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Abstract 
Emphasize on cost-cutting, increasing customers' satisfaction, and trying to manage 

and reduce the risks are among the key strategies of decision-makers in the design of 

supply chain networks. This study provides a stochastic bi-objective multi-product 
optimization model for designing a resilient supply chain network under disruption 

risks. The objectives of the proposed model are minimizing the total cost of the 

supply chain, as well as, minimizing the non-resiliency of the network. In addition, a 
ε-constraint method is used to convert the bi-objective model into a single-objective 

formulation. The model decisions include locating manufacturers, warehouses, and 

distribution centers and determining the amount of production of different products 

in each manufacturer, the amount of product transport between the different nodes of 
the network, and the amount of lost sales for different products in each market. The 

validity of the proposed model is investigated through random examples and the 

results of the model implementation on these examples are presented.  
Keywords: bi-objective optimization model, supply chain network design, 

resilience, disruption risks  

 

1- Introduction 
1-1- Motivation 
   A supply chain comprises of all organizations involved (either directly or indirectly) in the 
processes of producing, providing customer service, and meeting the needs of suppliers, 

manufacturers, shipping companies, warehouses, and distributor centers (Papapostolou et al., 2011). 

Therefore, supply chain management refers to the effective management of information, financial and 

material flows between the chain members with the purpose of maximizing the total profit and 
customer satisfaction (Sabouhi et al., 2018b). 

   The modern and competitive global economy has developed complex and interconnected supply 

chains for the benefits that companies achieve in complex processes and strategies, such as access to 
skilled labor and cheap raw materials, globalization, outsourcing, timely production and delivery, and 

lean practices (Hasani and Khosrojerdi, 2016, Vaez, 2017, Vaez et al., 2018). While these measures in 

most supply chains result in cost-cutting and increasing the quality and flexibility, achieving these 

benefits also leads to some risks for the supply chains (Tang, 2006b). As supply chains become more 
complex, they become more vulnerable to the risks created by different sources. The risks that 

threaten supply chains and can greatly affect their performance are the existing uncertainties in the 

environment, including uncertainties in supply, demand, and costs and disruptions caused by natural 
and man-made disasters such as floods, earthquakes, storms, political unrest, strikes, and terrorist 

activities (Scheibe and Blackhurst, 2018, Ghavamifar and Sabouhi, 2018, Sabouhi et al., 2018a). 
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   There are many studies in the literature of supply chain network design under uncertainty. For 
example, we can refer to the models developed by Santoso et al. (2005), Baghalian et al. (2013), 

Cardoso et al. (2015), Han et al. (2015), Yin et al. (2015), Giri and Bardhan (2015), Jabbarzadeh et al. 

(2014), Zokaee et al. (2017), and Sabouhi et al. (2019). Disruption risks can make more significant 

economic and social damages than the existing uncertainties in the environment. Thus, lack of 
identification and appropriate management of such risks in long-term can result in negative effects 

such as distrust, increased dissatisfaction, pessimism towards companies, excessive price increases 

due to lack of goods, stock depreciation, increased delivery times, and delay in the provision of 
services (Sabouhi et al., 2016). Thus, supply chains must identify, evaluate and rank the disruption 

risks and take the necessary measures to manage them in order to remain in the competitive 

environment and achieve their goals (Nishat Faisal et al., 2006). 
   Considering what was mentioned earlier, the design and planning of supply chains in a resilient way 

that can act against disturbances are of great importance (Schütz and Tomasgard, 2011). The resilient 

supply chain can be defined as the ability of a chain to return to its original state or a new state (a 

more favorable state than its disorder state) (Bhamra et al., 2011). On the other hand, how to deal with 
disruption risks is very dependent on the design and structure of the supply chain. In other words, 

well-designed supply chains are able to provide a more appropriate response to random disruptions 

(Dixit et al., 2016). Hence, the design of the resilient supply chain network has attracted the attention 
of many researchers (Jabbarzadeh et al., 2018). 

   This paper aims to address the following questions. How could we measure resiliency of a network 

in supply chain design models? How could we analyze the conflicts between total cost and non-
resiliency of the network? What are the impacts of changes in facilities' capacity on the total cost? We 

utilized random examples to investigate responses to these questions. 

1-2- Literature review  
   The model efforts in the area of resilient supply chain network design have mostly focused on 

investigating different strategies to reduce the negative impacts of disruptions risks. These strategies 

are such as multiple sourcing, facility fortification, contracting with backup facilities, and maintaining 
the pre-positioned emergency inventory. For instance, Peng et al. (2011) proposed a network of 

suppliers and customers under disruption risks and used multiple sourcing strategy to deal with these 

risks. The aim of their model was to locate suppliers and determine the flow of products from 

suppliers to customers. Li and Savachkin (2013) developed a location model for a network of 
facilities and customers with complete and partial disruptions. In their proposed model, facility 

fortification and contracting with backup facilities strategies are used to increase the level of supply 

chain resiliency. Azad et al. (2013) presented a resilient supply chain network under the disruption of 
distribution centers and shipping links. They used the fortification of distribution centers and backup 

shipping to reduce the disruption risks. 

   Nooraie and Parast (2016) designed a supply chain network including suppliers, manufacturers, 

warehouses, distributors and customers. They proposed a multi-objective multi-product multi-periodic 
stochastic model under the partial disruption of facilities and used multiple sourcing to improve the 

resilience level of the supply chain. The objectives of their model were minimizing total costs and 

maximizing revenue from opening up facilities and selling products. Garcia-Herreros et al. (2014) 
developed a two-stage stochastic model under disruptions. In this model, additional inventory holding 

at distribution centers was used as a resilience strategy. Farahani et al. (2017) presented a multi-

product model for locating facilities, and utilized the substitutable product strategy to deal with partial 
disruption of facilities.  

   All of the studies mentioned here have only used resilience strategies to cope with disruption risks. 

However, most companies are trying to maximize network resiliency with least cost. Although the 

measurement of network resiliency is a new field in literature, several indicators based on network 
structure are introduced to address this issue. These indicators are such as the node criticality, the 

node complexity, and the flow complexity. The only works carried on in this regard are the models 

developed by Chopra and Sodhi (2004) and Zahiri et al. (2017). 
   The research gaps are identified as follows. First, the design of a multi-echelon supply chain 

network under production disruptions have not been widely discussed in the literature of resilient 

supply chain. Second, only few studies have addressed measures such as the node criticality, the node 
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complexity, and the flow complexity to measure resiliency of the network. Third, most of the existing 
works do not consider conflicts between multiple delivery goals to design a resilient supply chain 

network against major disruptions. 

   Given the above-mentioned challenges, the present study contributes to this area by presenting a 

stochastic bi-objective multi-product programming model to design a resilient supply chain network 
under production disruptions. In addition to multiple sourcing strategy, node criticality, node 

complexity, and flow complexity criteria are used to measure the network resiliency level. The 

objectives of the proposed model include minimizing the total cost of the supply chain and 
minimizing the non-resiliency of the network. The model decisions include locating manufacturers, 

warehouses, and distribution centers, as well as determining the amount of production of different 

products in each manufacturer, the amount of product transport between the different nodes of the 
network, and the amount of lost sales for different products in each market.  

   This study is organized as follows: First, the problem under investigation and the mathematical 

modeling are presented. Then, the results of the model solution on random examples are reported and 

the conclusions are provided. 

2- Problem statement 
   According to figure 1, a four-level network consisting of manufacturers, warehouses, distribution 
centers, and markets is considered. All the products after production at the manufacturers are sent to 

warehouses for storage. Then, the products are delivered to the markets through distribution centers.   

Disruption is one of the most important threats to supply chain performance. We assume that the 

capacity of manufacturers for the production of final products is vulnerable to disruptive risks. The 
possibility of partial and complete disruption of manufacturers is considered and a set of scenarios are 

defined to show situations in which one or more manufacturers are impacted by disruptions. In 

addition, the measures of node criticality, node complexity, and flow complexity, and multiple 
sourcing strategies are used to increase the reliability of the entire network against disruptions. The 

model decisions include locating manufacturers, warehouses, and distribution centers and determining 

the amount of production of different products in each manufacturer, the amount of product transport 
between the different nodes of the network, and the amount of lost sales for different products in each 

market. 

   In order to determine the above decisions, a stochastic bi-objective multi-product programming 

model is proposed for the design of a resilient supply chain network. The first objective function 
minimizes the total expected cost of the supply chain, while the second objective function minimizes 

the non-resiliency of the network. The ε-constraint method is used to convert the proposed model into 

a single-objective model. 
The model assumptions are as follows: 

1. The potential locations for opening of manufacturers, warehouses, and distribution centers are 

known. 

2. Manufacturers, warehouses, and distribution centers have limited capacity. 
3. Each random scenario occurs independently and with a certain probability of occurrence. 

4. The problem is programmed for several products. 

 

Fig 1. The structure of the supply chain network under investigation 

Manufacturer 

Warehouse 

Distribution center 

Customer 

Critical node  
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3- Model description  
The following sets, parameters, and decision variables are introduced. 

 

Sets 

Set of potential locations for opening of manufacturers ( i I ) I  

Set of potential locations for opening of warehouses ( j J ) J  

Set of potential locations for opening of distribution centers ( m M ) M  

Set of markets ( k K ) K  

Set of products ( n N ) N  

Set of disruption scenarios (s S ) S  

 

Parameters 

Unit transportation cost from manufacturer i to warehouse  j   ijc  

Unit transportation cost from warehouse j to distribution center m  jmc   

Unit transportation cost from distribution center m to market k   mkc   

Cost of opening manufacturer i   if  

Cost of opening warehouse j   jf   

Cost of opening distribution center m  mf   

Unit production cost of product n at manufacturer i   nip  

Maximum production capacity of manufacturer i   ie  

Maximum capacity of warehouse  j   ja  

Maximum capacity of distribution center m   mb  

Unit cost of lost sales for product n  at market k   nkg   

Demand for product n  at market k   ktd  

Percentage of lost capacity of manufacturer i under scenarios  is  

Occurrence possibility of scenario s  s  

Penalty coefficient for critical manufacturers   

Penalty coefficient for critical warehouses   

Penalty coefficient for distribution centers   

Penalty coefficient for flow complexity between nodes j  and i     

Penalty coefficient for flow complexity between nodes m  and j     
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Penalty coefficient for flow complexity between nodes k  and m     

Penalty coefficient for node complexity of manufacturers   

Penalty coefficient for node complexity of warehouses   

Penalty coefficient for node complexity of distribution centers   

 

Variables 

Equal to 1 if manufacturer i is opened; 0, otherwise  iW  

Equal to 1 if warehouses j is opened; 0, otherwise jY  

Equal to 1 if distribution center m is opened; 0, otherwise mT  

Equal to 1 if manufacturer i is allocated to warehouses j ; 0, otherwise  iju  

Equal to 1 if warehouses j is allocated to distribution center m ; 0, otherwise  jmv  

Equal to 1 if distribution center m is allocated to market k ; 0, otherwise  mkh  

Production amount of product n by manufacturer i  under scenario s  nisO  

Amount of product n  shipped from manufacturer i  to warehouses j  under scenario 

s  
nijsX  

Amount of product n  shipped from warehouses j  to distribution center m  under 

scenario s  
njmsQ  

Amount of product n  shipped from distribution center m  to market k  under 

scenario s  nmksR  

Amount of lost sales for product n at market k  under scenario s  

 nksG  

3-1- Resiliency measures 

 Node criticality 
   A critical node is referred to a condition where the total input and output flows to that node are 
higher than a certain threshold. This strategy shows the total number of critical nodes in a supply 

chain. Therefore, as the number of critical nodes in a supply chain increases, its resiliency 

decreases (Zahiri et al., 2017, Cardoso et al., 2015). Equations (1)-(5) represent the critical nodes 

for manufacturers, warehouses, and distribution centers, respectively. 
 

(1) ,i s  1i nis nijs i

n n j

W O X l       

(2) ,j s 1j njms nijs j

n m n i

Y Q X l      

(3) ,m s 1m njms nmks m

n j n k

T Q R l      
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(4) , , , , ,i j m k n s  , , , 0nis nijs njms nmksO X Q R   

(5) , ,i j m  , , {0,1}i j mW Y T     

 Flow complexity 
   The flow complexity measures the total interaction between the supply chain nodes. The 
increase of supply chain complexity makes the difficulty of its management and accordingly leads 

to a reduction in effective responsiveness to disruptions. In other words, the increase of 

complexity means increasing the number of nodes and their relationship, which results in 
increasing the occurrence possibility of disruptions and the recovery time of supply chain. Such 

disruptions ultimately cause high losses and negative impacts on firms' performance (Chopra and 

Sodhi, 2004, Hendricks et al., 2009, Tang, 2006a, Tang, 2006b). According to this measure, if the 

total number of related links would be high, the total flow in the network is complex. Equations 
(6) and (7) represent the total number of network links.  

 

(6) ij jm mk

i j i j m k

u v h      

(7) , , ,i j m k  , , {0,1}ij jm mku v h   

 Node complexity 
   The node complexity indicates the total number of nodes in a network. Based on this measure, if 

the total number of active nodes in a network would be high, the network has a node complexity. 

Equations (8) and (9) show the total number of opened facilities in the network. 

 

(8) i j m

i j m

W Y T      

(9) , , ,i j m k  , , {0,1}i j mW Y T   

 

3-2- Mathematical modeling 
   This section introduces a new linear programming model to design a resilient supply chain. To 

formulate the problem under investigation, a two-stage stochastic programming approach (see Birge 
and Louveaux (2011)) is used. In this approach, there are two types of decisions: first-stage and 

second-stage decisions. The first-stage decisions are determined before realizing disruption scenarios 

and consist of locating manufacturers, warehouses, and distribution centers while the second-stage 
decisions are related to specific disruption scenarios and include determining the amount of 

production of different products in each manufacturer, the amount of product transport between the 

different nodes of the network, and the amount of lost sales for different products in each market.  
 

(10) 

1 (

)

i i j j m m s ni nis ij nijs

i j m s n i n i j

jm njms mk nmks nk nks

n i j n i j n k

Min Z f W f Y f T p O c X

c Q c R g G

      

   

     

  


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(11) 

2 i j m ij jm mk

i j m i j i j m k

i j m

i j m

Min Z W Y T u v h

W Y T

            

  

     

  

     

  
 

(12) ,i s  (1 )nijs is i i

n

X e W    

(13) ,j s njms j j

n m

Q a Y  

(14) ,k s nmks m m

n m

R b T  

(15) , ,i n s  nis nijs

j

O X  

(16) , ,j n s nijs njms

i m

X Q   

(17) , ,m n s njms nmks

j k

Q R   

(18) , ,k n s nmks nks nk

m

R G d   

(19) , ,i j s nijs ij i

n

X u e  

(20) , ,m j s njms jm j

n

Q v a  

(21) , ,m k s nmks mk m

n

R h b  

(22) ,i s  nis nijs i i

n n j

O X M W l      

(23) ,i s  nis nijs i i

n n j

O X l W      

(24) ,j s njms nijs j j

n m n i

Q X M Y l      

(25) ,j s njms nijs j j

n m n i

Q X l Y     

(26) ,m s njms nmks m m

n j n k

Q R M T l      

(27) ,m s njms nmks m m

n j n k

Q R l T     

Constraints (4), (5), (7), and (9). 
 

   The objective function (10) minimizes the total cost of the supply chain under different scenarios. 

The total cost includes the cost of establishing manufacturers, warehouses, and distribution centers, 
the expected cost of producing different products at the manufacturers, the expected cost of product 

shipping from manufacturers to warehouses, from warehouses to distribution centers, and from 

distribution centers to markets, and the cost of lost sales in markets. The objective function (11) 
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minimizes the non-resiliency of the network based on the criteria defined in Section 3.1. Constraints 
(12)-(14) indicate the available capacity of manufacturers, warehouses, and distribution centers, 

respectively. Constraints (15)-(18) show the flow balance constraints in manufacturers, warehouses, 

distribution centers, and markets, respectively. Constraints (19)-(21) are allocation constraints. They 

ensure that the product flows only exist in the assigned links. Constraints (22)-(27) are the converted 
form of the Equations (1)-(3), respectively, which show non-critical conditions for manufacturers, 

warehouses, and distribution centers. 

4- Solution method 
   The ε-constraint method is one of the most popular techniques used for solving multi-objective 

problems (Bérubé et al., 2009, Vaez et al., 2019). The main advantage of this method is the ability to 
change the feasible region of the problem in order to find efficient solutions. Also, this method does 

not require scaling the objective functions to a common scale. In the ε-constraint method, one of the 

objective functions is considered as the main objective function and the rest of the objective functions 
are transformed into constraints with adding upper bounds (Mavrotas, 2009). Let us consider a multi-

objective problem with h  objective functions as follows: 

 1 2{ ( ) ( ( ), ( ),... ( ))}hMin F x F x F x F xx   

Based on the ε-constraint method, the multi-objective model in (28) is converted into the following 

single-objective in which only objective function 1( )F x  is minimized as the primary objective 

function and the rest objective functions are transformed as constraints. 

 

1

2 2

3 3

.

.

.

( )

( )

( )

( )h h

min F x

F x

F x

F x

x X















 

Using the ε-constraint method for our bi-objective model, the objective function (11) is converted into 

a constraint with upper bound ε . Therefore, we transform the two-objective model into a single-

objective model as follows: 
 

 

                                  (30) 1min Z  

 2Z                                                                                                                                                                           

 

Constraints (4), (5), (7), (9), and (12)-(27).  
 

   Where 1Z  and 2Z  show objective functions (10) and (11), respectively. In order to gain a set of 

efficient solutions, a sensitivity analysis is completed on the values of  . In other words, the above-

mentioned model (objective function (10), under constraints (4), (5), (7), (9), (12)–(27) and (30)) is 

solved several times with different values for . To select the values of  , we utilize the approach 

described in Mavrotas (2009). This approach assists us in obtaining the range of objective function 2Z

. The minimum value of 2Z  is obtained by minimizing objective function (11) under constraints 

under constraints (4), (5), (7), (9) and (12)–(27). The maximum value of 2Z can be obtained as 

follows: First, objective function (10) under constraints (4), (5), (7), (9) and (12)–(27) is minimized 

(28) 

(29) 
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and optimal values for decision variables are determined. Thereafter, the value of objective function 
(11) is calculated by fixing the values of decision variables equal to the determined optimal values. 

The resulting value represents the maximum value of 2Z . Next, the values of   are chosen in the 

range of the minimum and maximum values of 2Z .   

5- Computational results 
   In this section, three random datasets with different sizes are considered to evaluate the performance 

of the proposed model, as shown in table 1. The experiments are run using the GAMS 23.0.2 software 

and CPLEX solvers on a computer with the following specifications: Intel Core i7 4702MQ 2.20GHz 

up to 3.20 GHz and 6GB RAMDDR3 under Win Seven. 

Table 1. Specification of three datasets 

S N k M J I  

4 2 7 5 5 5 Dataset 1 

6 4 9 7 6 7 Dataset 2 

8 5 9 8 8 9 Dataset 3 

   Table 2 shows the supply chain configuration changes under different values of the first and second 

objective function for the three datasets. As it can be seen form table 2, by increasing the resiliency of 

the network, the supply chain tries to reduce the criteria of node criticality, flow complexity, and node 
complexity through establishing less facilities and shipping links and creating a balance in the volume 

of input and output flows to the activated nodes, which lead to an increase in the total cost of the 

supply chain. The effect of the non-resiliency of the network on the cost and configuration of the 

supply chain is more pronounced for the larger datasets. 

5-1- Conflict between cost and non-resiliency of the network 
   Here, the effect of changing   on the total cost of the supply chain is analyzed. Such an analysis 

enables a decision maker to understand the conflict between the total cost of the supply chain and the 

non-resiliency of the network. Note that   shows the maximum non-resiliency of the network. Figure 

2 illustrates the conflict between total cost and the non-resiliency of the network for the three datasets. 

A first observation indicates that the cost of the supply chain increases for all datasets as non-
resiliency of the network decreases. This finding could be expected because the improvement of 

network resiliency level does not come free. The interesting point is the pattern of cost change for 

different datasets under different ranges of  . In all instances, an increase in the value of   leads to a 

relatively linear decrease in the total cost of the supply chain, but the line steepness is different for 

each dataset and different ranges of   values. In other words, the relationship between cost and non-

resiliency of the network is dependent on supply chain size and the range of changes in   . It is 

notable that the network size is represented by various datasets in which the dataset 3 is related to the 

largest network. 
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Table 2. The optimal number of facilities under different values of objective functions 

Dataset 3 Dataset 2 Dataset 1 

Location of facilities Total 

cost 

Non-resiliency 

of network 

Location of facilities Total 

cost 

Non-resiliency 

of network 

Location of facilities Total 

cost 

Non-resiliency 

of network DC Depot manufacturer DC Depot manufacturer DC Depot manufacturer 

2, 4, 5, 
6, 7, 8 

1, 2, 3, 
5, 6, 7 

1, 2, 3, 4, 5, 
6, 7, 8 , 9 

7627667 40.5 
4, 5, 

6, 7, 8 
3, 5, 
6, 7 

1, 2, 3, 4, 5, 
7 

6672169 20.5 
1, 4, 
 5 

1, 4, 5 1, 2, 3, 5 2577144 19.5 

2, 4, 5, 
6, 7, 8 

1, 2, 4, 
6, 7 

1, 2, 3, 4, 5, 
6, 7, 9 

7635848 33.8 
4, 5, 

6, 7, 8 
3, 5, 6 

1, 2, 3, 4, 5, 
7 

6687552 17.1 
1, 4, 
 5 

4, 5 1, 2, 3, 5 2678381 16.3 

2, 5, 6, 

7, 8 

1, 2, 4, 

6, 7 

1, 2, 3, 4, 5, 

6, 7, 9 
7758459 27 

2, 6, 

7, 8 
3, 5, 6 1, 2, 4, 5, 7 6722446 13.7 1, 4 4, 5 1, 3, 5 2682331 13 

2, 5, 6 
1, 2, 4, 

6 
2, 3, 4, 5, 6, 

7, 9 
7997176 20.3 

2, 4, 
5, 6, 

3, 5, 6 1, 4, 5, 7 6840756 10.3 1, 2 4, 5 3, 5 2884224 9.8 

 

 

c. Dataset 3 b. Dataset 2 a. Dataset 1 

Fig 2. Conflict between cost and non-resiliency of the network for datasets 1-3 
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5-2- Sensitivity analysis on the capacity of facilities 
   A sensitivity analysis is now completed to investigate whether the capacity adjustment of facilities, 

including manufacturers, warehouses, and distribution centers, can be utilized as a strategy to improve 

service level and supply chain cost. Figure 3 represents the changes in the supply chain cost over a 
range of facility capacity levels. An overall observation is that an increase in the facility capacity 

results in a decrease in the cost of the supply chain. A similar pattern can be seen for the three 

datasets; however, the magnitude of cost savings is not proportional to the network size. That is, the 
curve for the dataset 1 is steeper than the curves for the datasets 2 and 3. This capacity changes do not 

have a significant impact on the non-resiliency of the network  

 
Fig 3. The effect of the facility capacity change on the total cost of the supply chain 

6-Conclusion 
   Today, many companies are affected by natural and man-made disasters, in which the lack of proper 

management of these incidents can have a significant negative effect on the performance of supply 

chains. Therefore, the design of the supply chain network under disruption risks has become a critical 
issue for firms. Most of the previous studies on resilient supply chain network design have focused on 

introducing and using various strategies to deal with disruption risks at facilities while there is scanty 

literature on measurement of the network resiliency. This study presented a stochastic bi-objective 
multi-product model to design a resilient supply chain network under random disruptions. The 

objectives of the proposed model were minimizing the total cost of the supply chain, as well as, 

minimizing the non-resiliency of the network. In addition, multiple sourcing strategy and criteria of 

node criticality, node complexity, and flow complexity were used to measure resiliency of the 
network.  

    The model decisions include locating manufactures, warehouses, and distribution centers, and 

determining the amount of production of different products in each manufacture, the amount of 
product transport between the different nodes of the network, and the amount of lost sales for different 

products in each market. Also, the possibility of partial and complete disruption of manufactures and 

limited capacity for facilities were considered. The validity of the proposed model was evaluated 
through three datasets and the results of the model implementation on them were presented. 

Numerous extensions on the presented work could be aimed for future researches. Incorporating 

operational decisions such as routing and scheduling decisions into our proposed model can be a 

future research direction. In our model for large sizes, considering appropriate solution approaches, 
including Benders decomposition and Lagrangian relaxation algorithms, is another direction for future 

research. Also, investigating the application of the model presented in this paper to managing actual 
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challenges of various supply chains such as the energy supply chain can be an important future 
research direction. 
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