the algorithm will be able to find more qualified solutions. Figure 

15 shows the change trend of objective function values for different uncertainty level in all partitions. 

 
Fig 15. The first objective function value obtained from the SPEAII algorithm 
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Fig 16. The second objective function value obtained from the SPEAII algorithm 

   In figure 16, different signs of ×, the square, the triangle, and + are respectively considered for 

uncertainty levels of 𝛤1 =
|𝐽1|

2
  𝛤2 =

|𝐽1|

2
, 𝛤1 =

|𝐽1|

3
  𝛤2 =

|𝐽1|

3
, 𝛤1 =

|𝐽1|

4
  𝛤2 =

|𝐽1|

4
, and 𝛤1 =

|𝐽1|

5
  𝛤2 =

|𝐽1|

5
. The uncertainty level 𝛤1 =

|𝐽1|

5
  𝛤2 =

|𝐽1|

5
 and 𝛤1 =

|𝐽1|

2
  𝛤2 =

|𝐽1|

2
 have respectively the greatest 

values in the first and the second objective functions. It can be clearly seen that the lowest difference 

between the largest and the lowest population of partitions is related to 𝛤1 =
|𝐽1|

5
  𝛤2 =

|𝐽1|

5
 which 

indicates that better results are obtained from lower level of uncertainty. 

7-Conclusions and future suggestions 
   In this paper, a bi-objective mathematical model is proposed for population partitioning problem under 
uncertainty conditions. This model can be used as a supporting tool for managers to make final decisions. 

Since the proposed model is in the category of non-deterministic polynomial hard (NP-hard) problems, 

meta-heuristic algorithms should be applied to solve real-world problems. Hence, three meta-heuristic 
algorithms PESA, SPEAII, and NSGAII are proposed. To evaluate the efficiency of the proposed 

algorithms, suitable comparison criteria are considered. 

    After investigation of the results, it is found that the SPEAII algorithm has the highest performance 
level than the other algorithms. The obtained Pareto members are non-dominated. A thorough 

investigation of one of the produced members confirmed that the optimal structure has complete feasible 

conditions. Therefore, the results of this model can be used for implementation in real-world conditions. 

After comparing the proposed algorithms, it can be seen that the NSGAII algorithm results has more 
distance from the generated front by CPLEX with comparison to the others. This matter suggests that 

using operators of SPEAII and PESA algorithms can lead to more suitable results.  

   Comparison of results of different numerical examples reveals that SPEAII algorithm has the highest 
level of performance and can be used as the final algorithm. In addition, increasing robustness parameter 

affects the obtained results, and the criterion of the sum of objective functions increases. In other words, 

more uncertainty results higher level of objective functions and worsen the results. To expand the scope 

of the research, some suggestions are presented below. 

 The first suggestion can be implementation of results in larger real-world environments. 

Investigation of the obtained results can clearly show the performance range of the model and 
algorithms. 
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 Using other new meta-heuristic algorithms and comparing the final results can be considered as 

another research proposal. This can provide a suitable field for generating better solutions by 
other algorithms as well as comparing the functionality of different algorithms in this problem. 

 Since some parameters of the problem cannot be estimated exactly, using appropriate approaches 

to deal with uncertainty will expand the scope of the problem. One of the most credible 

approaches to deal with uncertainty is robust programming which leads to constructive solutions 

to changes. 

 Proposing exact algorithms such as branch and bound and branch and cut can also provide a 
guarantee for obtaining exact solutions in medium-size and occasionally large-size problems. 
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