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Abstract 
Cellular manufacturing systems have been considered as an effective method to increase productivity in 
industries. For designing of cellular manufacturing systems, several mathematical models and various 
algorithms have been proposed in the literature. In the present article, we propose an improved version of 
discrete particle swarm optimization (PSO) to solve manufacturing effectively this problem. When a local 
optimal solution is reached with PSO, all particles gather around it, and escaping from this local optimum 
becomes more difficult. To avoid premature convergence of PSO, we present a new hybrid evolutionary 
algorithm, called discrete particle swarm optimization-simulated annealing (DPSO-SA), based on the idea 
that PSO ensures fast convergence, while SA brings search out of local optimum. To illustrate the 
behavior of the proposed model and verify the performance of the algorithm, some numerical examples 
are introduced. The performance evaluation shows the effectiveness of the DPSO-SA.  

 
Keywords: Particle swarm optimization, simulated annealing, cellular manufacturing problem, 
meta-heuristic algorithms. 
 
 
 
1*Corresponding Author 

ISSN: 1735-8272, Copyright c 2015 JISE. All 
rights reserved 
 
 
 

 
 
 

 
 

 



31 
 

1 - Introduction 
 

Cellular manufacturing (CM) utilizes the principle of group technology (GT) to decompose a 
production system into a couple of independent and manageable manufacturing cells. GT is a 
manufacturing philosophy that has established the potential to contribute positively in batch-type 
production. The primary aim of the GT is to combine the flexibility of the job production system 
with the high productivity of the  

flow production system. In the GT, parts with the same manufacturing processes are grouped 
together and are produced in the same manufacturing cell. To reduce the number of inter-cell 
movements, most of the machines required for a part family are also allocated together to form a 
manufacturing cell , or also called a machine cell  (Shunk,1985; Shafer and Meredith,1990). 

The first step in the design of cellular manufacturing systems is cell formation (CF). The 
primary goal of cell formation is to form independent part families and machine cells to minimize 
exceptional elements or inter-cellular movements.  

The cell formation problem (CFP) has been widely studied in the past decades. The CFP is 
known as NP-hard (Burbidge, 1989), (Dimopoulos& Zalzala, 2000). This type of problem has a 
significant computational complexity. Therefore, achieving optimal solution is not possible in 
large size problems with reasonable amount of time. There are several approaches to find 
approximate solutions for NP-hard problems through a polynomial time. The meta-heuristic 
methods have been widely applied to solve the optimization problems of this kind. For example, 
popular methods such as simulated annealing (Pailla, et al. 2010), genetic algorithms (Zhao and 
Wu, 2000), ant colony optimization (Li et al., 2010), scatter search (Tavakkoli-Moghaddam et al., 
2010), tabu search (Sun et al., 1995; Aljaber, et al.1997) and particle swarm optimization (Kao & 
Lin, 2012) have been widely used. 

 Considering computational complexity of the CFP, the purpose of this paper is to provide a 
hybrid meta-heuristic that finds best solution in the real world problems and convergence faster 
than other existing approaches. Our proposed methodology combines PSO and SA approaches to 
take advantage of the capabilities of both. In this paper, the high efficiency of our method is 
tested on a large number of common examples. 

The paper is organized as follows. The relevant literature is reviewed in Section 2. Section 3 
consists of a discussion of the problem and its notations. Section 4 formulates our methodology as 
a DPSO-SA. Section 5 presents some computational results and their sensitivity analysis in order 
to draw some meaningful managerial insights. The paper concludes in Section 6 with some 
directions for the future research in this context. 
 
2 - Literature review 

There are many works for solving CFP in the literature. Kusiak (1987) proposed a p-
median model to solve the problem. A mathematical model for solving Group Cell Formation 
Problem (GCFP) was presented by Sankaran and Ksilngam (1990). Hwang and Ree (1996) used a 
two stage method for solving process routing selection and part family formation. Nagi, 
Harhalakis and Proth (1990) proposed a heuristic algorithm for machine cell formation and 
routing selection. Sofianopoulou (1999) applied a two-dimensional simulated annealing algorithm 
to assign each part type to a particular process routing and assign each machine type to a 
particular machine cell sequentially. An iterative method which applies a simulated annealing 
algorithm to partition machines into cells and a branch-and-bound algorithm to assign one of 
routings to each part was used by Caux,  Bruniaux and Pierreval (2000). Wu, Low and Wu (2004) 
showed that part assignment is the sub problem of CFP which has high computational time and 
applied a tabu search algorithm to solve that. Wu, Chung and Chang (2009) proposed an 
algorithm that is based on advantage of genetic algorithm and simulated annealing. Their 
algorithm explores a larger solution space and accelerates the search process. Nouri and Hong 
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(2013) investigate the bacteria foraging optimization (BFO) algorithm to the cell formation (CF) 
problem. Their paper attempt was made to solve the cell formation problem while considering 
cell load variations and a number of exceptional elements. Mahdavi, Teymourian, Baher and 
Kayvanfar (2013) present a new integrated mathematical model considering cell formation and 
cell layout simultaneously. The goal of their model is to group similar parts and corresponding 
different machines in the same cells. Machines sequence in each cell and cell positions is also 
specified in the system. Moreover, their proposed model considers forward and backtracking 
movements as well as new assumptions for distances between cells using sequence data and 
production volume. 

Shiyas and Madhusudanan Pillai (2014) adopted GA as a mathematical model for the design 
of manufacturing cells which considers two conflicting objectives such as the heterogeneity of 
cells and the inter-cell movements. A genetic algorithm (GA) based solution methodology is 
developed for the model which is also solved using an optimization package. 

Table1 shows some recent papers that concentrated on solving the CFP .This table compares 
some literature model in terms of some parameters. The parameters are considered in the 
following: 

• Operation sequence. 
• Processing times. 
• Minimizing inter-cell movements.  
• Costs. 
• Maximum size of MPIM (Machine Part Incidence Matrix). 
• Compared with other existing methodologies. 
• Methodology. 

In this paper, a new hybrid particle swarm optimizations, DPSO-SA, is proposed to solve 
CFP.  To the best of our knowledge, there are very few studies using PSO to solve the CFP. Kao 
and Lin (2012) used PSO to partition machines into different cells. But it may be trapped into 
local optima if the global best and local best positions are equal to the position n of particle over a 
number of iterations (Niknam, 2006; Olamaei et al., 2008).To overcome this shortcoming, this 
paper presents a novel hybrid evolutionary optimization method based on Discrete PSO and SA, 
called DPSO-SA for optimally cell formation, which not only has a better response but also 
converges more quickly than ordinary evolutionary algorithms. Proposed algorithm uses the 
advantages of each algorithm to overcome the disadvantages of both algorithms. We assess and 
compare the performance of the DPOS-SA algorithm with the original PSO, SA and Firefly 
algorithms on different examples. 

 
3 - Cell formation problem  

In cell formation problem the following notations are introduced: 

M the number of machines; 

P the number of parts; 

C the number of cells (cell size); 

maxM  the maximum number of machines per cell; 
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Table1. Comparison studies in cell formation problem. 

Ref 
Operatio
n 
Sequence 

 
Processin
g Times 

Minimizin
g Inter-cell 
Movement

s 

Cost
s 

Maximu
m Size of 
MPIM 

Compared 
with other 
Existing 

Methodologie
s 

Methodology 

Kao & Lin,2012 × × ×  26×28 × 

Particle 
Swarm 

Optimizatio
n 

Zhao& Wu,2000 × × × × 16×43 × Genetic 
Algorithm 

Li et al,2010   ×  50×150 × 
Ant Colony 
Optimizatio

n 

Tavakkoli-Moghaddam,2012 × × × × 15×13 × Scatter 
Search 

Tavakkoli-Moghaddam,2010 × × × × 20×15 × Scatter 
Search 

Sun et al,1995 ×  × × 15×60 × Tabu Search 
Aljaber et al,1997 ×  ×  30×40 × Tabu Search 

Nouri& Hong,2013  × × × 24×40 × 

Bacteria 
Foraging 

Optimizatio
n (BFO) 

Algorithm 

Mahdavi et al,2013 ×  × × 20×20 × 
Integrated 

Mathematica
l Model 

Shiyas&MadhusudananPillai,20
14     40×100 × Genetic 

Algorithm 

Chu &Hayya,1991     16×43 × 
Fuzzy C-

Mean 
Clustering 

Gonçalves&Resende,2004   ×  40×100 × 

Local Search 
Heuristic 

with a 
Genetic 

Algorithm 
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Table1. Continued 

Ref Operation 
Sequence 

 
Processing 

Times 

Minimizing 
Inter-cell 

Movements 
Costs 

Maximum 
Size of 
MPIM 

Compared with 
other Existing 
Methodologies 

Methodology 

Li et al,2007   ×  150×300 × 
An Improved 

Fuzzy Clustering 
Algorithm 

Noktehdan et al,2010   ×  37×53 × 

Grouping 
Genetic 

Algorithm 
(GGA), 

Grouping 
Version of 
Differential 
Evolution 

(GDE) 
Algorithm and 
its Hybridized 
Version with a 
Local Search 

Algorithm 
(HGDE) 

 
Wu et al,2009    

×   
40×100 

 
× 

 
Hybrid 

Heuristic 
Algorithm 

(Boltzmann 
Function 

from 
Simulated 
Annealing 

and the 
Mutation 
operator 
from the 
genetic 

Algorithm) 
 

ijA a =    
M×Pmachine-part incidence matrix (MPIM), where ija is 1 if part j requires process 

on machine i, otherwise 0. 
Our aim is to find the best clusters for machines and parts to have the least exceptional 

elements. Exceptional elements (nonzero values in the off diagonal blocks) impede the formation 
of independent machine cells by increasing inter cells material handling. Exceptional elements are 
the results of bottleneck parts that require to be processed on machines assigned to two or more 
machine cells, or bottleneck machines that must process the parts found in two or more part 
families (Sayadi et al, 2013; Won, 2000).  Rows and columns of MPIM are rearranged to generate 
part families and machine cells in such a way that exceptional elements are minimized and did 
not contain more than maximum number of machines per cell. 

1
0ik

if machinei cell k
y

otherwise
∈

= 

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1
0jk

if part j family k
z

otherwise
∈

= 


 

The CFP can be formulated as follow: 

1 1 1
(1 )C M P

ij jk ikk i j
Minimize a z y

= = =
−∑ ∑ ∑ , (1) 

Subject to  

1
1

C

ik
k

y i
=

= ∀∑ , (2)

1
1

C

jk
k

z j
=

= ∀∑ , (3) 

max
1

M

ik
i

y M k
=

≤ ∀∑ , (4) 

The objective function of the CFP can be express as Equation (1). The number of exceptional 
elements can be computed by this function. Constraint (2) ensures that each machine must be assigned 
to one cell. Constraint (3) indicates that each part type must be assigned to one family and constraint (4) 
means that each cell cannot contain more than maxM  machines (Sayadi et al, 2013). 
 
3 - Methodology 

3 - 1 Particle Swarm Optimization (PSO) 
PSO is a population based optimization approach that is inspired of the behaviors in bird flocks and 

fishes. PSO is introduced by Kennedy and Eberhart ( 1995). Since then it has been widely used to solve 
a wide range of optimization problems. In a N-dimensional search space, the position and velocity of 
particle P are represented as the vectors { }, ,...,1 2X x x xp p p pN= and { }, ,...,1 2V v v vp p p pN= .In the PSO, bestP  
represents the best position of particle P and bestG represent the best position that has been achieved so 
far by whole of population. By tracking two best values, i.e. bestP and bestG , the global optimal might be 
reached by this optimization technique. The change of velocity and position of each particle can be 
calculated with the following formulas: 

1 1 ( ) 2 ( )k k k k k k
p p p p pV V c rand Pbest X c rand Gbest Xω+ = × + × × − + × × − , (5) 

1 1 , 1, 2,...k k k
p p pX X V p P+ += + = , (6) 

Where 1c  and 2c are acceleration constants that control the maximum step size and pull each 
particle toward bestP and bestG positions. The inertia weight ω  controls the impact of the previous 

velocity of the particle on its current one. k
pV is the velocity of particle p in iteration k, k

pX is the position 

of particle p in iteration k, k
bestP is the best value of fitness function that has been achieved by particle p 

before iteration k, k
bestG is the best value of fitness function that has been achieved so far by any particle, 

rand means a random variable between 0.0 to 1.0. 
 

3 - 2 Simulated Annealing (SA) 

SA is a probabilistic variant of the local search method, which can escape from local optima 
and finds global solution. SA is founded upon an analogy taken from thermodynamics: In order 
to grow a crystal, material is heated until it reaches its molten state. Then temperature is 
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gradually reduced till crystal structure is formed. SA begins by generating an initial solution at 
random. At initial stages, a small random change is made in the current solution ( )cs . Afterwards, 
the objective function value of the new solution ( )ns is calculated and compared with that of 
current solution. A move is made to the new solution if it has better or if the probability function 
implemented in SA has a higher value than a randomly generated number. Otherwise, a new 
solution is generated and evaluated. The probability of accepting a new solution is given as 
follow: 

1, ( ) ( ) 0
( ) ( )

exp( ),

n c

n c

if f s f s
p f s f s

otherwise
T

− <
=  − −


, (7) 

Parameter T in this probability is temperature index. The rate of reduction of T should be slow. 
Therefore, at the start of the algorithm, bad moves may be accepted, but in the end only improving moves 
are allowed (Bertsimas &Tsitsiklis, 1993;Kirkpatrick et al, 1983). 
 

3 – 3 - Discrete PSO-SA method (DPSO-SA) 
3 – 3 - 1 Why DPSO-SA 

All researches proof that the particle swarm optimization (PSO) should be considered as a powerful 
approach, which is efficient enough to solve various kinds of nonlinear optimization problems. 
Nevertheless, it may be trapped into local optima if the global best and local best positions are equal to 
the position of particle over a number of iterations (Niknam, 2006; Olamaeiet al., 2008). PSO leads to 
search with high efficiency and fast convergence but while PSO finds a local optimum solution, all 
particles gather around it and running away from this local optima become difficult. For example, figure 1 
shows a typical function that PSO trapped in local optima. PSO algorithm for this function is converged 
to 0.57386 while the maximum is 1.3909.  

 

Figure 1.An example of local optima problem in PSO. 

To compensate this shortcoming this article uses a hybrid evolutionary optimization method based 
on PSO and SA, called PSO-SA, which not only has a better response but also converges more quickly 
than ordinary evolutionary algorithms (Niknam et al, 2009).The basic idea is to study around the global 
solution by SA and to increase the information exchange among particles using a mutation operator to 
escape local optima.  

SA is meta-heuristic method designed for finding a near optimal solution of combinatorial 
optimization problems. The negative point of Meta heuristic algorithms is that they can be easily trapped 
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in local minima. The SA technique solves this problem by allowing bad moves based on a model of the 
annealing process in the physical world. SA can escapes from local optima and find global solution. 
DPSO-SA algorithm combines the advantages of both PSO and SA. This hybrid approach makes full use 
of the exploration ability of PSO and the exploitation ability of SA, so the hybrid algorithm is capable of 
escaping from a local optimum. 

 
3 – 3 – 2 - Proposed algorithm 

The flowchart of the proposed algorithm is shown in figure 2.To apply DPSO-SA to solve cell 
formation problem, the following steps have to be applied: 
Step 1: Define problem’s parameters such as MPIM and maximum number of machines per cell. 
Step 2: Declare PSO parameters and generate the initial population and velocity of each particle. 
Step 3: In the proposed algorithm when particle i moves toward particle j the position of particle i 
changes from a binary number to a real number. So in this step of algorithm the real number of position is 
replaced with a binary number by using the following sigmoid function. The position value is constrained 
to the interval [0,1]: 

1( )
1 exp( )

S x
x

=
+ −

 (8) 

Where ( )S x  denotes the probability of position x  taking 1.  

Step 4: Calculate objective function for each particle based on equation 1. 

Step 5: Find bestP and bestG by PSO based on objective function values. 
Step 6: After calculation of bestG  for all the particles of generation, SA algorithm is applied and a 
series of particles in the neighborhood of bestG are generated.  
Step 7: If the value of objective function for new particles is better than the objective function of 

bestG continue otherwise go to step 9. 
Step 8: bestG  is replaced with the new solution.  
Step 9: new solution is accepted using the probability function of SA algorithm. As it was mentioned 
previously, the random movements of this algorithm lead to resolving the problem of local minimum.  
Step 10: If the maximum number of iteration is reached,  go to step 12 otherwise go to step 11. 
Step 11: Increase the iteration number, go to step 3. 
Step 12: Get the result. 
Step 13: End. 

By determining the machine cells partition, each part is assigned to a family/cell that contains the 
majority of the required machines. By using this approach, exceptional elements will be minimized 
[33].The position for the i th−  particle in the t th−  generation can be defined as

11 12( , ,..., )t t t t
i i i imcY y y y= . 

1 if machine  of particle  is placed in the  cell at  generation
0 otherwise

t
ijk

j i k th t th
y

− −
=




 

By moving any particle toward the better solution, its position changes from binary number to a real 
number. This real number shall be converted to the changes of probabilities by the following sigmoid 
function:  

1( )
1 exp( )ijk

ijk

S y
y

=
+ −     

   

Where ( )ijkS y  represents the probability of ijky taking the value 1. 

(9) 
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Figure 2.The Flowchart of proposed algorithm. 

 

 

 

 

Calculate the objective function for each particle 

Find Pbestand Gbest by PSO based on the objective function values 

Input problem parameter such as MPIM, maximum number of machines per cell 

Initialize PSO parameters and generate initial population and initial velocity 

Use SA to search around the global solution 

Replace Gbest with the new solution 

Is the new solution better than 
the global best solution? 

Print the result 

Is the maximum iteration reach? 

Discrete the position of each particle  

Iteration=iteration+1 

Start 

End 

Yes 

No 

No 
Yes 

Accept new solution with a probability p 
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4 - Computational experiments 

To illustrate the efficiency of the proposed algorithm, it is applied to four MPIM matrices and best 

cell arrangements for each example are obtained. Table A.1 shows the first example that is taken from 

(Nair & Narendran, 1998). The size of this matrice is 20*8 and the maximum number of machines in each 

cell is Mmax=4. The size of second example’s matrice is 20*20 and the maximum number of machines in 

each cell is Mmax=5. This example is illustrated in Table A.2 (Nair & Narendran, 1998). Example No 3 is 

demonstrated in Table A.3 (Albadawi et al, 2005). The MPIM’s size  in this example  is 10*15 and 

Mmax=4.The MPIM matrice of fourth example is  illustrated in Table A.4, this matrice is taken from 

(Albadawi et al, 2005). The size of this example is 7*5, maximum machine in each cell in this example is 

Mmax=4.TablesA.5, A.6, A.7 and A.8 shows the results obtained by applying DPSO-SA to the examples. 

 The proposed algorithm for the first example leads to 8 exceptional elements that equals to the 

exceptional elements obtained by (Sayadi et al, 2010). Our results is better than minimum exceptional 

elements obtained by (Nair & Narendran, 1998) and (Boulif&Atif, 2006). The exceptional elements 

calculated from second example in our algorithm are 15 and are better than the results obtained by 

(Sayadi et al, 2010) and also by (Nair &Narendran, 1998). The exceptional elements found in these 

papers are 16 and 18. DPSO-SA leads to 0 exceptional elements for third example that is equal to those 

obtained by (Albadawi et al, 2005). Finaly for the last example, exceptional elements by proposed 

algorithm are 2 that equals to the exceptional elements obtained by (Albadawi et.al, 2005). In Table 2 all 

results are compared with the best results obtained by PSO and SA algorithms. Also run times are 

reported (in seconds). 

As shown in Table 2 our algorithm (DPSO-SA) leads to fewer exceptional elements compared to two 

other algorithms (PSO and SA) in all examples. By comparing the results of the PSO algorithm and the 

proposed algorithm it could be seen that the PSO is converged to local minima and proposed algorithm 

has better result in terms of exceptional elements and CPU time, so the mentioned reasons show that the 

proposed algorithm can be mentioned as good as previous methods. 

Figures 3 illustrates the progress of convergence of PSO, SA and DPSO-SA algorithms on test examples.  

It can be seen obviously that the use of proposed algorithm (DPSO-SA) can effectively avoid to local 

minima in the test examples. Moreover, by looking at Figures 3 it can be seen that DPSO-SA requires 

fewer iteration numbers than PSO and SA to obtain the best solutions for our examples. 
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Table 2. Computational results obtained by DPSO-SA, PSO and SA 

  (DPSO-SA) PSO SA 
DPSO-SA 

Time (Sec) 

PSO 

Time (Sec) 

SA 

Time (Sec) 

Example 1 

(Nair & Narendran,1998) 
8 14 10 2.31 2.50 2.45 

Example 2 

(Nair & Narendran,1998) 
15 16 20 1.87 3.52 6.46 

Example 3  

(Albadawi et al,2005) 
0 18 12 1.13 1.56 2.06 

Example 4 

(Albadawi et al,2005) 
2 3 3 0.44 1.01 1.83 

 
 

 
Figure 3.Comparison between algorithms on test examples. 

5 - Evaluation of performance 

   To evaluate the performance of the proposed algorithms, three mostly used criteria in the literature for 

CFP are selected. These criteria are the percentage of exceptional elements, machine utilization, and 

group efficiency (Albadawi et al, 2005; Hachichaet al, 2008).  
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5 – 1 - Percentage of Exceptional Elements 

The first criterion is percentage of exceptional elements (PE) and is the ratio of the number 

of exceptional elements to the total number of unity elements in entry matrice. This measure is 

normalized with respect to the problem size (Albadawi et al, 2005; Hachichaet al, 2008).  

100number of exceptional elementsPE
total number of operations

= × ,                                        (10) 

 
5.2 Machine Utilization

 The next criterion is Machine Utilization (MU) that indicates the percentage of time the 

machines within the cluster are used in production: 

1

C
k kk

NMU
m p

=

=
∑

,                          (11) 

Where N is the total number of one numbers within the part family-machine cells, Q is the number of 

cells, where mk  and pk denote, respectively, the number of machines in cell k and number of parts in 

family k. generally the higher value of MU shows the better machine utilization (Albadawi et al, 2005; 

Hachichaet al, 2008). 

 
5 – 3 - Grouping efficiency  

The third criterion is Grouping Efficiency (GE) and is defined as: 

1 1

(1 ) 1C C

k k k k
k k

N NEGE
m p MN m p

α α

= =

   
   
   = + − −
   −   
   
∑ ∑

,           (12) 

The weight α is assigned to reveal the relative importance of each term, though a value of 0.5 is 

commonly used. MN is the size of MPIM and NE is the number of exceptional elements (Albadawi et al, 

2005; Hachichaet al, 2008). 

Unfortunately, due to the lack of data about p, m in the previous work we can’t evaluate the MU and GE 

on test examples.  

6 - Computational results  

For validation of the proposed approach, two examples from the literature with different size are 

solved by DPSO-SA. Table 3 shows the examples with their parameters and the results obtained by the 

proposed algorithm. The problem size (number of parts and number of machines), the number of cells, 
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the maximum number of machines in each cell are listed in table 3. It can be clearly seen that for both 

examples our method leads to exceptional elements lower than the best result in the literature. Particularly 

the best solution for example No1 in the literature is 8 and for example No2 is 51, while DPSO-SA 

obtained 7 exceptional elements  for example No1 and 50 for example No 2. 

 
Table 3. Examples used for tests and obtained results 

Part/Machine Reference 

Number 

of  

Part 

Number 

of 

Machine 

Number 

of  

Cells 

MaximumNum. 

Machine in Cell 

Our 

Algorithm 

Exceptional 

Elements 

Literature 

Exceptional 

Elements 

1 

(Yang & 

Yang,2008;Sayadi 

et al,2010) 

15 15 4 5 7 8 

2 
(Yang & 

Yang,2008) 
35 28 6 6 50 51 

 

To evaluate the obtained results of proposed algorithm on pervious example, PE criterion is used. 

The evaluation results based on PE criterion are shown in Table 4. Better formation result in a smaller PE. 

According to the Table 4 it can be concluded that the proposed DPSO-SA algorithm improves the PE 

criterion in both example. The results of this table show the effectiveness of the proposed algorithm. 

 
Table 4. Evaluation results based on PE 

Part/Machine

 

Number of Unity Elements 

 

PE %  

 DPSO-SA Previous best  

1 173 4.04 4.62  

2 194 25.77 26.28  
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7 - Conclusion
 

In this paper, DPSO-SA algorithm is introduced for solving cell formation problems. The proposed 

algorithm contribute some functions of SA and PSO algorithm in such a way that it share speedy nature 

of SA algorithm and optimization of PSO algorithm simultaneously, so that the new algorithm will result 

on optimum  answer in speedy way and do not hang out on local optimum  point. 

The obtained results from test examples show that DPSO-SA performs better than previous algorithms 

and can find global optima. Compared to previous algorithms, it seems that the new algorithm would 

cause to lowest exceptional elements on several cases which resulted in functional improvement at each 

cell and system. Although this paper focuses on the minimization of exceptional elements and best 

formation solution only, it can adapt to more realistic manufacturing parameters such as setup cost, 

sequence and alternative routings. Future works may be carried out to develop efficient formulations to 

handle such parameters. 
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Appendix A. 

Table A.1 MPIM of first example 

 M1 M2 M3 M4 M5 M6 M7 M8 

P1 0 0 0 0 1 1 0 0 

P2 1 0 1 0 0 0 0 0 

P3 1 1 0 1 0 0 1 1 

P4 0 1 0 1 0 0 1 1 

P5 0 0 0 0 1 1 0 0 

P6 0 1 0 1 1 0 1 1 

P7 0 1 0 1 0 0 1 1 

P8 1 0 1 0 0 0 0 0 

P9 1 0 1 0 0 1 0 0 

P10 0 0 0 1 1 1 0 0 

P11 1 0 1 0 0 0 1 0 

P12 0 0 0 0 1 1 1 0 

P13 1 0 1 0 0 0 0 0 

P14 1 1 1 0 0 0 0 0 

P15 0 0 0 1 1 0 0 0 

P16 1 0 1 0 0 0 0 0 

P17 1 0 1 0 1 0 0 0 

P18 0 1 0 1 0 0 1 1 

P19 1 0 1 0 0 0 0 0 

P20 0 1 0 1 0 1 1 1 
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Table A.2MPIM of second example 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

P1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 

P2 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

P3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 

P4 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

P5 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 

P6 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 

P7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

P8 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 

P9 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 

P10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 

P11 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

P12 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 

P13 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 

P14 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 

P16 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 

P17 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

P18 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 

P19 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

P20 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 
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Table A.3 MPIM of third example 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 

P1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 

P2 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 

P3 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 

P4 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

P5 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 

P6 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 

P7 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 

P8 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 

P9 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 

P10 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 
 

 

 

 

 

 

 

Table A.4 MPIM of forth example 

 M1 M2 M3 M4 M5 

P1 0 0 1 1 0 

P2 1 0 1 0 0 

P3 0 1 0 1 1 

P4 1 0 1 0 1 

P5 0 1 0 0 1 

P6 0 0 0 1 1 

P7 1 0 1 0 0 
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Table A.5 Obtained result by DPSO-SA (example No 1) 

 M2 M4 M7 M8 M1 M3 M5 M6 

P3 1 1 1 1 1 0 0 0 

P4 1 1 1 1 0 0 0 0 

P6 1 1 1 1 0 0 1 0 

P7 1 1 1 1 0 0 0 0 

P15 0 1 0 0 0 0 1 0 

P18 1 1 1 1 0 0 0 0 

P20 1 1 1 1 0 0 0 1 

P1 0 0 0 0 0 0 1 1 

P2 0 0 0 0 1 1 0 0 

P5 0 0 0 0 0 0 1 1 

P8 0 0 0 0 1 1 0 0 

P9 0 0 0 0 1 1 0 1 

P10 0 1 0 0 0 0 1 1 

P11 0 0 1 0 1 1 0 0 

P12 0 0 1 0 0 0 1 1 

P13 0 0 0 0 1 1 0 0 

P14 1 0 0 0 1 1 0 0 

P16 0 0 0 0 1 1 0 0 

P17 0 0 0 0 1 1 1 0 

P19 0 0 0 0 1 1 0 0 
 

 

 

 

 

 

 

 

 



52 
 

Table A.6 Obtained result by DPSO-SA (example No 2) 

 
M2 M3 M5 M11 M14 M8 M16 M17 M19 M20 M4 M6 M7 M13 M15 M1 M9 M10 M12 M18 

P2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P4 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

P11 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P19 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P6 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

P3 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

P7 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

P10 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 

P18 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 

P5 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 

P8 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 

P13 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 

P16 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 

P1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 

P9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 

P12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 

P14 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 

P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 
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Table A.7 Obtained result by DPSO-SA (example N0 3) 

 M14 M9 M6 M4 M1 M15 M13 M8 M5 M3 M12 M11 M10 M2 M7 

P9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

P4 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 

P3 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

P6 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

P8 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

P5 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

P2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

P1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 

P10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

P7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

 
 

Table A.8 Obtained result by DPSO-SA (example No 4) 

 M2 M5 M4 M1 M3 

P5 1 1 0 0 0 

P3 1 1 1 0 0 

P6 0 1 1 0 0 

P7 0 0 0 1 1 

P2 0 0 0 1 1 

P4 0 1 0 1 1 

P1 0 0 1 0 1 
 

 
 

 

 


