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Abstract 
This study introduces a green location, routing and inventory problem with customer 

satisfaction, backup distribution centers and risk of routes in the form of a non-linear 

mixed integer programming model. In this regard, time window is considered to 
increase the customer satisfaction of the model and transportation risks is taken into 

account for the reliability of the system. In addition, different factors are detected as 

the major factors affecting the risk of routs and a fuzzy TOPSIS method is applied to 

rank the related risk factors. Next, due to the complexity of the investigated model, 
two algorithms including multi-objective gray wolf optimization algorithms 

(MOGWO) and Non-Dominated Sorting Genetic algorithm (NSGA-II) are applied to 

solve the large-sized instances. The results prove the superiority of MOGWO in 
dealing with large-sized instances. In the next step, some sensitivity analysis is 

implemented on the model based on a case study and the related results of case study 

are reported as well.   
Keyword: Location routing inventory, green supply chain, backup strategy, customer 

satisfaction, fuzzy TOPSIS, multi objective gray wolf optimization algorithm.  

 

 

1- Introduction  
   Today, the role of transportation is critical in economic development of supply chains by facilitating the 
availability of products for the long-distance factories. Delivering process in a supply chain (SC), 

incorporates shipment of raw materials from suppliers to production centers (PCs) and transformation of 

semi-finished products between the PCs and customers. Due to the multiplicity of transportation 
activities, shipping costs include high percentage of logistic costs. Therefore, managing the related costs 

of transportation has become a major issue for the supply chain decision makers. In this regard, there is a 

competitive market between supply chains (SCs) to reduce their costs and enhance their profit. Many 
researches have considered strategic and tactical decisions in SC problems including location, routing and 

inventory decisions to develop integrated SCs (Zheng et al. 2019; Rabbani et al, 2017; Malladi and 

Sowlati 2017). Integration of these decisions is one of the most important factors that significantly reduce 

the cost of the chain and lead to increase of customer satisfaction. Inaccurate location of facilities and 
inappropriate route selection lead to high transportation costs.  
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    Moreover, inappropriate transportation system leads to higher amount of carbon emissions. Supply 
chain management (SCM) includes purchasing management, inventory control, production and 

distribution.  

Green Supply Chain Management (GSCM) joints economic aspects of SC with environmental aspects 

in order to manage the environmental effects of the system besides the maximization the performance of 
the entire SC (Abu seman et al, 2019).  The public awareness of climate change and the growing concern 

about the environmental conditions has made GSCM an important issue in the production and distribution 

cycle (Fang and azhang, 2018). This study presents a new location-routing-inventory problem by taking 
into consideration the environmental aspects, backup strategies, time window and transportation risks to 

enhance the customer satisfaction and reliability of the system simultaneously. 

Clearly, strategic decisions of a SC affect the tactical decisions of the SC including inventory and 
routing decisions. As a result, a location- inventory-routing model covers the strategic and tactical 

decisions of a SC. However, combination of these issues increases the complexities of the main problem 

(Diabat et al, 2015). Many of developed models in the SCN consider these important decisions separately 

while they are dependent by nature. This study introduces a new multi objective model integrating 
location, routing and inventory problem issues as a joint location- routing-inventory problem (LRIP). This 

model considers backup distribution centers in order to decrease the shortage and time window to 

increase the customer satisfaction. In addition, this paper takes into account different factors affecting the 
stability of routs to select the best rout with the least level of risk for shipment of products. In this regard, 

the main contributions of this study are stated as follows: 

 Developing a new multi-objective location- inventory-routing problem. 

 Considering backup centers to decrease the shortage and satisfy the customers. 

 Considering a hard time window for delivery process to enhance the customer satisfaction. 

 Considering the transportation risks in model to enhance the reliability of the system.   

 Applying a fuzzy TOPSIS method for analyzing the factors affecting the reliability of routes. 

 Applying a multi-objective gray wolf optimization algorithm to efficiency solve the problem. 

   The remainder of this article is arranged as follows: Section 2 reviews relevant related literature. The 
uncertain green location- routing inventory model is proposed in section 3. The NSGA-II and MOGWO 

algorithms are presented in section 4. Model validation, numerical results and sensitivity analysis are 

reported in section 5. Comparative result from before section discuss in section 6. Sensitivity analysis is 

given in section 7. At last, in section 8, conclusions and future suggestions are stated. 

 

2-Literature review 
   This section discusses about different studies related to location-routing-inventory problem, Green 

LRIP and LRIP with risk.  
 

2-1- Location-routing-inventory problem  
   For the first time, Liu and Lee (2003) presented a LRIP in which they assumed heterogeneous fleet and 
unlimited capacity for depots. They solved model using a two-phase heuristic algorithm. Liu and Lee 

(2005) developed their model by using Tabu Search (TS) and Simulated Annealing (SA) algorithms to 

solve their model. They didn't consider shortage and ordering cost in their model. Zhang, Zujun and Jiang 
(2008) developed a multi-period single-item LRIP with a homogeneous fleet and uncertain demand and 

solved their model by a genetic algorithm. Sajjadi and Cheraghi. (2011) studied a multi- commodity, 

three-echelon and single-period SC with stochastic demand. In their model, warehouses had limited 
capacity and 3PL companies provided space in order to storage items in DCs. Seyyed Hosseini, Bozorgi-

Amiri and Daraei. (2014) introduced a single-objective model for inventory, routing and location 

decisions. They considered stochastic demand, shortage and random disruption at distribution centers 

(DCs) and applied a metaheuristic algorithm to solve the proposed model. Dehghani, Behfar and 
Jabalameli. (2016) developed a mathematical model for LRIP and used SA algorithm for solving the 

problem. In their model, the demands of retailers were ucertain. Amiri aref, Klibi and Zied Babai. (2017) 
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presented a multi-source, multi-period, multi-echelon SC LRIP with uncertain demand. In their model, 
they examined the impact of shipping costs, inventory holding costs, and product referrals. They used a 

Sample Approximation method to solve the proposed model.  

   Yuchi et al. (2018) studied a LRIP in a closed-loop supply chain in which the remanufacturing centers 

were located. For solving their model, they used hybrid method TS and SA algorithms. Rabbani et al. 
(2018) formulated a multi-objective stochastic model for a locating-routing problem by considering 

inventory control and the risk of wastes for humans. They integrated a NSGA-II and the Monte Carlo 

simulation to solve the model. Momeni Kia et al. (2018) designed a two-objective model for LRIP with 
soft time windows. They applied three metaheuristics including MOPSO, PESA_II and NSGA-II 

algorithms to solve the model. Guo et al. (2018) examined the LRIP in a close loop SC and proposed a 

non-linear integer programming model with the aim of reducing system costs including inventory, routing 
and transportation costs. They used a hybrid metaheuristic comprised of SA and GA algorithms to solve 

the model. Zheng, Yin and zhang. (2019), formulated a nonlinear LRIP that minimized the total system 

costs including the inventory, shipping and opening costs of the DCs. They used exact algorithm based on 

the Generalized Benders Decomposition (GBD) to solve the model.  
   

2-2- Green LRIP 
   In the most of researches in literature, location-routing (LR), inventory-routing (IR) and location-

inventory (LI) problems have included environmental aspects in their model. Treital, Nolz and 
Jammerneg.(2012) proposed an IR problem with environmental aspects and applied a case study for their 

model. They didn’t consider inventory costs in their model. In their model, emission was related to 

vehicle type and travelling distance. Soysal et al (2015) addressed an IRP for perishable products with 
environmental aspects. they assumed demand is uncertain. The environmental impacts of their model 

were related to reducing CO2 emission, fuel consumption and food waste. In addition, Soysal et al (2017) 

proposed a green IR problem by regarding Co2 emission, total system costs and perishable goods 

simultaneously with uncertain demand. They applied a case study with two suppliers and showed the 
reduced rate of Co2 emission is about 8-33%. Niakan and Rahimi (2015) presented an IRP in field the of 

medication distribution. They assumed that demand, transportation cost, and shortage cost were fuzzy 

parameters. Also, they showed that greenhouse gas (GHG) emission was related to transportation system. 
Rahimi, Babol and Rekik. (2017) developed an inventory routing problem with green considerations. 

Their model had three objectives and included profit of the system, service level and environmental 

effects of distribution operations. To solve the model, they used the NSGA-II algorithm. Rau, Budimana 
and Widyadanab. (2018) proposed a multi-objective IRP with environmental aspects. In their model, the 

Co2 emission comes from the fuel consumption of vehicles. They proposed a discrete multi-objective 

particle swarm optimization (PSO) to solve the model. They showed their model reduced the total cost 

between 17% - 22% and total emission between 19%-22%. Guido, Michelia  and Fabio Mantella. (2018) 
offered an inventory routing problem with uncertainty demand that simultaneously considered emissions 

GHG and heterogeneous fleets. In order to reduce concerns about air pollution, they consider four carbon 

control strategies. Dukkanci et al. (2019) addressed a green LRIP and considered the speed and weight of 
vehicles as the major factors affecting the fuel consumption of vehicles. 

   As the literature review shows, there are a few researches considering environmental aspects in LRIPs. 

In this regard, the green LRIPs can be divided into two categories: The LRIPs with electric vehicle (EV) 

that focus on green VRP and developed electric vehicle problem (EVRP). The second group decreases the 
emissions by paying attention the distance traveled by vehicles (Zhang et al., 2018). According to the 

previous section there are some gaps in the context of LRIP as follows: 

 Considering the reliability of transportation system in a LRIP problem. 

 Analyzing the factors affecting the risk of routs for the delivery of items in a LRIP. 

 Considering hard time windows for the shipment of products in a LRIP problem. 

 Considering environmental factors in a multi-objective LRIP problem. 

 Considering backup centers to avoid shortage in the system. 
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 Applying a new multi objective metaheuristic problem for a LRIP.   

Table 1 shows the summary of literature review section and highlights the research gaps.  

 

 
Table 1. Summation of the literature about LRIPs. 
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3-Problem description 
   In this model a three-level SC consisted of suppliers, distribution/backup centers and customers, is 

designed. The products are transferred directly from the suppliers to the distribution and backup centers. 

The model aims to minimize the total cost, risk of routes and CO2 emission, while selecting and locating a 

set of DCs, allocating customers to DCs and timing the shipments of vehicles to fulfill the customer 

demand. The main assumptions of the model are as follows: 

 

3-1- Assumptions 

 Inventory review of DCs is continuous. When inventory level of distribution center 𝐾′reaches its 

reorder point  𝑅𝑂𝑃𝑘′. 𝑄𝑘′ units are ordered 

 Each retailer is visited by only one vehicle. 

 Transportation fleet is heterogeneous and vehicles capacities are not equal. 

 Each retailer is served by only one DC. 

 Time window is hard. In other word, customer demand must be met within a specific time interval.  

 After serving customer demand allocated to a DC, the vehicle returns back to the DC. 

 Customer demand is uncertain and follows normal distribution. 

 Network risk parameter is a combination of factors including road security, weather conditions and 
traffic which are considered as triangular fuzzy numbers. 

Figure 1 illustrates the overview of the supply chain network.  
 

 
 

Fig 1. The supply chain network examined  

 

3-2- Fuzzy TOPSIS 

   According to assumption, the risk of transportation system increases by traffic, situation of roads and 

weather conditions. It should be note that each of mentioned risk factors have different degree of 
importance. Converting these factors to a single factor is applied utilizing fuzzy TOPSIS (refer to Abbasi 

Parizi et al (2018) for more details). Assume that 𝑟 and 𝑙 indicate alternatives and decision factors, 

respectively. The Risk of rout (𝛼𝐼𝐼′𝑣2) is calculated based on the instruction stated as follows:  

1- Determining effective factors on risk of the route (like traffic, weather conditions, and situations 

of the roads) and weighting them, 

2-  Determining weights of each factor using average. 
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3-  Computing risk of each route using sum of weights allocated to route risk factors. 

4-  Composing a matrix for risk of the routes from node i to node j. 

5-  Selecting the route with the lowest risk. 

The proposed fuzzy TOPSIS approach is defined as follows: 

The Fuzzy factors must be defined before the optimization of the model, so they are calculated according 

to the related various features. For the first time, Yoon and Hwang in 1981 developed The TOPSIS 

method. TOPSIS is a multi-criterion decision-making (MCDM) method for ranking a number of 

alternatives with respect to their various criteria. The fuzzy TOPSIS is applicable when the weight of 

proposed criteria is unknown. In this regard, the closest Fuzzy Positive Ideal Solution (FPIS) and the 

farthest Fuzzy Negative Ideal Solution (FNIS) are selected as the factor range. According to (abbasi- 

parizi, 2018), the procedure of fuzzy TOPSIS can be expressed in following steps:   

Definition 1: It is assumed that 𝑎̃ = (𝑎1. 𝑎2. 𝑎3) is a triangular fuzzy number (TFN). The membership 

function of 𝑎̃  described the following relation:  

𝑡𝑟𝑛(𝑥: 𝑎1. 𝑎2. 𝑎3) =

{
 
 

 
 

0                        𝑐
𝑥 − 𝑎1
𝑎2 − 𝑎 1

  𝑎1 < 𝑥 ≤ 𝑎2

𝑎3 − 𝑥

𝑎3 − 𝑎2
  𝑎2 < 𝑥 ≤ 𝑎3

0            𝑥 > 𝑎3

 

 

 
                                        (1) 

Definition 2: If the 𝑎̃ = (𝑎1. 𝑎2. 𝑎3) and 𝑏̃ = (𝑏1. 𝑏2. 𝑏3) are two fuzzy number, then the distance 

between 𝑎̃. 𝑏̃ is calculated as:  

𝑑(𝑎̃. 𝑏̃) = (|𝑏1 − 𝑎3|, |𝑏2 − 𝑎2|, |𝑏3 − 𝑎1|)                     (2) 

Step1: D denotes a fuzzy decision matrix as follows: 

𝐷 =  [

𝑥̃11 𝑥̃12 … 𝑥̃1𝑛
𝑥̃21
⋮

𝑥̃22 …

⋮ ⋯ ⋱
𝑥̃2𝑛
⋮

𝑥̃𝑚1 𝑥̃𝑚2 … 𝑥̃𝑚𝑛

]       and     𝑥̃𝑟𝑙 = (𝑎𝑟𝑙 . 𝑏𝑟𝑙 . 𝑐𝑟𝑙) 

 

 
 

                         (3) 

Step2: The fuzzy decision matrix is normalized as follows: 

𝑅̃ = [𝑟̃𝑟𝑙]𝑀×𝑁             (4)     

𝑟𝑟𝑙 = (
𝑎𝑟𝑙

𝑐𝑟𝑙
∗⁄ .
𝑏𝑟𝑙

𝑐𝑖𝑗
∗⁄ .
𝑐𝑟𝑙

𝑐𝑟𝑙
∗ ⁄ )    .   𝑐𝑟𝑙

∗ = max 𝑐𝑟𝑙 
benefit criteria            (5)    

𝑟𝑟𝑙 = (
𝑎𝑟𝑙
−

𝑐𝑟𝑙⁄ .
𝑎𝑟𝑙
−

𝑏𝑟𝑙
⁄ .

𝑎𝑟𝑙
−

𝑎𝑟𝑙⁄ )    .   𝑎𝑟𝑙
− = min𝑎𝑟𝑙 

cost criteria            (6)  

 

Step3: The weighted normalized decision matrix is calculated. 𝑤̃𝑟𝑙  is the weight factor of fuzzy 

parameters as follows: 

𝑉 = [𝑣̃𝑟𝑙]𝑀×𝑁                (7) 
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𝑉 = [

𝑣̃11 𝑣̃12 … 𝑣̃1𝑛
𝑣̃21
⋮

𝑣̃22
⋮

…
⋱

𝑣̃2𝑛
⋮

𝑣̃𝑚1 𝑣̃𝑚2 … 𝑣̃𝑚𝑛

] = [

𝑤̃11𝑟̃11 𝑤̃12𝑟̃12 … 𝑤̃1𝑛 𝑟̃1𝑛
𝑤̃21𝑟̃21
⋮

𝑤̃22𝑟̃22
⋮

…
⋱

𝑤̃2𝑛 𝑟̃2𝑛
⋮

𝑤̃𝑚1𝑟̃𝑚1 𝑤̃𝑚2𝑟̃𝑚2 … 𝑤̃𝑚𝑛𝑟̃𝑚𝑛

]   

 
             (8) 

Step4: The fuzzy ideal (positive) and fuzzy negative-ideal solutions are determined as follows. 

𝐴∗ = (𝑣̃1
∗. 𝑣̃2

∗ . 𝑣̃3
∗) = {(𝑚𝑎𝑥𝑣𝑟𝑙|𝑟 = 1.2.⋯ .𝑚). 𝑙 = 1.2.⋯ . 𝑛}                         (9) 

𝐴− = (𝑣̃1
−. 𝑣̃2

−. 𝑣̃3
−) = {(𝑚𝑖𝑛𝑣𝑟𝑙|𝑟 = 1.2.⋯ .𝑚). 𝑙 = 1.2.⋯ . 𝑛}                          (10) 

Step5: The total fuzzy distance between each component, the positive and negative ideal solutions are 
calculated as follows: 

 

                 (11) 𝑑̃𝑟
∗ =∑𝑑(𝑣̃𝑟𝑙 . 𝑣̃𝑙

∗)

𝑛

𝑙=1

                                                         𝑟 = 1.2. … .𝑚 

 

                 (12) 𝑑̃𝑟
− =∑𝑑(𝑣̃𝑟𝑙 . 𝑣̃𝑙

−)

𝑛

𝑙=1

                                                       𝑟 = 1.2. … .𝑚 

 
Step 6: Convert the similarity index to the Ideal Solution as follows: 

𝐶̃𝑟
∗ =

𝑑̃𝑟 
−

𝑑̃𝑟 
− + 𝑑̃𝑟 

∗
                                                     𝑟 = 1.2. … .𝑚 

                         (13) 

It is obvious that fuzzy parameters are obtained as 𝑎̃ = (𝑎1. 𝑎2. 𝑎3). For example, for the risk factor; 

𝛼̃𝐼𝐼′𝑣 = (𝛼1𝐼𝐼′𝑣 . 𝛼2𝐼𝐼′𝑣 . 𝛼3𝐼𝐼′𝑣); the relative closeness to the Ideal Solution is calculated as follow as:  

 
Table 3. Linguistic variables for fuzzy rating 

Fuzzy number Weight of each criteria alternative QA weight 

(0,0,2) (0,0,0.2) Very poor (VP) Very low (VL) 

(0,2,3) (0,0.2,0.3) Poor (P) Low (L) 

(2,3,6) (0.2,0.3,0.6) Medium (M) Medium (M) 

(3,6,9) (0.3,0.6,0.9) Good (G) High (H) 

(6,9,10) (0.6,0.9,1.0) Very good (VG) Very high (VH) 

 
Table 3 shows the importance weight risk factors and the related rating of qualitative criteria. In the next 

step, the results of each factor are achieved using the decision maker's opinions. The related results are 
reported in table 4. 

 

Table 4. fuzzy decision and weight matrix 

alternative 𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑨𝟏 (3,6,10) (5,8,10) (7,9,10) 

𝑨𝟐 (2,5.7,10) (0,6,9) (5,8.4,10) 

𝑨𝟑 (4,7,10) (7,9,10) (5,9,10) 

weight (0.65,0.82,1) (0.5,0.71,0.93) (0.5,0.74,1) 

 
According to relations (5)- (9), the fuzzy weighted normalized decision matrix described in table 5.  

 
Table 5. The results of the fuzzy weighted normalized decision matrix 
alternative 𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑨𝟏 (0.42, 0.69,1) (0.5,0.8,1) (0.65,0.55,0.71) 

𝑨𝟐 (0.35,0.77,1) (0,0.6,0.9) (0.5,0.6,1) 

𝑨𝟑 (0.3,0.7,1) (0.52,0.82,1) (0.5,0.55,1) 
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Then the FPIS and FNIS are determined:  

𝐴∗ = {(1.1.1). (1.1.1). (0 ∙ 5.0 ∙ 5.0 ∙ 5)} 
𝐴− = {(0 ∙ 3.0 ∙ 3.0 ∙ 3). (0.0.0). (1.1.1)} 
Finally, the distance between each component, the positive and negative ideal solutions are reached and 

the closest factor to ideal solution is reported in table 6. 
 

                    Table 6: fuzzy distance and closeness coefficient          

 A* A- 𝑪̃𝒓
∗  

d(A1,) 2.57 2.78 0.517 

d(A2,) 1.84 2.34 0.559 

d(A3,) 2.18 1.95 0.472 

 
Based on the above mentioned, the merged risk is calculated and will be used in the model. 

3-3- Mathematical model  

Symbols  Definition 

Index sets  

𝑘′ Set of potential DCs 

𝑘 Set of backup DCs 

𝑖 Set of customers (or retailers)   

𝐼 = {𝑘′ ∪ 𝑖} Set of customers and DCs 

𝑣𝑖 Set of available vehicles from supplier O  to DC k  

𝑣2 Set of available vehicles from DC k  to retailers and between them 

𝑉 = 𝑣1 ∪ 𝑣2 Set of vehicles  

𝑂 supplier 

parameters  

𝑓𝑓𝑘′ establishing cost of candidate 𝐷𝐶𝑘′  
𝑓𝑘  establishing cost of candidate backup 𝐷𝐶𝑘 

𝜇𝑖 mean yearly demand of retailer i  

𝜎𝑖
2 yearly demand variance at retailer i  

𝐷𝑖 demand of retailer i 

𝑓𝑘
′ pollution cost of candidate backup 𝐷𝐶𝑘 

ℎ𝑘′ inventory holding cost per unit of product at 𝐷𝐶𝑘′ 

𝑐𝑜𝑘′
′  fixed administrative cost of ordering to supplier O by 𝐷𝐶𝑘′ 

𝑠𝑎𝑓𝑒𝑡𝑦 𝑘 holding cost of safety stock at backup 𝐷𝐶𝑘 

𝑡𝑟𝑜𝑘𝑣1 transportation cost from supplier O to backup center 𝐷𝐶𝑘by vehicl𝑣1e  

𝑚𝑜𝑘𝑘′ fixed cost of transportation from backup center 𝐷𝐶𝑘to 𝐷𝐶𝑘′ 

𝑐𝑜𝑠𝑡𝑜𝑘′𝑣1 Shipment cost per unit from supplier O  to 𝐷𝐶𝑘′ by vehicle 𝑣1 

𝛾𝑣 pollution cost of vehicle 𝑣 

𝜌𝑣 amount of fuel consumption of vehicle 𝑣 while loaded full 

𝜌𝑜𝑣 amount of fuel consumption of vehicle 𝑣  while unloaded 

𝑑1𝑜𝑘′ distance between 𝐷𝐶𝑘′ and supplier O 

𝑑2𝑜𝑘 distance between backup center  𝐷𝐶𝑘 and supplier O 

𝑑3𝑖𝑗  distance between nodes i and j 

𝑑𝑘𝑘′
′  distance between backup center 𝐷𝐶𝑘 and  𝐷𝐶𝑘′ 

𝑐𝐼𝐼′ transfer cost of product from DCs to retailers i and between them 

𝑐𝑎𝑝1𝑣1 capacity of vehicles 𝑣1 

𝑐𝑎𝑝2𝑘′ capacity of 𝐷𝐶𝑘′ 

𝑐𝑎𝑝3𝑣2 capacity of vehicles 𝑣2 

𝑐𝑜𝑠𝑡𝑘′
′  shortage cost a𝑡 𝐷𝐶𝑘′  

𝐿 number of backup centers, if needed 
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𝑈 A big number 

𝑡̃𝐼𝐼′𝑣2 time needed to travelling from node 𝐼 to node 𝐼′  by vehicle 𝑣2                        

𝑠𝑡̃𝐼′ time needed to serve node 𝐼′ 

𝑒̃𝐼′ earliest start time to serve node 𝐼′ 

𝑙𝐼′  latest start time to serve node 𝐼′ 

𝐿′ upper level of inventory 

𝑧𝛼 confidence level for inventory 

𝑙𝑡̃𝑘′ lead time of 𝐷𝐶𝑘′ 

𝛼̃𝐼𝐼′𝑣2  Route risk of driving from node 𝐼 to node 𝐼′ using vehicle 𝑣2 

Decision variables: 

𝑥𝑘𝑘′ = {
1
0

 

 
In case of shortage at 𝐷𝐶𝑘′, if products are transferred from backup center  𝐷𝐶𝑘  

otherwise  

𝑥𝑘
′ = {

1
0
 

 
if backup center  𝐷𝐶𝑘   selected  

otherwise 

𝑠𝑘′
′ = {

1
0

 

 
If distribution center 𝐷𝐶𝑘′ is opened 

otherwise 

𝑄𝑜𝑘′𝑣1
′ = {

1
0

 If order from supplier O for 𝐷𝐶𝑘′is delivered by vehicle 𝑣1 
otherwise 

𝑅𝑘′𝑣2 = {
1
0

 If vehicle 𝑣2 is used in distribution center 𝐷𝐶𝑘′ 
otherwise 

𝑤𝐼𝐼′𝑣2 = {
1
0

 If product is transported from node 𝐼 to node 𝐼′ by using vehicle 𝑣2 
otherwise 

𝑦𝑖𝑘′ = {
1
0

 If distribution center 𝐷𝐶𝑘′  is selected by retailer i   
otherwise 

𝑏𝑎𝑘′ amount of shortage at distribution center 𝐷𝐶𝑘′ 
𝑠𝑠𝑘  safety stock at backup center  𝐷𝐶𝑘 

𝑁10𝑘𝑣1  count of orders from supplier O for distribution center 𝐷𝐶𝑘′ using vehicle 𝑣2 

𝑄1𝑜𝑘′𝑣1 quantity of order from supplier o for backup center  𝐷𝐶𝑘using vehicle 𝑣1 
𝑁2𝑜𝑘𝑣1 count of orders from supplier O for backup center  𝐷𝐶𝑘 using vehicle 𝑣1 
𝑦𝑘𝑘′
′  quantity of products sent to 𝐷𝐶𝑘′ from backup center  𝐷𝐶𝑘 in case of shortage 

𝑀𝑖𝑣 auxiliary variable to eliminate sub-tour 

𝐴𝑡𝐼𝑣1 start time for serving node I using vehicle 𝑣1 

 
The proposed non-linear uncertain model of this problem is described as follows. 

Yearly demand of 𝐷𝐶𝑘′ , is equal to the summation of mean yearly demand of all retailers allocated to that 

DC. Hence: 

Mean yearly demand at 𝐷𝐶𝑘′ = ∑ 𝜇𝑖𝑦𝑖𝑘′𝑖        (14) 

Variance of yearly demand at 𝐷𝐶𝑘′ = ∑ 𝜎𝑖
2𝑦𝑖𝑘′𝑖   

 

      (15) 

Given that 𝑁1𝑜𝑘′𝑣1 is number of orders and 𝑄𝑜𝑘′𝑣1 is quantity of each order at 𝐷𝐶𝑘′, yearly demand for 

𝐷𝐶𝑘′can be obtained from : 𝑁1𝑜𝑘′𝑣1 ∙ 𝑄1𝑜𝑘′𝑣1. 

Symbols                                    Definition 
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Thus, if   𝑁1𝑜𝑘′𝑣1 ∙ 𝑄1𝑜𝑘′𝑣1 ≤ ∑ 𝜇𝑖𝑖 ∙ 𝑦𝑖𝑘′  , then safety stock will be equal to  √𝑙𝑡̃𝑘′∑ 𝜎𝑖
2𝑦𝑖𝑘′𝑖  

Let 𝐷𝑘′ be demand of  𝐷𝐶𝑘′ . If k places 𝑁1𝑜𝑘′𝑣1 orders with quantity of 𝑄1𝑜𝑘′𝑣1 for each time, with  

𝑐′𝑜𝑘′ as fixed order cost for this DC, inventory holding cost, ordering cost and safety stock holding cost 

can be formulated as relation 16: 
 

   ℎ𝑘′ (
𝑁
1𝑜𝑘′𝑣1

∙𝑄
1𝑜𝑘′𝑣1

2
) + 𝑐𝑜𝑘′

′ (
𝐷𝑘′

𝑁1𝑜𝑘′𝑣1∙𝑄1𝑜𝑘′𝑣1
) + ℎ𝑘′𝑧𝛼√𝑙𝑡̃𝑘′∑ 𝜎𝑖

2𝑦𝑖𝑘′𝑖  
 

      (16) 

 

On the other hand: 

Inventory cost for all DCs is determined using Equation (17): 

 

ℎ𝑘′ (
𝑁1𝑜𝑘′𝑣1 ∙ 𝑄1𝑜𝑘′𝑣1

2
) +∑𝑐𝑜𝑘′

′

𝑘′

(
∑ 𝜇𝑖𝑦𝑖𝑘′𝑖

𝑁1𝑜𝑘′𝑣1 ∙ 𝑄1𝑜𝑘′𝑣1
) +∑ℎ𝑘′

𝑘′

𝑧𝛼√𝑙𝑡̃𝑘′∑𝜎𝑖
2𝑦𝑖𝑘′

𝑖

 

 
(17) 

The non-linear uncertain multi-objective mathematical model is formulated as follows: 

 Total costs  

 

𝑚𝑖𝑛𝑍1 =∑𝑓𝑘
𝑘

∙ 𝑥𝑘
′ +∑𝑓𝑓𝑘′

𝑘′

∙ 𝑠𝑘′
′ +∑𝑓𝑘

′

𝑘

∙ 𝑥𝑘
′ +∑𝑠𝑠𝑘

𝑘

∙ 𝑠𝑎𝑓𝑒𝑡𝑦𝑘 

                +∑∑∑(𝑐𝑜𝑠𝑡0𝑘′𝑣
𝑣∈𝑣1𝑘′𝑂

∙ 𝑑1𝑂𝑘′ ∙ 𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣) +∑∑∑ 𝑐𝑜𝑘′
′

𝑣∈𝑣1𝑘′𝑂

∙ (
∑ 𝜇𝑖 ∙ 𝑦𝑖𝑘′𝑖

𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣
) +∑∑∑

ℎ𝑘′ ∙ 𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣
2

𝑣∈𝑣1𝑘′𝑂

+ ∑ℎ𝑘′ ∙ 𝑍𝛼√𝑙𝑡̃𝑘′∑𝜎𝑖
2 ∙ 𝑦𝑖𝑘′

𝑖𝑘′

+∑∑∑ 𝑡𝑟𝑜𝑘𝑣 ∙ 𝑁2𝑜𝑘𝑣 ∙ 𝑄2𝑜𝑘𝑣 ∙ 𝑑2𝑜𝑘
𝑣∈𝑣1𝑘𝑜

+∑∑𝑚𝑜𝑘𝑘′ ∙ 𝑑𝑘𝑘′
′

𝑘′𝑘

∙ 𝑦𝑘𝑘
′ +∑∑∑𝐶𝐼𝐼′ ∙ 𝑤𝐼𝐼′ ∙ 𝑅𝑘′𝑣

𝐼′𝑣∈𝑣2𝐼

+∑𝑏𝑎𝑘′ ∙ 𝑐𝑜𝑠𝑡𝑘′
′

𝑘′

 

 

𝜔 =∑𝑓𝑘
𝑘

∙ 𝑥𝑘
′ +∑𝑓𝑓𝑘′

𝑘′

∙ 𝑠𝑘′
′ +∑𝑓𝑘

′

𝑘

∙ 𝑥𝑘
′ +∑𝑠𝑠𝑘

𝑘

∙ 𝑠𝑎𝑓𝑒𝑡𝑦𝑘 

                +∑∑∑(𝑐𝑜𝑠𝑡0𝑘′𝑣
𝑣∈𝑣1𝑘′𝑂

∙ 𝑑1𝑂𝑘′ ∙ 𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣) +∑∑∑ 𝑐𝑜𝑘′
′

𝑣∈𝑣1𝑘′𝑂

∙ (
∑ 𝜇𝑖 ∙ 𝑦𝑖𝑘′𝑖

𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣
) +∑∑∑

ℎ𝑘′ ∙ 𝑁1𝑂𝑘′𝑣 ∙ 𝑄1𝑂𝑘′𝑣
2

𝑣∈𝑣1𝑘′𝑂

+∑∑∑ 𝑡𝑟𝑜𝑘𝑣 ∙ 𝑁2𝑜𝑘𝑣 ∙ 𝑄2𝑜𝑘𝑣 ∙ 𝑑2𝑜𝑘
𝑣∈𝑣1𝑘𝑜

+∑∑𝑚𝑜𝑘𝑘′ ∙ 𝑑𝑘𝑘′
′

𝑘′𝑘

∙ 𝑦𝑘𝑘
′ +∑∑∑𝐶𝐼𝐼′ ∙ 𝑤𝐼𝐼′ ∙ 𝑅𝑘′𝑣

𝐼′𝑣∈𝑣2𝐼

+∑𝑏𝑎𝑘′ ∙ 𝑐𝑜𝑠𝑡𝑘′
′

𝑘′

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

   (18) 
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  The related costs are associated with distribution and backup center establishment, holding safety stock 

in distribution and backup centers, transporting products from suppliers to distribution and backup centers 

and from backup centers to DCs, inventory holding in DCs, holding safety stock in DCs, transferring 

products from DCs to retailers, shortage of inventory, and fixed order cost. 

 Greenhouse emission 

Carbon emissions are generated by fuel consumption of vehicles during the transportation of products 

between nodes:  

𝑚𝑖𝑛𝑍2 =∑∑∑ 𝑁1𝑜𝑘′𝑣𝑑1𝑜𝑘′𝛾𝑣 (𝑄1𝑜𝑘′𝑣
𝜌𝑣 − 𝜌𝑜𝑣
𝑐𝑎𝑝𝑣

)

𝑣∈𝑣1𝑘′𝑜

 

 

 

 

               +∑∑∑ 𝑁2𝑜𝑘𝑣𝑑2𝑜𝑘𝛾𝑣 (𝑄2𝑜𝑘𝑣
𝜌𝑣 − 𝜌𝑜𝑣
𝑐𝑎𝑝𝑣

)

𝑣∈𝑣1𝑘𝑜

                                          (19) 

 

             +∑∑∑∑∑ 𝑁1𝑜𝑘′𝑣𝑑3𝑖𝑗𝛾𝑣 (𝑄1𝑜𝑘′𝑣
𝜌𝑣 − 𝜌𝑜𝑣
𝑐𝑎𝑝𝑣

)

𝑣∈𝑣2𝑗𝑖𝑘′0

  

 

 Risk of routs 

Since, risk parameters are defined as triangular fuzzy numbers, the offered model is reformulated as: 

𝑍3 = 𝑚𝑖𝑛𝑚𝑎𝑥𝐼𝐼′𝑣∈𝑣2𝛼̃𝐼𝐼′𝑣𝑤𝐼𝐼′𝑣                (20) 

  

Subject to:  

 

(21) ∀𝑖. 𝑘′ 𝑦𝑖𝑘′ ≤ 𝑠𝑘′
′  

(22) ∀𝑖   ∑ 𝑦𝑖𝑘′𝑘′ = 1 

(23) ∀𝐼′  ∑ ∑ 𝑤𝐼𝐼′𝑣2 = 1𝐼𝑣∈𝑣2  

(24) ∀𝐼′  ∑ ∑ 𝑤𝐼𝐼′𝑣 ≤ 1𝐼𝑣∈𝑣2  

(25) ∀𝑣 ∈ 𝑣2. 𝐼′  ∑ 𝑤𝐼𝐼′𝑣𝐼 − ∑ 𝑤𝐼′𝐼𝑣𝐼 = 0 

(26) ∀𝑣 ∈ 𝑣2. 𝐼
′ . 𝐼 𝑀𝐼𝑣 −𝑀𝐼′𝑣 + (|𝐼|𝑤𝐼𝐼′𝑣) ≤ |𝐼| − 1 

(27) ∀𝑣 ∈ 𝑣2 ∑ ∑ 𝑤𝑘𝑖𝑤𝑖 ≤𝑘 1 

(28) ∀𝑣 ∈ 𝑣2. 𝑖. 𝑘′  ∑ 𝑤𝑘′𝐼𝑣𝐼 +∑ 𝑤𝐼𝑖𝑣𝐼 ≤ 1+ 𝑦𝑖𝑘′ 

(29) ∀𝑣 ∈ 𝑣2. 𝑘′  𝑅𝑘′𝑣 = ∑ 𝑤𝑘′𝑖𝑣𝑖  

(30) ∀𝑘′ 𝑠𝑘′
′ ≥ 𝑏𝑎𝑘′ 

(31) ∀𝑘′  ∑ ∑ 𝑁1𝑜𝑘′𝑣𝑄1𝑜𝑘′𝑣𝑣∈𝑣1 ≤ 𝑐𝑎𝑝𝑘′𝑠𝑘′
′

𝑜  

(32) ∀𝑘′. 𝑘 𝑥𝑘𝑘′ ≤ 𝑠𝑘′
′   
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   The constraint (21) ensures that customer i will be allocated to 𝐷𝐶𝑘′ if this DC is established. Constraint 

(22) indicates that each retailer is exactly allocated to one DC. Constraints (23) and (24) make sure that 

each customer is assigned exactly to one route. Constraint (25) represents when a vehicle visits a 

customer or DC, the vehicle should leave the place. Constraint (26) is designed to eliminate the sub-tours 

and constraint (27) ensures that each route involves only one DC. Constraint (28) indicates that customer i 

will be allocated to 𝐷𝐶𝑘′ if the vehicle v visiting customer i starts it’s travel from the same DC. Constraint 

(29) enforces that vehicle v will not be allocated to DC k unless it satisfies the demand of customer i 

allocated to 𝐷𝐶𝑘′. Constraint (30) obliges the model to set 𝑆′𝑘′ equal to 1, if shortage happens in the DC. 

Constraint (31) indicates capacity limitation at DCs and enforces the order size to be less than capacity of 

DC. Constraints (32) and (33) represent binary variables of distribution and backup centers. Constraint 

(34) implies that in case of shortage, L backup centers will be active. Equation (35) indicates the 

inventory balance at DC.  Constraint (36) expresses the flow of products from backup center to DC in 

case of shortage. Constraint (37) restricts the quantity of products transferred from a backup center to a 

DC to be more than shortage amount. Relation (38) is the mathematical implication of inventory shortage 

(33) ∀𝑘′. 𝑘 𝑥𝑘
′ ≥ 𝑥𝑘𝑘′ 

(34)  ∑ 𝑥𝑘
′

𝑘 ≤ 𝐿  

(35) ∀𝑘′  ∑ ∑ (𝑁1𝑜𝑘′𝑣𝑄1𝑜𝑘′𝑣) + 𝑏𝑎𝑘′ + 𝑠𝑠𝑘′ ≤ ∑ (𝑦𝑖𝑘′𝜇𝑖)𝑖𝑣∈𝑣1𝑜  

(36) ∀𝑘′. 𝑘 𝑦𝑘𝑘′
′ ≤ 𝑥𝑘𝑘′  

(37) ∀𝑘′ ∑ 𝑦𝑘𝑘′
′

𝑘 ≥ 𝑏𝑎𝑘′  

(38) ∀𝑘′  ∑ 𝜇𝑖𝑦𝑖𝑘′𝑖 − ∑ ∑ 𝑁1𝑜𝑘′𝑣𝑄1𝑜𝑘′𝑣𝑣∈𝑣1 = 𝑏𝑎𝑘′𝑜  

(39) ∀𝑘′. 𝑜. 𝑣 ∈ 𝑣1 𝑈 ∙ 𝑄𝑜𝑘′𝑣
′ ≥ 𝑄1𝑜𝑘′𝑣 

(40) ∀𝑘′. 𝑜. 𝑣 ∈ 𝑣1 𝑁1𝑜𝑘′𝑣 ≤ 𝑄1𝑜𝑘′𝑣 ∙ 𝑈 

(41) ∀𝑘′. 𝑜. 𝑣 ∈ 𝑣1 𝑁1𝑜𝑘′𝑣 ≥ 𝑄𝑜𝑘′𝑣
′  

(42) ∀𝑘. 𝑜. 𝑣 ∈ 𝑣1 𝑥𝑜𝑘𝑣
′ ∙ 𝑈 ≥ 𝑄2𝑜𝑘𝑣   

(43) ∀𝑘. 𝑜. 𝑣 ∈ 𝑣1 𝑁2𝑜𝑘𝑣 ≤ 𝑄2𝑜𝑘𝑣 ∙ 𝑈 

(44) ∀𝑘′. 𝑜. 𝑣 ∈ 𝑣1 𝑄1𝑜𝑘′𝑣 ≤ 𝑠𝑘′
′ ∙ 𝑈   

(45) ∀𝑘′ 𝑏𝑎𝑘′ ≤ 𝐿
′ 

(46) ∀𝐼. 𝐼′. 𝑣 ∈ 𝑣1.2  𝐴𝑡𝐼𝑣 + 𝑡̃𝐼𝐼′𝑣 + 𝑆𝑡̃𝑡 − 𝐴𝑡𝐼′𝑣 ≤ 𝑈 ∙ 𝑤𝐼𝐼′𝑣   
                    

(47) ∀𝐼′. 𝑣 ∈ 𝑣2 𝑒̃𝐼′ ≤ 𝐴𝑡𝐼′𝑣 + 𝑆𝑡̃𝐼′ ≤ 𝑙𝐼′ 

(48) ∀𝐼. 𝐼′. 𝑣 ∈ 𝑣1.2 (1 − 𝑤𝐼𝐼′𝑣) ∙ (𝐴𝑡𝐼𝑣 + 𝑡̃𝐼𝐼′𝑣 + 𝑆𝑡̃𝑡 − 𝐴𝑡𝐼′𝑣) ≤ 0 

(49)  𝑏𝑎𝑘′. 𝑠𝑠𝑘 . 𝑄1𝑜𝑘′𝑣1. 𝑄2𝑜𝑘𝑣1 . 𝐴𝑡𝐼𝑣2. 𝑀𝑖𝑣 ≥ 0  

(50)  𝑦𝑖𝑘′. 𝑅𝑘′𝑣2. 𝑦𝑘𝑘′
′ . 𝑤𝐼𝐼′𝑣2. 𝑥𝑘𝑘′. 𝑥𝑘

′ . 𝑠𝑘′
′ . 𝑄𝑜𝑘′𝑣1

′ ∈ {0.1}  

(51)  𝑁1𝑜𝑘′𝑣1. 𝑁2𝑜𝑘𝑣2: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
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amount. Constraint (39) is designed to determine the value of  𝑄′𝑜𝑘′𝑣 . Constraints (40) and (41) indicate 

that, if 𝑄′𝑜𝑘′𝑣 is set to 1, order quantity will be meaningful. Constraint (42) represents the allocation of 

orders to backup centers and constraint (43) restricts the value of orders from suppliers to backup centers. 

Constraint (44) indicates the allocation of  𝐷𝐶𝑘′by setting a binary variable. If  𝐷𝐶𝑘′is allocated, an order 

equal to 𝑄1𝑜𝑘′𝑣  is placed for this DC. Relation (45) determines the upper limitation of the shortage. 

Constraints (46), (47) and (48) are considered for hard time windows. Constraints (49), (50) and (51) 

indicate negative, binary, and integer variables, respectively. 

 

3-5- Equivalent linear and crisp form of the model  

   Due to the uncertain nature of the parameters mentioned in the model and lack of knowledge about the 

variability range of these parameters, the uncertain parameters are assumed to be in the form of fuzzy 

parameters. Since some parameters of the model are regarded as triangular fuzzy numbers, therefore, the 

first and third objective functions show an uncertain behavior. In this regard, according to (Torabi and 

Hassini, 2008), the crisp form of the proposed model is reached. So, the cost function (18) and constraints 

(46) to (48) are reformulated as equivalent deterministic relations. In addition, the objective function (20) 

is linearized. Thus, the final linear and deterministic model is as follows: 

𝑚𝑖𝑛𝑍1
2 = 𝜔 + ∑ℎ𝑘′ ∙ 𝑍𝛼√𝑙𝑡2𝑘′∑𝜎𝑖

2 ∙ 𝑦𝑖𝑘′

𝑖𝑘′

+∑∑∑ 𝑡𝑟𝑜𝑘𝑣 ∙ 𝑁2𝑜𝑘𝑣 ∙ 𝑄2𝑜𝑘𝑣 ∙ 𝑑2𝑜𝑘
𝑣∈𝑣1𝑘𝑜

 

 

 

 
 

(52) 

 

𝑚𝑎𝑥𝑍1
2−1 = 𝜔 + ∑ℎ𝑘′ ∙ 𝑍𝛼√(𝑙𝑡2𝑘′ − 𝑙𝑡1𝑘′)∑𝜎𝑖

2 ∙ 𝑦𝑖𝑘′

𝑖𝑘′

 
 
(53) 

𝑚𝑖𝑛𝑍1
3−2 = 𝜔 + ∑ℎ𝑘′ ∙ 𝑍𝛼√(𝑙𝑡3𝑘′ − 𝑙𝑡2𝑘′)∑𝜎𝑖

2 ∙ 𝑦𝑖𝑘′

𝑖𝑘′

 
 

 
(54) 

 

𝑚𝑖𝑛𝑍3 = 𝜑 

 
(55) 

 

Subject to: (21) - (45), (49) -(51) 

Relations (56) to (64) ensure hard time window constraints of the problem and constraints (65) to (67) 

indicate linearization constraints of the third objective function.  

𝐴𝑡𝐼𝑣 + 𝑡1𝐼𝐼′𝑣 + 𝑆𝑡1𝑡 − 𝐴𝑡𝐼′𝑣 ≤ 𝑈 ∙ 𝑤𝐼𝐼′𝑣  ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (56) 

𝐴𝑡𝐼𝑣 + 𝑡2𝐼𝐼′𝑣 + 𝑆𝑡2𝑡 − 𝐴𝑡𝐼′𝑣 ≤ 𝑈 ∙ 𝑤𝐼𝐼′𝑣  ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (57) 

𝐴𝑡𝐼𝑣 + 𝑡3𝐼𝐼′𝑣 + 𝑆𝑡3𝑡 − 𝐴𝑡𝐼′𝑣 ≤ 𝑈 ∙ 𝑤𝐼𝐼′𝑣 ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (58) 

𝑒1𝐼′ ≤ 𝐴𝑡𝐼′𝑣 + 𝑆𝑡1𝐼′ ≤ 𝑙1𝐼′ ∀𝐼′𝑣 ∈ 𝑣2 (59) 

𝑒2𝐼′ ≤ 𝐴𝑡𝐼′𝑣 + 𝑆𝑡2𝐼′ ≤ 𝑙2𝐼′ ∀𝐼′𝑣 ∈ 𝑣2 (60) 

𝑒3𝐼′ ≤ 𝐴𝑡𝐼′𝑣 + 𝑆𝑡3𝐼′ ≤ 𝑙3𝐼′ ∀𝐼′𝑣 ∈ 𝑣2 (61) 

(1 − 𝑤𝐼𝐼′𝑣) ∙ (𝐴𝑡𝐼𝑣 + 𝑡1𝐼𝐼′𝑣 + 𝑆𝑡1𝑡 − 𝐴𝑡𝐼′𝑣) ≤ 0 ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (62) 

(1 − 𝑤𝐼𝐼′𝑣) ∙ (𝐴𝑡𝐼𝑣 + 𝑡2𝐼𝐼′𝑣 + 𝑆𝑡2𝑡 − 𝐴𝑡𝐼′𝑣) ≤ 0 ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (63) 

(1 − 𝑤𝐼𝐼′𝑣) ∙ (𝐴𝑡𝐼𝑣 + 𝑡3𝐼𝐼′𝑣 + 𝑆𝑡3𝑡 − 𝐴𝑡𝐼′𝑣) ≤ 0 ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (64) 
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4-Solution Approach  
   As the related studies show, the problem is comprised of three NP-hard problems including location, 

routing and inventory problems (Ahmadi-javid and seddighi, 2011). In addition, considering contradicting 

objective functions, uncertainty and non-linear nature of the problem increases the complexity of the 

model. Thus, two multi-objective metaheuristic algorithms namely MOGWO and NSGA-II are applied to 

solve the large-sized instances.  

4-1- NSGA-II  

   NSGA-II is a population-based metaheuristic algorithm introduced by Deb in 2001. This algorithm 

starts by generating an initiative population and ranking the results of the initial group. NSGA-II uses 

crossover and mutation operators for the exploration and exploitation of the search area. Figure 2 show 

the summary of the NSGA-II.    

 
Fig 2. Pseudo code of NSGA-II algorithm 

 

4-2- Grey wolf optimization algorithm 
  The GWO or Gray Wolf Optimizer algorithm is a metaheuristic method inspired from social leadership 

and hunting technique of grey wolves, developed by Mirjalili et al (2014). In GWO, optimization is 

directed by α, β, δ wolves and the rest of the wolves (ω) follow them. Grey wolves besiege their prey 

during hunting. Grey wolves are able to identify the hunt position and besiege it. Hence, the first three 

best solutions are provided to be saved. The Pseudo code of MOGWO algorithm is provided in figure 3. 

 

𝜑 ≥ 𝛼1𝐼𝐼′𝑣 ∙ 𝑤𝐼𝐼′𝑣  ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (65) 

𝜑 ≥ 𝛼2𝐼𝐼′𝑣 ∙ 𝑤𝐼𝐼′𝑣  ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (66) 

𝜑 ≥ 𝛼3𝐼𝐼′𝑣 ∙ 𝑤𝐼𝐼′𝑣  ∀𝐼𝐼′𝑣 ∈ 𝑣1.2 (67) 
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Fig 3. Pseudo code of MOGWO algorithm 

5- Numerical results  

5-1- Model validation  

   In this section, the feasibility of the model is assessed by solving the model with exact solvers. In this 

regard, the linearized version of the model is solved by GAMS using CPLEX solver. Due to the multi 

objective nature of the problem, the model is divided into three sub-problems. Each sub- problem is 

comprised of a single objective function; the rest of constraints are included in the proposed sub-

problems. The number of distribution centers is equal to 3, backup centers are numbered 4, 5, 6, and 

finally, there exist 3 customers numbered from 7 to 9. Other related data are generated randomly with the 

upper and lower limits specified in table 7. 

Table 7. Validation problem data 

Parameters  Lower bound Upper bound 

kf 1000 8000 

kff  1000 8000 

2

i 10 20 

kh  10 30 

kf  10 50 

1
cos vkot 

 10 30 

1okvtr 10 30 

IIC 
 50 80 

kkmo  50 100 

kt 
cos 10 30 

ksafety 0.1 0.3 

2

~
vII  0 1 

L 5 15 

 

The optimal values of objective functions are reported in table 8. 
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Table 8. Optimal values of objective functions 

Objective function Optimal value 

Distribution and storage costs 12,945,675 

Environmental pollutions cost 6,485,266 

Transportation  risk  127,951 

 

   Figure 4 illustrates the optimal solution of the problem. According to the results, the relationships 

between the nodes in the network are logical. The model assigns only one backup center to the system 

and connects the retailers to two distribution centers. This structure makes a balance between different 

costs of the system.    

 

Fig 4.  Optimal solution of the problem 

 
5-2- Solution representation scheme in metaheuristic algorithms 

   To use a metaheuristic algorithm for solving a given problem, the definition of the nominated solutions 

in the proposed algorithm is an important issue. In the proposed problem, each solution is composed of 6 

vectors named from x1 to x6, containing continuous values between 0 and 1.  

Vector 𝑿𝟏: Shows the visiting priority of customers. 

Vector 𝑿𝟐: Demonstrates the customer allocation to DCs.  

Vector 𝑿𝟑 : Is related with the allocation of customers to vehicles. Cells with value from 0 to 1/V are 

allocated to vehicle 1, cells with value from 1 𝑉⁄  to 2 𝑉⁄  are allocated to vehicle 2.  

Vector 𝑿𝟒: Shows the allocation of DCs to backup centers.  

Vector 𝑿𝟓: Indicates the number of visiting conducted by a vehicle. Each cell contains a value implying a 

DC has been visited. 

Vector 𝑿𝟔: Determines which vehicle is allocated to each DC in level one. 

By Determining the vector 𝑋4 and 𝑋6, the number of items sent to each DC is calculated taking into 

consideration the vehicle capacity. Thereafter, the shortage possibility is calculated. Figure 5 illustrates an 

instance of the designed chromosome. 
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Fig 5. Representation of a chromosome of problem solution 

5-3- Parameter tuning 
   To tune the parameters of the algorithms and improve the performance of the algorithms, a Taguchi 

method is utilized. The nominated values for the major factors of NSGA-II are provided in table 9 

according to (Rabbani et al, 2018). 

Table 9. value levels of Parameters for NSGA-II algorithm 

 

 

 

 

 

 

 

Figure 6 provides the results of Taguchi method.  

In addition, the suggested values for parameters of MOGWO are provided in table 10. 

Table 10. Parameters and their value levels for MOGWO algorithm 

 

 

 
 

algorithm parameter Quantity of level 
Level1 Level2 Level3 

 
NSGA-II 

Percentage of Crossover (𝑃𝑐) 0.7 0.8 0.9 
Percentage of Mutation ( 𝑃𝑚 ) 0.05 0.1 0.15 
Number of Solutions in the 

Population ( 𝑁𝑝 ) 
50 100 150 

Max_iteration 100 200 300 

algorithm parameter Quantity of level 
Level1 Level2 Level3 

 
MOGWO 

Number of search agent ( 𝑁𝑠 ) 10 20 50 

Change position rate ( 𝑃𝑟 ) 0.1 0.2 0.3 

Max_iteration 100 200 300 
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Fig 6. Comparison of the mean of the answers for the NSGA-II algorithm  

 

Figure 7 depicts the related results of Taguchi method for MOGWO algorithm too. 

 

Fig 7. Comparison of the mean of the answers for the MOGWO algorithm 

6- Comparative results  
   Considering the multi-objective nature of the problem, some factors are defined to compare the results 

of proposed metaheuristic algorithms described as follows. 

Max spread (DM): This metric show how the pareto answers are scattered. Larger values of this metric, 

indicate that algorithm have high efficiently: 
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𝐷𝑀 = √∑(𝑚𝑖𝑛𝑓𝑖 −𝑚𝑎𝑥𝑓𝑖)2
𝑛

𝑖=1

 

 
                        (71) 

Mean ideal distance (MID): The value of this metric is related to the distance between pareto points and 

the ideal point. The lower value of this metric show that algorithm have better performance: 

𝑀𝐼𝐷 =

∑ √(
𝑓1𝑖−𝑓1

𝑏𝑒𝑠𝑡

𝑓1𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 −𝑓1𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )
2

+ (
𝑓2𝑖−𝑓2

𝑏𝑒𝑠𝑡

𝑓2𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 −𝑓2𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )
2

𝑛
𝑖=1

𝑛
 

 

              (72) 

The rate of achievement to objective simultaneously (RAS): This metric makes a balance between 

goals.  

  𝑅𝐴𝑆 = 
[|
𝑓1𝑖(𝑥)−𝑓1𝑖

𝑏𝑒𝑎𝑡(𝑥)

𝑓1𝑖
𝑏𝑒𝑎𝑡(𝑥)

|+|
𝑓2𝑖(𝑥)−𝑓2𝑖

𝑏𝑒𝑎𝑡(𝑥)

𝑓2𝑖
𝑏𝑒𝑎𝑡(𝑥)

|]

𝑛
 

 

                        (73) 

To compare the performance of the developed algorithms based on the given metrics, 19 problem 

instances (numerical examples) in different sizes are generated and the related results are included in 

Appendix A. Tables 11 and 12 summarize the results of NSGA-II and MOGWO respectively. 

Table 11. NSGA-II algorithm output for 19 numerical examples 

NSGA-II Solution 

time No# MID Max spread SM NPS RAS SNS 

1 2128.402 1948.62643 388.3026 99 0.451629 337.138 19.6 

2 9901.841 2994.92402 947.1654 97 0.343909 1327.495 24.8 

3 14960.24 4251.83043 1626.795 97 0.183981 1424.479 26.9 

4 26614.19 4859.99894 656.5366 100 0.224434 2013.4 34.8 

5 43885.55 7192.19064 3292.813 95 0.268187 2982.944 39.7 

6 65925.99 5793.68036 1670.296 98 0.033118 3692.972 45.6 

7 170150.2 27237.3369 7986.59 98 0.161788 6394.361 51.7 

8 252032.8 13156.2508 5583.598 99 0.105741 4870.001 62.7 

9 284951.5 34799.2004 16779.53 95 0.212974 9177.958 63.8 

10 381924 10841.6594 15844.87 96 0.083745 4170.522 67.4 

11 407187.7 15401.8929 13023.62 97 0.169853 5017.187 73.5 

12 511353.5 31636.8040 22114.78 96 0.111687 6296.453 78.9 

13 564882.1 19289.8738 23743.56 96 0.084279 5480.24 84.9 

14 1018173 13870.8791 21063.69 98 0.082837 4831.171 95.1 

15 1135045 38126.7724 46694.52 96 0.116901 6484.229 102.1 

16 1384478 48452.8222 57609.56 96 0.124858 11310.78 116.3 

17 1843051 29375.6547 6594.312 100 0.110827 7245.205 121.9 

18 2187982 122226.418 74481.82 97 0.203288 25578.92 127.3 

19 2324567 30865.7246 25490.3 99 0.076859 8181.96 138.6 

Average  664694.4 24332.7652 18189.09 97.31579 0.165837 6148.285 72.4 
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The results for MOGWO are provided in table 12, as well.  

Table 12. MOGWO algorithm output for 19 numerical examples 

MOGWO Solution 

time No# MID Max spread SM NPS RAS SNS 

1 2392.871 1229.484 387.0695 29 0.501259 62.36729 21.9 

2 10025.83 5984.361 2126.98 7 0.226547 811.6118 22.2 

3 17064.71 2621.545 1115.375 12 0.202768 630.3547 23.5 

4 29887.93 263.0591 71.44966 11 0.021221 36.73556 34.4 

5 43253.99 5162.052 1438.363 19 0.122953 1676.061 38.6 

6 65007.11 9463.854 3411.264 13 0.096517 2778.861 42.3 

7 172745.8 15061.96 3498.732 35 0.147178 2442.37 55.3 

8 256509.7 19706.37 5928.794 27 0.113406 4474.071 57.5 

9 273177.9 32119.22 6887.26 30 0.094122 4848.212 65.1 

10 367442.1 27278.38 8144.148 37 0.080044 10614.28 74.2 

11 396215.3 12784.23 3333.181 20 0.05852 2116.804 76.5 

12 500211 19204.24 5713.979 18 0.081107 7539.665 79.9 

13 535189.2 45799.99 10652.97 22 0.109507 5908.288 87.8 

14 1007010 41500.52 9102.659 33 0.067525 5083.914 93.8 

15 1118785 29107.15 5011.775 56 0.04178 2630.089 109.7 

16 1346664 72629.74 14150.27 42 0.079241 8890.723 121.4 

17 1888444 46733.89 12186.75 23 0.082087 6959.926 133.2 

18 2163074 61189.45 14309.2 35 0.050732 8877.949 146.1 

19 2392.871 1229.484 387.0695 29 0.501259 62.36729 150.5 

Average  566283.4 24879.97 5970.568 26.05556 0.120918 4243.46 75.5 

 

Figure 8 illustrates that that MOGWO outperforms NSGA-II in terms of MID metric. 

 

Fig 8. Comparison between the algorithms in terms of MID metric 

 
  The average of DM metric is equal to 5162 and 24879 for NSGA-II and MOGWO, respectively. Figure 

9 provides the values of this metric for all the problem instances solved by both of the algorithms. Due to 

the characteristics of DM, MOGWO algorithm has a better performance than NSGA-II in terms of this 
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metric. The data of table 10 and 11 show that the mean value of RAS metric for NSGA-II is 0.165 and for 

MOGWO algorithm is 0.12. As evident from the figure 10, MOGWO gives lower values for most of the 

test problems which demonstrates it has better performance in comparison with NSGA-II algorithm, 

regarding RAS metric formulation.  

 

Fig 9. Comparison between the algorithms in terms of DM metric 

 

Fig 10. Comparison between the algorithms in terms of RAS metric 

   The results show that the mean of run time for NSGA-II algorithm is 72.4 seconds, while MOGWO 

takes 75.5 seconds to solve the problem in average. Figure 11 compares the solving time for NSGA-II 

against MOGWO algorithm.  
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Fig11. Comparison between solving time of the both algorithms 

  As figure 12 represents, solving time metric is similar for both of the algorithms in the most of the test 

problems. However, MOGWO takes more run time for large-sized instances.   

7- Discussion 
   In this section the behavior of the model is assessed to extract managerial insights for the model. In this 

regard, a Beverage production and distribution company around the Tehran is selected to implement the 

model in a real situation. The introduced company has about 300 personnel. Decreasing the related costs, 

reliability of delivery system and environmental issues due to governmental legislation are the major 

concerns of the company. The proposed company is comprised of 10 major customers, 3 DCs, and 3 

backup centers. Considering the features of the company, the demand of items follows a normal 

distribution with range of [20,150] and [10,20].  Also, Transportation and ordering costs are generated 

randomly between [10,80] and [10,30]. The main parameters of the mathematical model include the risk 

of route, emission coefficient as well as cost parameters and lead time. Hence, the effects of changing the 

given parameters on the objective functions, is assessed.  Figure 12 depicts the location of suppliers, 

retailers, DCs and BDCs in the proposed case.  
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Fig 12. The number of routes, DCs and BDCs 

 

 

Fig 13. Trend of the objective functions under changes to risk of the route 

   Figure 13 represents the effect of changing the risk of the route on three objective functions 

simultaneously. According to the results, increasing the value of risk of the route parameter leads to a 

sharp increment of the third objective function. The slope of the increase in the third objective function 
reaches its highest value when the parameter enhances from 20 percent to higher values. By increasing the 

risk factor, the fuel consumption of vehicles increases and the amount of emission enhances during the 
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shipment of items. In addition, the transportation cost between nodes increases leading to raise in the total 
cost of the system. 

 

 

Fig 14. Trend of the objective functions under changes to the pollutants emission coefficient 

   Figure 14 shows the increasing trend for the second objective function under changing the emission 

parameter. The sharpest slope of the second objective function is when the parameter increases to 90 

percent. The reason for this behavior is that the considered parameter is regarded in different sections of 

the second objective function. There are two main reasons for increasing the pollution parameters, firstly 
the number of vehicles has reduced and their carrying capacity has increased. Secondly, the routes with 

less distance are selected. The model tends to reduce the route risk, so the total cost of the system shows 

an increasing trend. 

 

Fig 15. sensitive analysis for holding cost changes on objective functions 

   Figure 15 indicates that increasing the holing cost of the model leads to higher values of total cost. 

Since enhancing the holing cost, leads to higher amounts of service level and vehicle number.  
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Fig 16. Sensitivity analysis for the number of DCs 

   The results of figure 16 show that, with a raise in the number of DCs, the total cost of the system 

increases. But the slope of increment is slowly and the reason is that by increasing the number of DCs, the 

model decides to ship the items to more near DCs. Thus, the shipping costs are decreased and as a result, 

with increasing the number of DCs, the risk of the route shows an increasing trend while reducing the 

emissions behaves conversely. 

 

Fig 17. Sensitivity analysis for change of lead time 
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Fig18. effect of lead time changing on inventory holding cost, safety stock, shortage cost 

   Figure 17 and 18 illustrate the effect of increasing the lead time on the changing trend of inventory 

holding, safety stock, shortage and total costs. Based on the results, one can see that enhancing the value 

of safety stock leads to higher amounts of inventory holding cost and lower amount of shortage cost. As a 

result, the total cost and service level of the system show an increasing trend. In addition, the risk of the 

routes has increased too. 

 

Fig19. Sensitivity analysis for the number of BDCs  

   The results of figure 19 show that, with increase in the number of BDCs, the total cost of the system 

enhances.  The main reason is that with raise in the number of BDCs, the cost of deploying these centers, 

and the transportation cost of BDCs increases simultaneously. On the other hand, the cost of pollution 

caused by the establishment and operational actions of these centers has also increased. In addition, the 

inventory holding costs in these centers should be considered. As a result, with increasing the number of 

BDCs, the emission and risk of the route shows an increasing trend. 
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   Based on the results, it can be concluded that the establishment of BDCs is economically justified if the 

products are appealing for the customers and their related shortage causes high costs to the organization. 

On the other hand, inventories are the important factor in an organization and due to relatively high 

investment; inventories need more careful planning and control. Thus, decision makers should set a 

balance in the system considering according to the level of inventories. Since decision makers and 

managers cannot control the demand under normal circumstances, the best way to manage the inventory 

costs is by paying attention to the time and amount of new orders and number of items that should be held 

for the next periods. 

8- Conclusion  
   In this study, a SCN comprising of suppliers, distribution centers and customers (or retailers) is 

designed. In addition, this study introduces a new location-inventory-routing model for supply chain 

network design by determining the related decisions of distribution and backup centers establishment. The 

proposed multi objective model includes shortage of inventory, allocation of customers to distribution 

centers, routing decisions, establishing new centers, and backup strategies. The model aims to reduce the 

related costs, environmental pollutions and transportation risks at the same time. As on of the main 

contributions of the current study, different factors were detected affecting the shipment risks of the 

system. In this regard a fuzzy TOPSIS method was applied to rank the related factors of shipment risks.  

Considering the time windows was another contribution of the proposed the model. In the next step, the 

results of the exact solver were compared with the results of the proposed metaheuristic algorithms for 

small-sized test problems to ensure about the performance of the metaheuristic algorithms and feasibility 

of the model. In addition, large-scale problems were solved by two metaheuristic algorithms namely 

NSGA-II and MOGWO and the results were compared. According to the comparative results, the 

MOGWO algorithm was able to reach results with better qualities, however, the NSGA-II had shorter run 

time for large-sized test problems. In addition, a sensitivity analysis was conducted on a real case to 

assess the behavior of the model and shows the applicability of the model in the real cases. According to 

the results, increasing the holding cost affects the model with grater slope compared to increasing the 

number of DCs.  For future studies, considering soft and hard time window simultaneously or separately, 

regarding direct transportation from supplier to customer in case of large demand of the customer are 

suggested. 
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Appendix A: 
Numerical examples information 

NO# Number of 

customers 

Number of 

DCs 

Number of 

vehicles in 

level 2 

Number of 

vehicles in 

level 1 

Number of 

BDCs 

1 6 4 2 1 1 

2 8 5 2 1 2 

3 10 5 2 1 2 

4 12 7 2 1 3 

5 14 8 3 1 3 

6 16 8 3 1 4 

7 18 10 3 2 4 

8 20 12 3 2 5 

9 22 12 4 2 5 

10 24 15 4 2 6 

11 26 16 4 2 6 

12 28 18 5 2 7 

13 30 20 6 3 7 

14 35 24 7 3 8 

15 40 25 8 3 8 

16 50 30 9 3 9 

17 60 35 10 4 9 

18 70 40 11 4 10 

19 80 45 12 4 10 
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