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Abstract 
The present research introduces a multi-objective robust optimization model to design 

emergency medical services network for uncertain costs and demands. The proposed 
model determines the location and the optimum capacity of relief medical service 
centers. In addition, the model determines the number and the type of ambulances that 
should be placed in each of the centers and allocated to demand zones. The multi-
objective model attempts to maximize the coverage of demand zones, the availability 
of ambulances and minimizing the total costs simultaneously. A robust model is 
applied to our real word case study in an urban district.  

Keywords: Emergency Medical Services (EMS), positioning, robust optimization, 
maximum coverage. 

1-Introduction and literature review 
   Emergency medical services (EMS) provide effective and quick treatments to prevent sudden threats 
against human life. These centers improve health and general safety, attempt to aid affected people as fast 
as possible and reduce the risk of mortality and physical-financial damage. Occurrence of events like 

accidents, heart attack, stroke, suicide, different intoxications, etc. highlights the role of emergency more 
than before in quick and punctual transfer of injured and patients to the therapeutic centers in addition to 
therapeutic proceedings until reaching to the equipped centers like hospitals. In most of these cases, if an 
injured is not received the therapeutic proceedings at the specific time, it will cause severer problems, 
disability, maim or even death. One of the factors effective on punctual responding to the calls received 
by emergency centers is appropriate positioning for emergency stations in places where emergency 
vehicles can present in the accident place within standard time. Therefore, emergency centers should be 

located in places where their intervals to the accident zones are less than standard responding time or in 
the other words coverage radius. The point that should be considered is that in the real world we are faced 
with uncertainty. Parameters like the responding time or the number of demands should be considered as 
uncertain parameters. Moreover, on the issue of providing emergency services we face various and 
different goals such as minimizing responding time and costs, maximizing demands coverage and 
availability of emergency equipment, minimizing maximum travel time/ distance to each demand point 
and many other goals.  
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   Therefore, it is logical to consider multiple goals for optimizing the location of emergency station.  
Furthermore, the severity of injury and the type of injured need to medical facilities are different, for 
example, those who have stroke need to be recovered, while those who have an accident or fracture do not 
need heart resuscitation. Therefore, it is logical to provide emergency devices with different levels of 

facilities, send proper emergency device for each situation and prevent from allocating additional costs 
for providing emergency devices with high level equipment to respond the demands requiring low level 
equipment. Moreover, since it is possible to deploy more than one facility in each potential deployment 
location, therefore, we can determine the size of emergency stations based on the number of allocated 
facilities which could reduce costs.  The main point in designing network for these centers is to make 
decision about the number and location of EMS centers in addition to decide about quality of allocating 
them to the demand zones. During past years, many researches had been conducted about location and 
allocation of demand for EMS. During this period, concentration of positioning studies for emergency 

facilities is on maximal covering problem. The maximal covering location problem was first introduced 

by Church and ReVelle (1974) in which the goal was defined as location of facilities to maximize 

demand covering. After that, many applied and theoretical developments were introduced based on this 

basic model (Berman and Krass, 2002; Shavandi and Mahlooji, 2006; Araz et al, 2007; Zhang and 

Jiang, 2014; Asiedu and Rempel, 2011; Berman et al, 2009; Alexandris and  Giannikos, 2010; 

O’Hanley and Church, 2011; Sorensen and Church, 2010; Kanoun et al, 2010; Noyan, 2010; Ibri 

et al, 2012; Curtin et al, 2010). Berman and Krass (2002) considered the partial covering, which does 

not need covering of all demand zones in contrary to the generalized covering, for the maximal covering 
problem. Shavandi and Mahlooji (2006) introduced a fuzzy location model for congested systems and 
called it a fuzzy maximal covering location in queue theory framework. The multi-objective version of 
the maximal covering problem was proposed by Araz et al. (2007). The authors considered a multi-
objective fuzzy ideal programming for location of emergency vehicles. Their objective functions 
(objectives) were to maximize the initial and backup covering and minimizing the distance of total trip 
from facilities location toward uncovering zones. In another research conducted by Alexandris and 

Giannikos (2010), the maximal covering model was developed using GIS and partial covering idea for 
better illustration of the demands covering. Ibri et al. (2012) introduced a multi-agent model for 
simultaneous decision-making about covering problem and vehicle dispatching. This model was 
formulated to minimize total trip time, costs of demand un-fulfillment and penalties of uncovering.  

In addition to the above mentioned researches, there are several case studies in the literature of 

maximal covering (Ratick et al, 2009; Moore and ReVelle, 1982; Curtin et al, 2010; Murawski, and 

Church , 2009; Indriasari  et al, 2010; Yin and Mu , 2012). Ratick et al. (2009) implemented the Moore 

and ReVelle (1982) hierarchical maximal covering model for medical facilities in Kohat region of 
Pakistan. To solve the covering problem, Murawski and Church (2009) proposed a model by assuming 
the allocated facilities are fixed in which accessibility to demand zones are improved. Their model which 
is called the maximal covering network improvement problem was formulated in form of an integer 
number programing problem and implemented in Ghana. Indriasari et al. (2010) introduced a model using 

GIS that its objective maximized the area serviced by specific emergency facilities. In contrary to other 
researches, Yin and Mu (2012) did not consider a fixed capacity for each facility but developed a model 
that let modular capacity levels selected among facilities.  
   In recent years, the maximal covering problem under uncertainty conditions has attracted some 

researches (de Assis Corrêa et al, 2009; Batanović  et al, 2009; Berman and Wang, 2011; 

Geroliminis et al, 2009) [23-26]. Corrêa et al. (2009) studied the probabilistic maximal covering 

location-allocation problem using decomposition approach. Batanović et al. (2009) recommended 
location models of emergency facilities in the networks under uncertainty conditions. They studied a 
problem in which demand zones and their weights are important equally. In the case study conducted by 
Berman and Wang (2011), demands weight of network zones were assumed as random variables with 
unknown possibility distribution. The present article purpose was to find a location that minimizes the 
lost covering in the worst conditions. Geroliminis et al. (2009) proposed a queuing model for the 
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emergency vehicle dispatching and location problem with the goal to maximize covering and minimize 
responding time. Navazi et al. (2018) introduced a multi-period location-allocation-inventory problem for 
ambulance and helicopter ambulance stations using robust possibilistic approach. The aims of this study 
are to locate the stations, allocate the accident-prone points to them, determine the required hospital bed 

capacities provided for patients with critical conditions, and decide about the inventory levels at opened 
stations including blood banks, medicines, etc. Finally, an augmented Ɛ-constraint method is used to cope 
with the bi-objective problem that minimizes the cost and the arrival time. Also the model is applied to a 
real case. A three-stage and multi-objective stochastic programming model to improve the sustainable 
rescue ability by considering secondary disasters in emergency logistics was proposed by Zhang et al. 
(2019). Model’s results based on Wenchuan earthquake show that the solution in this paper outperforms 
some normal ways. 
   With respect to studying the above-mentioned research, we understand that although numerous location 

models for emergency facilities exist in the literature, just a few of them used multi-objective approach to 
consider covering/costs functions and accessibility of emergency vehicles. Similarly, most of the existing 
models assume that facilities capacity is constant and determined beforehand which cause reduction in 
their application in reality. In other words, previous research generally ignore technologies and different 
types of facilities and vehicles but assume that number of ambulances in medical centers is constant and 
determined previously. Moreover, most of the models in the literature were developed under certainty 
conditions or in conditions that probability distribution function of uncertain parameters are determined 

which is happened rarely in reality. Considering such research gaps and due to our case study, the present 
article attempts to introduce a robust model to design a network for EMS under uncertainty conditions. 
The model is capable of determining location and capacity of EMS centers in addition to making decision 
about type and number of ambulances in each center.  
   This paper moves toward innovation from different viewpoints. First, the model introduced in this 
article is capable of considering the increase in covering locations, increase in accessibility of ambulances 
and reduction of costs simultaneously through multi-objective optimization approach. Also, the 

ambulances are accessible and not busy while they are needed. Moreover, in addition to determination of 
type and number of ambulances, the proposed approach can consider different levels of capacity and 
technology for EMS and ambulances. In other words, this model provides the possibility of different type 
and number of ambulances in different stations. In contrary to the most of articles in the literature, the 
developed model is based on robust optimization approach that enables the mode to consider uncertainty 
in parameters without needing to know their distribution function. On the other hand, applying the 
introduced method in real problem of an urban district is considered as other considerable points in the 
present research.  

   This paper is organized as follows. In the second part, basics of robust and multi-objective optimization 
will be discussed. In the third part, the problem will be defined and modeled. In the fourth part, the case 
study will be explained and the calculated results will be presented. The final part will be about 
recommendations for further researches in addition to conclusion.  

- Basics of robust and multi-objective optimization  
- Basics of interval robust optimization 

The model introduced in this article has been developed based on interval robust optimization. One of 

the first models of robust optimization was introduced by Soyster (1973) which is known as pessimistic 
approach. In this method, it is assumed that all data has the worst interval value. Therefore, decisions 
quality will be reduced remarkably. To solve such defection which is act conventionally, Ben-Tal and 
Nemirovski (2000) introduced another approach. Although their model solved the conventionality 
problem of Soyster method (Soyster, 1973), it made the problem more complicated and inapplicable to 
the optimization problems with discrete variables. To solve such problem, Bertsimas and Sim (2004) 
introduced the interval robust optimization approach by which it is possible to control the level of 

conventionality in addition to the advantage of applicability to the discrete optimization models. In the 
following, basics of the interval robust optimization method introduced by Bertsimas and Sim (2004), 
which is the base of present article, will be discussed briefly. For deeper study of robust optimization and 
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applying it to the location problems please refer to Refs. (Bertsimas and Sim, 2004; Nikulin, 2006; 

Snyder, 2006; Blanquero et al, 2011; Bardossy and Raghavan, 2013; Gülpınar et al, 2013; 

Zokaee et al, 2013). 
Consider the following mixed integer programming (MIP) problem: 
 

Minimize     cʹx 

Subject to                                                                                                                                      (1) 

Ax≤b 

l≤x≤u 

xiєZ      
i=1,2,…,m. 
    
   Without losing generality of the problem, we assume that some parts of matrix A and vector C contain 

uncertain parameters. The Li set for each line of matrix A is defined in a way it includes uncertain 
coefficients in ith constraint. Such uncertain parameters are denoted by �̃�ij. Moreover, |Li| is considered as 

the size of the Li set. Similarly, coefficients of uncertain cost in of are denoted by �̃�j and define the 

corresponding �́� set. Each uncertain parameter �̃�ij can exceed its nominal value (denoted by aij) up to the 

specified radius (denoted by �̂�ij) and takes value from symmetric range of [aij-�̂�ij, aij+�̂�ij] independently. It 

is assumed that the cost coefficient �̃�j takes value from the range [cj,cj+�̂�j] similarly. In addition, Γi and  �́� 
parameters are defined as the level of conventionality in of and ith constraint (these parameters will be 
called degree of protection from now on). Where: 
 

�́� ={𝑗ǀ�̂�𝑗 > 0}, 0 ≤ �́� ≤ |�́�|, 𝐿𝑖 =  {𝑗ǀ�̂�𝑖𝑗 > 0} , 0 ≤ 𝛤𝑖 ≤ |𝐿𝑖|                                                                                                         (2) 

 

   In other words, Γi and �́� parameters show the number of parameters exceed their nominal value in of 
and i constraint. When Γi = 0, the model will be changed into certain mode but when Γi = |Li|, all variables 
will be changed up to their radius and the model will be the same as Soyster (1973) pessimistic approach. 
Bertsimas and Sim (2004) formulated the robust model equal to linear programing (1). 

 

Min      �́�𝑥 + λʹ Γʹ+ ∑ �́�𝑗є�́� 𝑗   

∑ 𝑎 𝑗 ijxj + λi Γi + ∑ 𝜇𝑗є𝐿𝑖 ij≤ bi   

�́� + �́�j ≥ 𝑐̂jqj                                                                     ∀jє Lʹ  

λi + 𝜇ij ≥ 𝑎ijqj                                                                   ∀i,jє Li  

𝜇ij ≥ 0 ∀i,jє Li  

�́�j ≥ 0 ∀jє Lʹ      (3) 

λi ≥ 0 ∀i    

�́� ≥ 0                                                          

gj ≥ 0                                                           ∀j  

-qj ≤ xj ≤ qj                                                    ∀j  

Lj  ≤ xj ≤ uj                                                    ∀j  

∀𝑖 
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Xi є Z                                                             ∀i    

   Note: if the numbers of uncertain coefficients of �̃�ij are changed up to Γi, the robust answer will be still 
remained possible but if more than Γi coefficients are changed in ith constraint, the robust model will be 
remained possible with the following probability:  
 

P(∑ �̃�𝑗 ij xj
* > bi ) ≤ 1-ϕ(

1−𝛤𝑖

√𝑛
)                (4) 

   Where, xj
* denotes optimized value of the robust model and ϕ(Γ) denotes the standard normal 

cumulative distribution function. Refer to the Bertsimas and Sim (2004) for more details. 

1-1- Basics of ε – constraint method 
   The multi-objective approach of ε – constraint method was used in the present article in order to deal 
with multi objectives of a problem. Thus, this method will be introduced briefly in this part. 
Assume that there is a multi-objective programing problem with p number of objective as follows: 
 

Max (f1(x),f2(x),… ,fp(x))  

St:                     (5) 

                  XєS  

   Where, X denotes decision variables vector and S denotes the possible space constraint. Moreover, 
f1(x),…, fp(x) denote p number of objective. 
   Dealing with multi- objectives in the ε – constraint method is through considering one of the objectives 
as the main objective and the other objectives entered the model as constraint: 

 

Max     f1(x)  

St      

              f2(x)≥e2  

              f3(x)≥e3                      (6) 

              …  

              fp(x)≥ep  

              XєS  

   The problem answers will be obtained through making changes in right side parameters of the equations 

in the objectives exist in constraints (Mavrotas, 2009). 

2-Defining and modeling the problem 
   A mathematical model will be introduced in this part to design a network for EMS. The network in this 
problem contains EMS centers and patients (demand zones) with different type of demands. Some 
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ambulances with limited capacity are placed in each one of EMS centers. The ambulances are in different 
types and each one can only respond a specific type of patients’ demand. The process is that a patient 
calls EMS centers and the appropriate ambulance will be dispatched to his location according to the 
received demand.  

   There are potential locations for establishment of EMS centers in the problem. In such potential 
locations, the EMS centers can be established by different technologies and capacities. Each one of 
different EMS centers is capable of placing specific number of ambulances. Naturally, the higher capacity 
(technology) of EMS centers, the higher cost is needed for their establishment. Similarly, the more 
equipped ambulances with more capacity placed in EMS centers, the costs will be increased more.  

Several objectives are followed simultaneously in the present problem. First, time interval of EMS 
centers and demand zones will be as less as possible for ambulances to responds patients’ needs as soon 
as possible and cover them. Thus, it is tried to prevent time interval between patients and EMS centers 

does not exceed the standard covering radius. Moreover, it is assumed that if the above-mentioned time 
interval exceeds the standard covering radius, the patients of that center are not covered by that center 
anymore. The second objective of the problem is about the possibility of increase in accessibility of 
ambulances for servicing different demand zones. In other words, it is tried to have at least one 
ambulance in an EMS center to respond a patient’s demand. In fact, when an ambulance is dispatched for 
responding a demand in a zone, it will not available for other zones. Therefore, it is better to allocate more 
ambulances to a location for increasing accessibility of ambulances in a location and there are other 

ambulances to respond a demand if any one of ambulances is busy for a mission. The third objective of 
the problem is to minimize total costs including costs of establishing EMS centers and costs of allocating 
ambulances.  
   Obviously, the above-mentioned objectives can be contradictory. For instance, if more ambulances 
allocated to an EMS center, accessibility level will be increased in one hand but total costs will be 
increased on the other hand. In such situations and considering all of the three objectives, the present 
article introduces a mathematical model that determines the following decisions simultaneously: 

 
A- The EMS centers should be established in which of the potential locations? 

B- Each one of the EMS centers should be at which level of capacity (technology)? 

C- How many ambulances of which type (technology) should be allocated to each one of EMS 

centers? 

D- Each one of demand zones should be covered by which one of EMS centers? 

2-1 The deterministic model  
   The following decision variables and parameters are defined to model the problem: 
Sets 

I       demand locations with i index 
J       potential locations for establishment of EMS with j index 
K      ambulances with k index 
H      types (technology levels) of ambulances with h index 

M     types of demand 
R      types of (technology levels) of EMS centers with r index 
 
Parameters 

li       standard covering radius (optimum distance or time interval between EMS centers and demand 
zone) 

ui       the maximum acceptable covering radius (maximum acceptable distance or time interval between   

EMS centers and demand zone) 
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dij      time distance between two points i and j 

�̃�i
m     demand type m and i location 

em
ij     parameters of gradual covering which is obtainable from the following equation: 

 

em
ij={

1 
1 − 

0

𝑑𝑖𝑗

𝑚𝑎𝑥(𝑑𝑖𝑗)
  

if         dij ≤ li 
if         li ≤ dij ≤ ui 

if         dij ≥ ui    

 
                         (7) 

   This parameter takes value from 0 and 1 range. In other words, when a demand point placed 
inside the standard covering radius in proportion to an EMS center, its value becomes maximum 
that is 1. In addition, when a demand point placed out of the maximum acceptable standard 
covering radius, its value becomes minimum that is zero. If the distance from a demand point and 

EMS center placed between standard covering radius and maximum acceptable covering radius, it 
will take a value between 0 and 1 in proportion to the distance from EMS center. 

�̃�r
j      cost of establishing EMS type r in potential location j 

�̃�h      cost of placing ambulance type h in EMS 
chm     servicing capacity of ambulance type h to cover demand type m 
ghr     maximum number of ambulances type h that an EMS type r can placed 
b       percentage of any busy ambulance (possibility of no ambulance available when needed) 
qk     coefficient of confidence for a situation in which k ambulances allocated to service a demand       

point . In other words, this parameter is equal to the possibility of at least one ambulance available 
when a demand point needs. The more ambulances allocated to a demand point, the higher 
coefficient of confidence. In fact, the relationship between b and qk will be as follows: 

qk= 1-(b)k                                                                                                                                                                                                                (8) 
          To justify the above equation, possibility of at least one ambulance available from k ambulances 

allocated to a demand point obtained from subtraction of the possibility of all k available 
ambulances that are not exist from one.  

 
Decision variables 

ym
ij       percentage of the demand point i type m allocated to the jth EMS center 

zh
j       the number of ambulance type h placed in the jth EMS center 

xr
jk      it is equal to 1 if the EMS center type r with k number of ambulances are placed in point j   

otherwise it is equal to zero 
wm

ik      it is equal to 1 if the demand point i type m is covered by k number of ambulances otherwise it is 
equal to zero 

The deterministic model is written as follows using the above symbols: 
 
 

Max Z1=∑ ∑ ∑ �̃�𝑚∈𝑀𝑗∈𝐽𝑖∈𝐼 i
m em

ij y
m

ij  (9) 

Max Z2=∑ ∑ ∑ �̃�𝑚∈𝑀𝑘∈𝐾𝑖∈𝐼 i
m qk w

m
ik  (10) 

Min Z3=∑ ∑ ∑ 𝑓𝑟∈𝑅𝑘∈𝐾𝑖∈𝐼 j
r xr

jk + ∑ ∑ �̃�ℎ∈𝐻𝑗∈𝐽
h zh

j  (11) 

Subject to:   

∑ �̃�𝑖∈𝐼
m

i y
m

ij ≤ ∑ 𝑐ℎ∈𝐻
hm zh

j ∀j,m (12) 

∑ 𝑦𝑗∈𝐽
m

ij=1 ∀j,m (13) 

Ym
ij ≤∑ ∑ 𝑋𝑟∈𝑅𝑘∈𝐾

r
jk ∀i,j,m (14) 

∑ ∑ 𝑋𝑟∈𝑅𝑘∈𝐾
r
jk≤1 ∀j (15) 

∑ ∑ 𝑘𝑋𝑟∈𝑅𝑘∈𝐾
r
jk=∑ 𝑍ℎ∈𝐻

h
j ∀j (16) 

∑ 𝑘𝑤𝑘∈𝐾
m

ik≤∑ ∑ 𝑍𝑖∈𝐼ℎ∈𝐻
h

j ∀i,m (17) 
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Zh
j≤∑ ∑ 𝑔𝑟∈𝑅𝑘∈𝐾 hrX

r
jk ∀j,h (18) 

∑ 𝑤𝑘∈𝐾
m

ik≤1 ∀i,m (19) 

0≤ym
ij≤1 ∀i,m (20) 

Zh
j≥0 ∀j,h (21) 

Xr
jk∈ {0,1} ∀j,k,r (22) 

Wm
ik∈ {0,1} ∀i,k,m (23) 

 
   The objective (9) tries to maximize demand covering through considering gradual covering parameter in 
equation (7). Obviously, the closer demand points allocated to the EMS centers, the more value of 
objective (9) will be increased through em

ij. The objective (10) maximizes the availability of ambulances 
through considering confidence coefficient parameter (refer to equation 7). The objective (11) tries to 
minimize the costs of establishing EMS centers and allocation of ambulances. Constraint (12) guarantees 
that total covered demands in each EMS center do not exceed the center capacity. Constraint (13) needs 
all (100%) demands of any demand point allocated to EMS centers. Constraint (14) prevents from 

allocation of demand points to the centers which have not been established. 
   Constraint (15) guarantees at any potential location, a maximum of one emergency medical services 
center to be established. Equation (16) requires that the number of ambulances established in each 
emergency medical center be equal to the number of ambulances of different types. Constraint (17) 
guarantees the number of ambulances allocated to each emergency medical services center does not 
exceed the sum of available ambulances. Constraint (18) prevents from the establishment of ambulances 
in an emergency medical services center more than the capacity of it. Constraint (19) guarantees a certain 

number of ambulances to be established. Constraint (20) requires the demand ration of each point to be 
between zero and one. Constraints (21) to (23) require positivity of variables. 
 

2-2- The model in uncertain conditions 
  This section presents a robust model to deal with a state which is uncertain in the cost and demand 

parameters problem. It is assumed that the demand parameter (�̃�m
i) is in a distance with nominal value am

i 

and fluctuates by maximum variation �̂�m
i. In other words, it is assumed that the uncertain parameter �̃�m

i 

takes value from the range [am
i-�̂�m

i, am
i+�̂�m

i]. Similarly, it is assumed that the uncertain parameters 𝑓r
j and 

�̃�h are fluctuated in [fr
j- 𝑓r

j, fr
j+𝑓r

j] and [vh-�̂�h, vh+�̂�h] ranges respectively. In this case, using interval 
robust optimization approach explained in section 2-1, the robust form of the certain model introduced as 
follows: 
 

Max 𝑍1=∑ ∑ ∑ 𝑎𝑚∈𝑀𝑗∈𝐽𝑖∈𝐼
m

i
 em

ij ym
ij-λ1Γ1-∑ ∑ 𝜇𝑚∈𝑀𝑖∈𝐼

1
im  (24) 

Max 𝑍2=∑ ∑ ∑ 𝑎𝑚∈𝑀𝑘∈𝐾𝑖∈𝐼
m

i
 qk wm

ik- λ2Γ2-∑ ∑ 𝜇𝑚∈𝑀𝑖∈𝐼
2
im  (25) 

Min 𝑍3=∑ ∑ ∑ 𝑓𝑟∈𝑅𝑘∈𝐾𝑖∈𝐼
r
r xr

jk + ∑ ∑ 𝑣ℎ∈𝐻𝑗∈𝐽
h zh

j- λ4Γ4-∑ ∑ 𝜇𝑟∈𝑅𝑗∈𝐽
4

jr- λ5Γ5-

∑ 𝜇ℎ∈𝐻
5
h 

 (26) 

Subject to:   

𝜇1
im+λ1≥∑ 𝑎𝑗∈𝐽

m
i em

ij ym
ij ∀𝑖, 𝑚 (27) 

𝜇2
im+λ2≥∑ 𝑎𝑘∈𝐾

m
i qk wm

ik ∀𝑖, 𝑚 (28) 

𝜇4
jr+λ4≥∑ 𝑓𝑘∈𝐾

r
j  xr

jk ∀𝑗, 𝑟 (29) 

𝜇5
h+λ5≥∑ 𝑣𝑗∈𝐽

h
  zh

j ∀ℎ (30) 

∑ 𝑎𝑖∈𝐼
m

i ym
ij +λ3

jmΓ3
jm +∑ 𝜇𝑖∈𝐼

3
ijm≤ ∑ 𝑐ℎ∈𝐻

hm zh
j ∀𝑗, 𝑚 (31) 

𝜇3
ijm+ λ3

jm≥𝑎m
i ym

ij ∀𝑖, 𝑗, 𝑚 (32) 
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λ1, λ2, λ3
jm , λ4, λ5, 𝜇1

im , 𝜇2
im ,𝜇3

ijm, 𝜇4
jr, 𝜇5

h≥0 ∀𝑖, 𝑗, ℎ, 𝑚, 𝑟 (33) 

Constraints (14) to (23) 
Note: objectives and constraints were written based on equation (3). 
 

3-Model implementation and numerical results 
   Application of the recommended model in reality using real data from EMS center in Kerman city was 
studied. The model encoded in GAMS 24.1.2 software and then solved in all experiments by a computer 
of core i5 CPU and 6 gigabytes RAM within less than a minute. 

 3-1- Description of the case study 
   Kerman is one of the biggest cities in Iran country that experience a vulnerable condition at the present 

time. In this case study, the Kerman City was divided into 65 demand points and demand of each point 
approximated based on the calls to the EMS operator in Kerman City. Division of demand type was done 
according to the patients’ deterioration intensity. The cases such as fractures and mild injuries categorized 
in normal group and those such as heart diseases, poisoning and sever injuries which need advanced 
equipment were categorized in special group. Two types of ambulances ordinary and special were 
allocated to respond patients’ demands. Ordinary ambulances are capable of responding only ordinary 
demands and special ambulances for both demands.  
   In the problem, total of 30 potential locations to establish EMS centers were identified and their 

distance from demand points were calculated based on Euclidean distance. The standard covering radius 
according to the traffic load in Kerman City was considered as 1500 meters. The EMS centers were 
divided into 3 types of small, medium and large. According to the experts’ opinion, averagely one hour 
was needed from the call until the end of mission to deal with a demand point. Since using time of an 
ambulance is 12 hours during a day averagely, dividing it by average time of dealing with a demand 
resulted in 12 as an ambulance capacity. The parameter of busyness coefficient was obtained through 
dividing available hours (12) by hours of a day which was 0.5. According to the experts’ attitude, the cost 

of buying an ambulance type ordinary and special was considered as 1500 and 2200 million Rials 
respectively. The cost of establishing EMS centers type small, medium and large was assessed 1400, 
2400 and 3000 million Rials respectively. Figure (1) shows dividing method of demand points and 
potential points for establishing EMS centers in Kerman city.  
 

 

 

 

 

 

 

 

 

 

Fig. 1. Kerman city map and dividing demand points 
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3-2- Results of the model implementation 
   The problem solved through considering the covering objective as the main function and the other two 
functions (availability of ambulances and total costs) were considered as constraint in the ε – constraint 

method. The results obtained from application of robust model in case study of Kerman city show that 
using the introduced approach can result in 21.76% improvement in demand covering in proportion to the 
current conditions in Kerman city. Figure 2 shows optimized decisions obtained from using robust model 
including decisions of EMS locations and types of ambulances. Moreover, table 1 compares the number 
of EMS centers established before and after the model implementation. The applied point in table 1 is that 
although ordinary ambulances have not been used in current conditions of Kerman city (before the model 
implementation), using ordinary ambulances can be effective on improvement of the covering. In 

addition, it is noticeable that the model selected all centers from small type in the optimized answer.  
 

 
Fig. 2. Optimized decisions of EMS centers location and types of ambulances 

 

Table 1 . comparing the number and type of ambulances allocated before and after the model implementation 

 Before the model implementation After the model implementation 

No. of special ambulances 12 6 

No. of ordinary ambulances  0 7 

Total 12 13 

 

3-3- Balance between cost, covering and availability objectives 
   The relationship between cost, covering and availability objectives is studied in this section. To do so, 
the above relationship and quality of balance between them are studied by ε – constraint method 
introduced in section 1-1. Figure 3 shows the relationship between covering and cost rates in a constant 
level of availability.  
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Fig. 3 . The relationship between covering and cost rates in constant level of availability 

   According to figure 3 there is a direct relationship between the demand covering and the cost.  

  
Fig. 4 . The relationship between cost and availability in constant covering level 

  Figure 4 shows that more increase in availability causes more increase in the curve slope; achieving 
higher availability needs more increase in costs rate. In figures 3 and 4, the objectives are studied in 
pairwise form and their relationship is identified. Now, all three objectives are studied simultaneously in 
figure 5 in which the covering objective is considered as the main objective and the other two objectives 
(cost and availability) are considered as constraints. Then, values of covering objective are obtained 

according to the cost objective for constant values of 50, 70, 110 and 130 of availability function.  
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Fig. 5 . The relationship between covering and cost rates in different levels of availability 

 

   As expected, figure 5 delineated that the covering and cost objectives keep their direct relationship (the 
value of availability is assumed to be constant). However, slope and range of the curves are influenced by 

availability rate. On this basis, it can be said that if the budget becomes less than 30 billion Rials, the 
availability level can get 50 maximally.  
   Obviously, the curve slope has a higher value at first and reduced gradually. For instance, increase in 
budget from 30 to 40 billion Rials results in 16% increase in covering rate while increase in budget from 
70 to 80 billion Rials just results in 0.013% increase in covering rate. Therefore, increase in budget at first 
is very economical. If it is just decided to increase covering, the budget more than 80 billion Rials does 
not seem economical because more than 0.007% improvement in covering is not achievable for it. 
However, it should be said that when covering reaches to maximum, achieving availability more than 

level 50 units is still possible.  
 

3-4- Analysis of covering sensitivity versus variations of protection degree and demand 

fluctuations 
Table 2 shows that change in protection degree causes change in covering objective. 

 
Table 2 . values of objective for different values of protection degree 

    Covering objective 

A 16 16 1 98 

B 32 32 1 82 

C 65 65 1 66 

D 1 1 2 113 

E 48 48 2 66 

F 16 16 3 98 

G 16 16 6 98 

Since is the protection degree parameter related to the objective and affects the objective rate 
directly, the most objective variations from optimized value can be because of it. Another factor effective 
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on objective variations related to the limitation of possibility space of the problem trough tightening of 
existing constraints and addition of uncertainty constraints. A glance at table 1 delineates that the role of 
in reduction of objective is less but can play an important role in changing possibility space of the 
model on the other hand.  

Studying the possibility space of the problem and analysis of covering objective sensitivity to demand 
fluctuations rate is conducted through calculations for 5%, 10%, 15% and 20% fluctuations of demand 
from nominal value and the results are shown in figure 6. The perpendicular axis in left side of figure 6 
shows the rate covering objective influenced by different demand fluctuations of nominal value. In other 
words, if ZN and ZR denote optimized covering value in certain and uncertain model respectively, this 
axis shows the reduction percentage of demand covering objective using the equation (ZN-ZR)/ZN. 
Moreover, the perpendicular axis on right side of figure 6 shows the possibility of constraints violation in 
terms of different values of protection degree. It is noticeable that value of this possibility is calculated by 

equation (10). 
   Figure 6 shows that the worst objective value is occurred when the protection degree takes its maximum 
value. Also by comparing demand variations, the 20% fluctuation of demand had the most influence 
(19.65%) on objective value. In other words, more variations in nominal value of demand data cause 
covering rate to become worst. 

 
Fig. 6 . analysis of the model sensitivity to fluctuations in demand values 

   Table 3 helps to understand that what minimum value of protection degree is needed to achieve a 
specific possibility for not violating the constraints. 
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Possibility of violating constraint Protection degree 

Protection degree 

Max protection degree  

α = 1% 19 29 

α = 5% 14 21.5 

α = 10% 11 16.9 

α = 30% 5 7.7 

α = 40% 3 4.6 

α = 50% 1 1.5 

 

4-Conclusion 
  In this article, a robust multi-objective model to design a network for EMS under uncertainty conditions 
is introduced. The multi-objective model attempts to optimize contradictory objectives simultaneously: 
maximizing covering of demand points, minimizing costs and maximizing the availability of ambulances. 
An interval robust optimization approach, which doesn’t need possibility distribution functions of 

uncertain parameters, is used to deal with the uncertainty of cost and demand. The other contribution of 
the presented model is its capability to determine simultaneously the location and the capacity for EMS 
centers, in addition to determine the type and the number of ambulances. Real data of an urban district is 
used for the robust model. The results of sensitivity analysis and managerial insights are presented in the 
paper. Results show that the introduced model can be very effective in real word and leads to improving 
the conditions.  
   The introduced approach is developable from different aspects. (1) The problems related to the disaster 

and risk management in location problems of EMS systems can be added to the introduced problem. (2) 
Considering aerial and land EMS in the model simultaneously. (3) Assuming different conditions during 
days and nights and using dynamic programming for modeling the problem. 
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