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Abstract 

Due to many damages that human activities have imposed on the environment, 

authorities, manufacturers, and industry owners have taken into account the 

development of the supply chain more than ever. One of the most influential 
and essential human activities in the supply chain is transportation which green 

vehicles such as electric vehicles (EVs) are expected to generate higher 

economic and environmental impact. To this end, designing an efficient routing 
scheme for the fleet of EVs is significant. A remarkable issue about EVs is their 

need for stations to charge their battery. Due to the existence of time limitations, 

more attention should be paid to time spent at charging station, so considering 

the queuing system at charging stations makes more precise time calculations. 
Furthermore, multigraphs are more consistent with the characteristics of the 

transportation network. Hence, we consider alternative paths including two 

criterion cost and energy consumption in the network. First, we develop a 
mixed integer linear programming for the electric vehicle routing problem on a 

multigraph with the queue in charging stations to minimize traveling and 

charging costs. Since the proposed problem is NP-hard in a strong sense, we 
provide a simulated annealing algorithm to search the solution space efficiently 

and explore a large neighborhood within short computational time.  The 

efficiency of the model is investigated with numerical and illustrative examples. 

Then the sensitivity analysis is performed on the proposed model to indicate the 
importance of the queuing system and the impact of battery capacity on the 

penetration of EVs. 

Keywords: Electric vehicle routing, charging station, queuing system, 

multigraph, alternative paths, simulated annealing 

 

1-Introduction 

    One of the most fundamental human-induced damages to the environment is the increase in  

Green House Gas (GHG) emissions, resulting in global warming, pollution, environmental damages, 

and animal health risks. Nowadays, attention to the environment and applying environmental laws are 
important to reduce the impact of human activities on the environment. Further, researchers’ interest 

in environmental issues is growing increasingly. Transportation through the use of fossil fuels has a 

great impact on increasing GHG emissions and environmental pollution. For instance, transportation 
accounted for the largest portion (28%) of total U.S. GHG emissions in 2016 

(www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions).  
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   So that proper routing can be effective in reducing emissions and harming the environment. In the 
current research, in addition to the main goal of routing, namely finding the most optimal routes, we 

pay attention to reducing environmental damages and pollution. To this end, we focus on the route 

planning for the fleet of Battery Electric Vehicles (BEVs) with limited battery capacity. BEVs 

produce lower air and noise pollution in comparison with Internal Combustion Engine Vehicles 
(ICEVs) because they do not use any kind of fossil fuel or fuel with limited natural resources. Instead, 

they move by inserting the battery and using the driving force generated by the electricity. A BEV is 

propelled by an electric motor and only uses the power provided by its battery pack, which can be 
charged from the electricity grid. Other advantages of BEVs compared to ICEVs are as follows: Their 

motors can produce great torque at low speeds and are much more efficient than ICEVs. BEVs also 

require less maintenance than ICEVs and do not need oil, so maintenance costs are further reduced 
(Pelletier et al. 2016).  

   The remainder of the paper is organized as follows: Section 2 discusses the related literature of 

electric vehicle routing problem (E-VRP) and works on vehicle routing in multigraph. Section 3 

describes the problem and formulates the mathematical model. An illustrative example is also 
clarified in section 3. The proposed SA heuristic is presented in Section 4. Section 5 provides the 

sensitivity analysis and computational study and discusses the results. Finally, the conclusion and 

future works direction are given in section 6. 
 

2- Literature review 
   We divide the literature section into three sub-sections. In the first sub-section, the electric vehicle 

routing problem is described. In the second part of this section, related works on vehicle routing in 
multigraph is discussed in more details. Finally, the contributions of the current study are presented in 

section 2-3. 
 

2-1- Related works on electric vehicle routing 
    Schneider et al. (2014) focused on BEVs and formulated the electric vehicle routing problem with 

time windows (E-VRPTW) which seek to minimize the total distance and number of EVs. They also 

considered full charge strategy and developed a hybrid composed of Variable Neighborhood Search 
(VNS) and Tabu Search (TS) heuristic for E-VRPTW that makes use of the strong diversification 

effect of the VNS and involves a TS heuristic to search the solution space efficiently. One of the 

major barriers to the use of EVs is their limited driving range. The limited driving range means that a 
fully charged electric vehicle can only move a short distance, which makes the vehicle constantly 

visits the charging station, and spends a long time to charge its battery. Some factors that temporarily 

reduce vehicle range include extreme temperatures, high speeds, quick acceleration, carrying heavy 
loads, and upward slopes (Pelletier et al. 2016). In another study, Bruglieria et al. (2015) designed a 

Variable Neighborhood Search Branching (VNSB) to solve the E-VRPTW. 

   In the electric vehicle routing problem, the importance of battery charging stations is remarkable. 

First, the depot must be equipped to charge the battery, so that the battery is fully charged at night. In 
the following, the routing process starts with a fully charged battery. This action reduces charging 

costs. Secondly, in addition to the depot, public charging stations should be established in different 

locations of the geographic network. One of the main points that differentiate the E-VRP through 
other vehicle routing models is the calculation of the battery charge level at each node.  As a result, if 

the battery charge level is less than the required amount, the battery charging station should be visited. 

In particular, it should be planned to charge up to the next station or completion of the entire route 
before it is discharged.  At some stations, in order to reduce the spent time at the station, instead of 

recharging the battery, the battery pack is swapped.  As an example in Yang & Sun (2015), an electric 

vehicle battery swap station location routing problem (BSS-EV-LRP) has been addressed, which aims 

to determine the location plan of battery swap stations (BSSs) and the routing plan of a fleet of EVs. 
They proposed two heuristic method to solve the problem. One heuristic SIGALSN is a four-phase 

algorithm, including modified sweep heuristic for initialization, iterative greedy method for location 

sub-problem, adaptive large neighborhood search (ALNS) for routing sub-problem and another one is 
TS-MCWS which combines TS and modified Clarke–Wright saving method. Hof et al. (2016) 

extended solution methods for vehicle routing problems with intermediate stops by extending the 
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adaptive variable neighborhood search algorithm to solve the recently introduced battery swap station 
location-routing. It should be noted that a plentitude of this type of stations is less than recharging 

stations.  

   Shao et al. (2017) proposed another effective way of reducing the time spent on the charging station 

by the partial charging strategy. Keskin and Catay (2016) considered partial charge strategy for E-
VRPTW (E-VRPTW-PR) and aimed to minimize the total travel, waiting and recharging time plus the 

number of the employed EVs. They proposed the ALNS algorithm with several removal and insertion 

mechanisms by selecting them dynamically and adaptively based on their past performances, 
including new mechanisms specifically designed for E-VRPTW and E-VRPTW-PR. Felipe et al. 

(2014) also considered the possibility of performing a partial recharge at a station, multiple 

technologies for recharging an EV that implying different recharging time and cost and the cost due to 
battery amortization in the objective function. In fact, they expanded Green vehicle routing problem, 

introduced by Erdogan and Miller-Hooks (2012), for EVs and presented constructive and 

deterministic local search algorithms as well as a metaheuristic extension based on a Simulated 

Annealing (SA) framework. Bruglieria et al. (2017) implemented a three-phase metaheuristic in 
which the first two phases are based on mixed integer linear programs to generate feasible solutions 

and the third one is based on a Variable Neighborhood Search local Branching (VNSB) for the time-

effective E-VRP-PR.  
    Wang et al. (2017) investigated the route choice problem in the traveling and charging of multiple 

BEVs and three objective functions are proposed to minimize total traveling cost components, 

including travel times, energy consumption and charging costs. The fuzzy programming approach and 
fuzzy preference relations are introduced to transform the three objective functions into a single 

objective function. Sweda et al. (2016) developed efficient algorithms for finding an optimal prior 

routing and recharging policy and then present solution approaches to an adaptive problem that builds 

on a priori policy. Wang et al. (2017) develop a modeling framework to optimize electric bus 
recharging schedules, which determines both the planning and operational decisions while minimizing 

total annual costs and presented a real-world data as a case study. Agrawal et al. (2016) analyzed the 

differences between the route choice behaviors of BEVs and ICEVs in a mixed traffic context with 
the potential for BEV range anxiety. Shao et al. (2017) presented EVRP with charging time and 

variable travel time where the traffic condition is not constant. They proposed a genetic algorithm to 

solve the problem.  

Goeke and Schneider (2015) addressed an ALNS approach to solving the routing of a mixed fleet of 
EVs and ICEVs with an expansion of the energy consumption function.  

Wang Li-ying and Song Yuan-bin (2015) developed a hybrid heuristic that incorporates an adaptive 

variable neighborhood search (AVNS) with the tabu search algorithm for the multiple charging station 
location-routing problem with time windows of EV to optimize the routing plan of capacitated EVs 

and the strategy of charging stations. The difference between this article and the previous research is 

to consider the possibility of using various types of infrastructure to charge and optimize the choice of 
Infrastructure type in accordance with the decision of the location of the station and the routing.  

Penna et al. (2016) presented the integration of a multi-start hybrid algorithm based on the Iterated 

Local Search (ILS) metaheuristic and a set partitioning formulation to solve the electric fleet size and 

mix vehicle routing problem with time windows and recharging stations (E-FSMFTW). Hiermann et 
al. (2016) proposed a hybrid heuristic by means of branch-and-price, which combines an ALNS with 

an embedded local search and labeling procedure for intensification for the E-FSMFTW.  

Shengyin Li et al. (2016) dealt a multi-period optimization model for the deployment of public 
electric vehicle charging stations on the network which is formulated as a mixed integer linear 

program and solved by a heuristic based algorithm using a genetic algorithm.  

   In order to highlight the contributions of this research, the contents of mentioned E-VRP studies and 
other similar studies are summarized in table 1. 
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Table 1. E-VRP studies. 
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Schneider                               

et al.(2014) 
*  *  *  *  *  *  *    

Yang & Sun 

(2014) 
*   * *  *    *      

Bruglieria 

et al.(2015) 
*  *  *   * *  *  *    

Felipe  

et al.(2014) 
*  *  *   * *  *      

Keskin  

et al.(2016) 
*  *  *   * *  *  *    

Li-ying 

et al.(2015) 
*  *  *  *  *  *  *    

H. Yang  

et al.(2015) 
*  *  *   * *  *  *    

Penna et al. 

(2016) 
*   * *  *  *  *  *    

Hiermann  
et al.(2016) 

*   * *  *  *  *      

Hof et al. 

(2017) 
*   *  * *    *      

Bruglieri  

et al.(2017) 
*   * *   * *  *  *    

S. Li et al. 

(2016) 
*  *  *  *  *  *      

Roberti  

et al.(2016) 
*  *  *  * * *  *  *    

This paper *  *  *  *  *  *  *  * * 

Single obj., Single objective. Multi obj., Multi objective. Homo., Homogenous. Heter., Heterogeneous. Chrg. sta., Battery Cons. & Chrging 

rate, Battery consumption and charging rate. Deter., Deterministic. Considering queuing sys., Considering queuing system     

2-1- Related works on vehicle routing in multigraph 
   The classic vehicle routing problems are usually designed with one edge (or arc) between two nodes 

(Setak et al. 2015). However, according to the complexities of urbanism in many transportation 

networks there exist more than one edge between the nodes. Setak et al. (2015) addressed a new 
extension of the routing problem which considers more than one edge between the nodes. In their 

model, the parallel arcs are differentiated with different traffic pattern during the day. They proposed 

a TS algorithm to solve the problem. Huang et al. (2017) formulated and solved the time-dependent 
vehicle routing problem with path flexibility (TDVRP–PF) under deterministic and stochastic traffic 

conditions. In this paper, each arc in the customer graph corresponds to multiple paths in the 

geographical graph. Having both path flexibility and time-dependent travel time seems to be a good 
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representation of a wide range of stochasticity and dynamics in the travel time. Setak et al. (2017) 
extended the time-dependent pollution routing problem in the multigraphs (TDPRPM) problem, 

which considered more than one edge between nodes, and minimized emitted pollution cost. This 

problem is also solved by a TS heuristic. Garaix et al. (2010) considered vehicle routing problem for 

freight or passenger transportation activities with alternative paths where optimization was not done 
based on a single criterion, but according to the various criterion such as travel time, travel cost, 

distance and so on. They extended a dynamic programming solution method for this problem and 

introduced the Fixed Sequence Arc Selection Problem (FSASP) method that efficiently determines 
the arc selection for the fixed sequence of vertices. Lai et al. (2016) studied the routing problem of 

heterogeneous vehicles on multigraphs. They considered different criteria such as time, cost, distance, 

depreciation, fuel consumption, etc. lead to alternative paths. This paper focuses on the development 
of a metaheuristic solution method based on a TS heuristic and FSASP method. Tikani and Setak 

(2018) formulated a reliable time-dependent routing problem with time windows in a multigraph 

based network. They presented efficient methods to solve their proposed model. 

2-3- Contributions of the study 
   Concerning reviewing the related literature, the contributions of this study can be elaborated as 

follows:  

1. We extend the E-VRPTW (proposed by Schneider et al. 2014) according to a special 
representation of the transportation network introduced in the literature called a multigraph 

(see Setak et al. 2015). The impact of the multigraph on the solution quality of E-VRPTW is 

evaluated using different computational experiments. 

2. We consider the queuing system in charging stations, so we add the waiting time to time 
constraints to make more precise time calculations. It may affect the route planning for EVs. 

3. The basic of E-VRPTW belongs to the class of NP-hard problems. However, the existence of 

alternative paths in the network brings more computational challenges to the problem. Herein, 
we provide an efficient SA algorithm for solving the proposed model in an efficient way. 

3- Problem description and model formulation  
    We formulate the electric vehicle routing problem with time windows considering the queuing 

system at charging stations and alternative paths as a mixed integer linear programming (MILP). We 

describe the multigraph representation of the network in subsections 3-1. Queuing system description 

at the charging station is described in subsections 3-2.  Finally, problem modeling is stated in 
Subsections 3-3. 

  

3-1- Multigraph representation of the network  
   We consider a multigraph with alternative paths including two criterion distance and cost. Since 

battery charge consumption function is considered as a linear function in terms of distance, therefore 

different distance edges have different energy consumption. In other words, by increasing or 
decreasing distance, the energy consumption of the edge increases (or decreases) and the travel time 

increases (decreases) in terms of the average speed. Figure 2 shows the representation of a simple 

graph and a multigraph. As depicted in figure the eth parallel arc between two nodes 𝑖 and 𝑗 is 

represented by (𝑖, 𝑗, 𝑒𝑖𝑗). 

 

 

 

         

                

  

 

Fig 1. Representation of simple graph vs. multigraph 
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3-2- Queuing system description at the charging station 
  The time windows make the problem modeling more difficult, because of that special attention 

should be given to the time calculation in this problem. As stated, the number of chargers is limited 

per station and the battery charging time is too long. If the number of EVs is out of the charging 
station capacity, they should wait in the queue to get service (Qui et al. 2013). Thus considering the 

queuing system at charging stations causes the problem to be near to the real world data. In this case, 

due to applying the queuing model indexes to the E-VRPTW mathematical model, the waiting time of 
customers can be saved (Qui et al. 2013) and total travel time and travel costs can be reduced. In this 

study the M / M / s queuing system at charging stations is considered. Figure 2 shows a schematic 

view of the queuing system at the charging station (Said et al. 2013). 

 

 

 

  

 

 

Fig 2. Schematic view of queuing system at the charging station 

    Yang et al. (2013) investigated the EV charging problem and proposed CS selection algorithms. 

The travel time from the point of origin to a charging station, queuing time for charging and charging 

time were considered as the objectives of their model. 

3-3- Problem modeling 

    The vertex set which included depot, customers and charging stations is as follows: 

𝑉 : Set of customers, 𝑉 = {1,2, … , 𝑛} 
F : Set of charging stations 

�́� : Set of dummy vertices generated to permit several visits to each station 

�́� : Set of customers and visits to charging stations (Set of customer vertices including visits to 

recharging stations), �́� = 𝑉 ∪ �́� 

Vertices 0 and n+1 denote the same depot, and every route starts at 0 and ends at n+ 1. 

𝑉0 : Set of customers and start depot, 𝑉0 = 𝑉 ∪ {0} 

𝑉𝑛+1 : Set of customers and end depot, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1}                 
�́�0 : Set of visits to charging stations and start depot, �́�0 = �́� ∪ {0}                           
�́�𝑛+1 : Set of visits to charging stations and end depot, �́�𝑛+1 = �́� ∪ {𝑛 + 1}                 
�́�0 : Set of customers, visits to charging stations and start depot, �́�0 = 𝑉 ∪ �́� ∪ {0}                       
�́�𝑛+1 : Set of customers, visits to charging stations and end depot, �́�𝑛+1 = 𝑉 ∪ �́� ∪ {𝑛 + 1}          
The problem can be defined on a complete graph G = (�́�0,𝑛+1, 𝐴) . 

A : Set of arcs, 𝐴 = {(𝑖, 𝑗, 𝑒𝑖𝑗)) ∣ 𝑖, 𝑗 ∈ �́�0,𝑛+1, 𝑖 ≠ 𝑗}   

𝑒𝑖𝑗 : The eth parallel edge between nodes i and j 

𝐸𝑖𝑗 : Number of parallel edges between nodes i and j 
  

  Each arc has a distance 𝑑𝑖𝑗
𝑒 , a travel time  𝑡𝑖𝑗

𝑒  , an average speed v, and a travel cost  𝑐𝑖𝑗
𝑒

 . The total 

travel cost includes the cost of travel between two nodes and the variable cost. The driver's income, 

the cost of vehicle and battery depreciation, etc., can be considered as the traveling cost which is 

calculated per unit of distance. The variable cost is paid for the alternative paths, therefore the path 
with less distance and travel time should pay the variable cost as a toll charge. In other words, the 

shorter edge between two nodes in comparison with the original route between them has a more 

variable cost. Also, ccs is considered as the battery charge cost when referring to the station node.     

     EVs arrival 

Queue 

Socket plug-in 

EVs departs 

1

 

3

 

2
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Each traveled arc consumes the amount h. 𝑑𝑖𝑗
𝑒

 of the remaining battery charge, where h denotes the 

constant charge consumption rate, so the battery charge consumption function is assumed to be linear. 

A travel time of each arc is calculated according to equation (1). 

𝑡𝑖𝑗
𝑒 =

𝑑𝑖𝑗
𝑒

𝑣
                                                                                                                                                  (1)  

   A set of homogeneous vehicles with a maximal load capacity of Q and a maximal battery capacity 

of B is positioned at the depot. In each problem, up to K vehicles are required for routing. Each vertex  

 i ∈  �́�0,𝑛+1 is assigned a positive demand  𝑞𝑖 = {
0      𝑖𝑓 𝑖 ∉ 𝑉
𝑞𝑖      𝑖𝑓 𝑖 ∈ 𝑉

  and a hard time window [𝑒𝑖 , 𝑙𝑖] in 

which service should start in this interval, but may end after this interval. All vertices i ∈  𝑉0,𝑛+1 have 

a service time Si (S0, Sn+1=0). At a charging station, the difference between the current charge level 

and the battery capacity B is recharged with a charging rate of g. So that the charging time depends on 

the charge level of the vehicle when arriving at the respective station (Schneider et al. 2014). For 
simplification reasons, we also assume a linear charging function. 

   The definition, parameters and required equations for the queuing model of M/M/s at charging 

stations and the calculation of waiting time in the station are as follows: 
   The arrival time of an electric vehicle to the station is independent of others. Therefore, electric 

vehicles visit the charging station according to the Poisson process, and their arrival time is assumed 

to be negative exponential distribution. Since the battery charge level of each vehicle is different and 

independent from others, the time required for charging its battery is also different and memory less. 
Therefore, the battery charge time, in other words, the duration of service at the station also follows a 

negative exponential distribution. Each charger at the station at any moment can serve only one 

vehicle. So, if all the servers are busy, other vehicles will wait in line until the service providers are 
available.  
 

First come First Serve (FCFS) system 

System status is the number of EVs in the charging station. 

λ : Average arrival rate of  EVs  

 

μ :  Average service rate of chargers 

 

ns(i): Number of servers (chargers) in ith charging station, i∈�́�  
 

𝜌(𝑖) : Utilization of the ith server; also the probability that the ith server is busy or the probability that 

someone is being served. 

 

𝐿𝑞(𝑖) : The long-run average number in queue in the ith station 

 

𝑃0(𝑖) : Probability that the system (ith charging station) is empty in the long-run 

 

𝑊𝑞(𝑖) : The long-run average delay in queue per customer in the ith station 

 

                                                                                                                                      (2)    𝜌(𝑖) =
𝜆

𝑛𝑠(𝑖)𝜇
 

          (3)                                                                            𝑃0(𝑖) = [
(

𝜆

𝜇
)𝑛𝑠(𝑖)

𝑛𝑠(𝑖)! (1−𝜌(𝑖))
+ ∑

(
𝜆

𝜇
)𝜈

𝜈!

𝑛𝑠(𝑖)−1
𝜈=0 + 1]

−1

 

                                                                                                              (4)    𝐿𝑞(𝑖) =
(

𝜆

𝜇
)

𝑛𝑠(𝑖)
𝜌(𝑖)

𝑛𝑠(𝑖)! (1−𝜌(𝑖))
2 𝑃0(𝑖) 

                                                                                                                                     (5)    𝑊𝑞(𝑖) =
𝐿𝑞(𝑖)

𝜆
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The decision variables of the problem define as a follows: 

𝑋𝑖𝑗
𝑒

 : Binary decision variable, i ∈  �́�0, j ∈ �́�𝑛+1, i≠j: 

        𝑋𝑖𝑗
𝑒 = {

1      if  one  of  the  vehicles  travels  through  the eth  edge  from  node i  to  node j 
0      otherwise.                                                                                                                                

 

𝑌𝑖 : The remaining battery capacity on arrival at vertex i, i ∈  �́�0,𝑛+1    

𝜏𝑖 : The time of arrival at vertex i, i ∈ �́�0,𝑛+1    

𝑢𝑖 : The remaining cargo on arrival at vertex i, i ∈ �́�0,𝑛+1 

The mathematical model of the problem is as follows: 

min ∑ ∑    𝑐𝑖𝑗
𝑒  𝑋𝑖𝑗

𝑒𝐸𝑖𝑗

𝑒=1𝑖∈𝑉0 ́ ,𝑗∈𝑉𝑛+1́ ,𝑖≠𝑗  + 𝑐𝑐𝑠 ∑ ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1𝑖∈𝑉0 ́ ,𝑗∈�́�,𝑖≠𝑗                                                       (6) 

∑  𝑋𝑖𝑖
𝑒𝐸𝑖𝑗

𝑒=1 = 0                                                                                                                ∀𝑖 ∈ 𝑉0,𝑛+1
́ ,                 (7) 

∑ ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1𝑗∈𝑉𝑛+1́ ,𝑖≠𝑗 = 1                                                                                           ∀𝑖 ∈ 𝑉,                        (8) 

∑ ∑  𝑋0𝑗
𝑒𝐸𝑖𝑗

𝑒=1𝑗∈𝑉𝑛+1́ ,𝑖≠𝑗 ≤ 𝐾 ,                                                                                                                     (9) 

∑ ∑  𝑋𝑖𝑗
𝑒 ≤ 1 

𝐸𝑖𝑗

𝑒=1𝑗∈𝑉𝑛+1́ ,𝑖≠𝑗                                                                                         ∀𝑖 ∈ �́�,                         (10) 

∑ ∑  𝑋𝑗𝑖
𝑒𝐸𝑖𝑗

𝑒=1𝑖∈𝑉𝑛+1́ ,𝑖≠𝑗 − ∑ ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1𝑖∈𝑉0́,𝑖≠𝑗 = 0                                                   ∀𝑗 ∈ �́�,                        (11) 

𝜏𝑗 ≥ 𝜏𝑖 + ∑ ( 𝑡𝑖𝑗
𝑒 + 𝑠𝑖) 𝑋𝑖𝑗

𝑒𝐸𝑖𝑗

𝑒=1 − 𝑙0 (1 − ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1
)                        ∀𝑖 ∈ 𝑉0 , 𝑗 ∈ 𝑉𝑛+1

́  𝑎𝑛𝑑 𝑖 ≠ 𝑗,       (12) 

𝜏𝑗 ≥ 𝜏𝑖 + ∑ 𝑡𝑖𝑗
𝑒

𝐸𝑖𝑗

𝑒=1
 𝑋𝑖𝑗

𝑒 + 𝑔(𝐵 − 𝑦𝑖) + 𝑊𝑞(𝑖) − (𝑙0 + 𝑔𝐵) (1 − ∑  𝑋𝑖𝑗
𝑒

𝐸𝑖𝑗

𝑒=1
) 

∀𝑖 ∈ �́� , 𝑗 ∈ 𝑉𝑛+1
́  𝑎𝑛𝑑 𝑖 ≠ 𝑗,         (13)  

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗                                                                                                             ∀ 𝑗 ∈ 𝑉0,𝑛+1
́ ,                     (14) 

0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑞𝑖 ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1 + 𝑄 (1 − ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1
)                             ∀𝑖 ∈ 𝑉0́, 𝑗 ∈ 𝑉𝑛+1

́  , 𝑖 ≠ 𝑗,            (15) 

0 ≤ 𝑢0 ≤ 𝑄                                                                                                                                                            (16) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − ∑  (ℎ. 𝑑𝑖𝑗
𝑒 )𝑋𝑖𝑗

𝑒𝐸𝑖𝑗

𝑒=1 + 𝐵 (1 − ∑  𝑋𝑖𝑗
𝑒𝐸𝑖𝑗

𝑒=1
)                   ∀ 𝑗 ∈ 𝑉𝑛+1,́ 𝑖 ∈ 𝑉 ,    𝑖 ≠ 𝑗,             (17) 

0 ≤ 𝑦𝑗 ≤ 𝐵 − ∑  (ℎ. 𝑑𝑖𝑗
𝑒 )𝑋𝑖𝑗

𝑒𝐸𝑖𝑗

𝑒=1                                                            ∀ 𝑗 ∈ 𝑉𝑛+1
́ , 𝑖 ∈ 𝐹0́ , 𝑖 ≠ 𝑗,            (18) 

 𝑋𝑖𝑗
𝑒 ∈ {0,1}  ,                                                                                              ∀𝑖 ∈ 𝑉0́, 𝑗 ∈ 𝑉𝑛+1

́  ,   𝑖 ≠ 𝑗,             (19) 
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   The objective function (6) minimizes total traveling and charging costs. Constraint (7) ensures that 
the origin and destination nodes of each vehicle are not similar. Constraint (8) ensures that each 

customer vertex has exactly one successor. Constraint (9) determines the maximum number of routes 

that can be started from the depot. It is equal to the maximum number of EVs. Constraint (10) ensures 

that each station has at most one successor vertex. Constraint (11) or flow constraint notes that the 
number of arrivals at a vertex must be equal to the number of departures. Constraint (12) calculates 

arrival time to each vertex from depot or customers. Constraint (13) calculates arrival time to each 

vertex from charging station which includes the waiting time in the queue. Constraints (14) enforces 
that every vertex is visited within its time window. In addition, Constraints (12)–(14) prevent the 

formation of sub tours. Constraint (15) calculates the remaining cargo on arrival at each vertex. 

Constraint (16) ensures that total cargo does not exceed the capacity of the vehicle. Constraint (17) 
calculates the battery charge level on arrival at each vertex. Constraint (18) calculates the battery 

charge level at the node after the start depot or the station because the battery is fully charged at the 

start depot or station. Constraints (17) and (18) ensure that the battery never be overcharged. 

Constraint (19) defines the decision variable. 

 

3-4- Illustrative example 

    We explain the problem with an illustrative example. We consider three types of problems. The 

first and second examples present E-VRPTW on a simple graph and a multigraph considering queuing 
system at stations (See figure 3 and figure 4) and the third one presents the importance of queuing 

system at charging station (See figure 5). These examples include 10 customer nodes, 3 charging 

station nodes, and a depot. The distance between nodes is calculated according to their geographic 
location in the network. Average speed and battery consumption rate is considered to be 1. The 

maximum number of available EVs is also assumed to be 2. In table 2, the information obtained from 

solving the examples and the best Solution values are expressed.  
   In figure 3, E-VRPTW on a simple graph with a specified value of λ and chargers, are implemented. 
In this example, a low λ value is considered, so that the queuing system does not have any effect on 

the routing scheme. In figure 4, the preceding example is implemented on a multigraph. In figure 4, 

between nodes 2 and 5 as well as nodes 7 and 3 due to traffic congestion, two parallel routes are 
considered. By solving the example, it is found that edge 2 between nodes (2,5) and edge 1 between 

nodes 3 and 7 is more economical. On the edges 2 and 5, due to the long distance and as a result more 

energy consumption, moving on a shorter edge but more costly is economical, but in the edges (3,7), 
the high cost of the edge 2 prevents the selection of edge 2 and the electric vehicle continues its route 

from edge 1. In example 3, charging stations are visited 3 times and in example 4, twice. Each time 

visiting the charging station increases the charging cost and travel time because a relatively long time 

is spent waiting in the queue and charging the battery. Then, by examining examples 3 and 4, it can be 
concluded that the existence of parallel edges causes different route planning and reduces the 

objective function (total cost).  
  In example 5, EVRPTW, as in example 3, is considered on a simple graph. The only difference 
between them is the value of λ. In example 5, the average arrival rate of EVs is considered to be more 

so that the necessity to increase the number of chargers at each station and the number of charging 

stations in the network should be emphasized. Due to the increase in the arrival rate, the waiting time 

in the queue at the station also increases. Compared to example 3 routing changes due to the existence 
of time windows, and more charging stations would be visited, so the total battery charge time and 

cost of the charge would be increased and as a result, the objective function, which is equal to the total 

cost, would be increased. As can be seen in figure 5, each station can be visited more than once. 
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As stated, each example has a different routing scheme. That means the queue and alternative paths 

affect the routing and total cost. 
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Fig 5. Example solution of E-VRPTW on a simple 

graph with emphasis on queuing system. 
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Fig 4. Example solution of E-VRPTW on a simple 

graph 
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Fig 3. Example solution of E-VRPTW on a simple 

graph 

 Depot     Charging station     Customer 
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Table 2. The resulting information of example 4, 5 and 6 
E

x
a
m

p
le

 4
 1
. 
R

o
u
te

 
Vertex D C.1 C.8 CS.3 C.4 C.2 CS.1 C.5 C.6 D   

2
. 
R

o
u
te

 

Vertex D CS.2 C.10 C.7 C.3 C.9 D      

Total cost 256.147 

E
x
a
m

p
le

 5
 1
. 
R

o
u
te

 

Vertex D C.1 C.8 CS.3 C.4 C.2 C.5 CS.1 C.6 D   

2
. 
R

o
u
te

 

Vertex D CS.2 C.10 C.7 C.3 C.9 D      

Total cost 250.477 

E
x
a
m

p
le

 6
 1
. 
R

o
u
te

 

Vertex D C.1 C.8 CS.3 C.3 C.7 CS.2 C.9 C.6 C.5 CS.1 D 

2
. 
R

o
u
te

 

Vertex D C.10 CS.3 C.4 C.2 D       

Total cost 313.080 

 

4- Solution procedure based on SA heuristic 
   The proposed MILP model can be used to solve small-scale instances and a simulated annealing 
algorithm is provided to solve medium-scale and large-scale problem instances. The aim of a 

metaheuristic algorithm is to explore the solution space efficiently, without undercounting all the 

solutions. In this section, we propose a SA algorithm to solve the proposed E-VRPTW considering the 
queuing system and alternative paths.  

   Simulating annealing approach has been proposed by Kirkpatrick et al. (1983), and independently 

by Cerny (1985) for optimization problems. It is one of the commonly used metaheuristics and has 

been successfully applied to solve several types of VRP (Breedam (1995); Chiang and Russell (1996); 
Osman (1993); Bent and Hentenryck (2004); Tavakkoli-Moghaddam et al. (2006); Tavakkoli-

Moghaddam et al. (2011); Afifi et al. (2013); Vincent et al. (2017)).  

   SA has also been applied to the green vehicle routing problem in different studies. For example, 
Xiao et al. (2012), Kassem and Chen (2013), Yasin and Vincent (2015). 

   In fact, SA is based on the analogy with the behavior of physical annealing processes in solids 

(Johnson et al. 1989; Yang et al. 2005). This method uses a stochastic approach to search for solutions 

and move to neighborhood solutions. If a neighborhood solution is better, the current solution 𝑆 will 

be replaced by neighborhood solution 𝑆𝑛𝑒𝑤. However, in SA, moving to a worse neighborhood 

solution would be accepted with a certain probability according to a random number, shown in 

equation 21, in order to avoid being trapped in local optimum space.  

 

𝛥𝑍 = 𝑍𝑠𝑛𝑒𝑤 − 𝑍𝑠                                                                                                                                (20)  

𝑝 = 𝑒(−
∆𝑍

𝑇
)
                                                                                                                                           (21)  
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   The accepted probability is based on two parameters T and 𝛥𝑍 called the temperature, and gradually 
reduces, or cools, in the search process. At the beginning of the search, the temperature is higher, thus 

the accepted probability of the move is higher. However, when nearing the end of the search process, 

the temperature is reduced, and the accepted probability of the move is smaller. Moreover, if the 

neighborhood solution is much worse than the current solution, the accepted probability of the move 
will be smaller. Therefore, the initial temperature, the cooling function, and the final temperature will 

affect the results of SA (Yiyo Kuo, 2010). 

   Note that in each iteration, the temperature is gradually decreased in terms of the positive ratio, as 
well as the search process continues until the temperature is smaller or equal to the final ratio. The 

steps of the proposed SA algorithm are described in algorithm 1. 

 

Algorithm 1. Proposed SA algorithm for E-VRPTW 

Step 1: Randomly choose a sequence of customers as an initial solution 𝑆. Each solution can be 

divided into K routes by splitters which equals one unit less than the number of EVs. 

Step 2: Set Iteration=Iteration+1 and calculate the cost function of the initial solution. 

Step 3: Generate neighborhood solutions 𝑆𝑛𝑒𝑤  randomly and calculate the cost function of the 
neighborhood solution. 

Step 4: If 𝛥𝑍 ≤ 0  

   𝑆 = 𝑆𝑛𝑒𝑤  
else 

   set 𝑆 = 𝑆𝑛𝑒𝑤 , with probability 𝑝 

end 

Step 5: Choose the best solution with the best cost function and set x*=x as the best solution and 
f(x*) as the best cost.  

Step 6: Update T. 

Step 7: If a stopping condition is met (T is smaller or equal to the final ratio) then stop. Else go to  

Step 1. 

 

4-1- Neighborhood structures  
   In this study, three kinds of neighborhood search are exerted in the initial solution: (i) the swap 

operator select a pair of customer nodes in the current solution and exchange their position in the 
sequence. (ii) The reversion operator chooses a pair of customer nodes and reverses the sequence 

between these two nodes. (iii) The insertion operator by preserving the order of the two selected nodes 

removes the first node from its position and then inserts it in position after the second node. Figure 6 

shows an illustration of the operators. In any inner iteration, the neighborhood structure is randomly 
selected. For this purpose, numbers 1 - 3 are assigned to operators, and for each structure, one of these 

numbers is randomly generated and the related operator is applied to the current solution. 
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                                                       (i) Illustrative of the swap operator 

 

   

5 8 4 2 3 1 6 7 

   
 

   

5 8 3 2 4 1 6 7 

 

                                                      (ii) Illustrative of the reversion operator 

 

 
 

  5 8 4 2 3 1 6 7 

   
 

   

5 4 2 3 1 8 6 7 

       

                                                         (iii) Illustrative of the insertion operator 

Fig 6. Representation of neighborhood searches 
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4-2- Penalized objective function 
   We evaluate a solution by the following penalized cost function: 

  𝑓(𝑆) = 𝑍(1 + 𝛼𝑀𝑒𝑎𝑛𝐶𝑉(𝑆) + 𝛽𝑀𝑒𝑎𝑛𝑇𝑊𝑉(𝑆))       (22) 

 

   Where 𝑍 denotes the total cost, 𝑀𝑒𝑎𝑛𝐶𝑉(𝑆) the mean of capacity violation, 𝑀𝑒𝑎𝑛𝑇𝑊𝑉(𝑆) the 

mean of the time windows violation and 𝛼, 𝛽 are factors for weighting the violations. 

4-3- Unfeasibly condition check in the proposed SA 
   A solution is infeasible if one of the following conditions holds: 

K: Number of routes in the solution 

𝑅𝑘: Subset of all vertices in the 𝑘th route 

𝑘 ∈ 𝐾 ∧ ∑ 𝑞(𝑖)

𝑖∈𝑅𝑘

 > 𝑄                                                                                                                                     (23) 

𝑘 ∈ 𝐾 , 𝑖 ∈ 𝑅𝑘 ∖ {�́�}, 𝑗 ∈ 𝑅𝑘 ∧  𝜏(𝑖) + 𝑠(𝑖) + 𝑡𝑒(𝑖, 𝑗) < 𝑒(𝑗)                                                                    (24) 

𝑘 ∈ 𝐾 , 𝑖 ∈ 𝑅𝑘 ∖ {�́�}, 𝑗 ∈ 𝑅𝑘 ∧  𝜏(𝑖) + 𝑠(𝑖) + 𝑡𝑒(𝑖, 𝑗) > 𝑙(𝑗)                                                                     (25) 

𝑘 ∈ 𝐾 , 𝑖 ∈ 𝑅𝑘 ∖ {𝑉0,𝑛+1}, 𝑗 ∈ 𝑅𝑘 ∧  𝜏(𝑖) + 𝑠(𝑖) + 𝑡𝑒(𝑖, 𝑗) + 𝑊𝑞(𝑖) < 𝑒(𝑗)                                          (26) 

𝑘 ∈ 𝐾 , 𝑖 ∈ 𝑅𝑘 ∖ {𝑉0,𝑛+1}, 𝑗 ∈ 𝑅𝑘 ∧  𝜏(𝑖) + 𝑠(𝑖) + 𝑡𝑒(𝑖, 𝑗) + 𝑊𝑞(𝑖) > 𝑙(𝑗)                                          (27) 

𝑘 ∈ 𝐾 ∧  ∑ ℎ. 𝑑𝑖𝑗
𝑒

𝑖∈𝑅𝑘,𝑗∈𝑅𝑘

 > 𝐵                                                                                                                           (28) 

   Equation (23) refers to violations of the EVs capacity. If the total demand of the route is higher than 

EVs capacity, this route can be labeled infeasible. Equations (24)-(27) refer to violations of the time 
windows. In equations (26) and (27) the service time refers to battery charging duration. Equation 

(28) is based on EVs battery capacity violation. If total charge consumption of the route is higher than 

EVs battery capacity and charging station cannot be inserted in the route, this route can be labeled as 

infeasible. 

The following equations calculate the constraint violations.   

∀ 𝑘 ∈ 𝐾, 𝑇𝐶(𝑘) = ∑ 𝑞(𝑖)                        𝑖∈𝑅𝑘
                                                                                         (29)                

𝐶𝑉(𝑘) = max (
 𝑇𝐶(𝑘)

𝑄
− 1,0)                                                                                                                (30)            

𝑀𝑒𝑎𝑛𝐶𝑉 = mean(CV)                                                                                                                       (31)      

The capacity violation of the route  𝑘 ∈ 𝐾 is calculated by equation (30) and the total capacity penalty 

of the solution S is calculated by mean of the individual violations of all routes as equation (31) 

(Tikani and Setak, 2019).  

∀𝑖 ∈ 𝑅𝑘 , 𝑇𝑊𝑉(𝑖) = max ([0,1 −
𝜏(𝑖)

𝑒(𝑖)
,

𝜏(𝑖)

𝑙(𝑖)
− 1])                                                                                 (32)            

𝑀𝑒𝑎𝑛𝑇𝑊𝑉 = mean(TWV)                                                                                                                (33)      
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The time windows violation of the route  𝑘 ∈ 𝐾 and the total time windows penalty of the solution S 

is calculated by equations (32) and (33) respectively. 

4-4-The process of insertion or removing a charge station into a solution 

   In the following, we describe how to calculate the total cost of a solution and how to insert a 

charging station if needed or remove it. First, solution S is divided into K routes. Then, 𝑇𝐶(𝑘) and 

𝐶𝑉(𝑘)for 𝑘 ∈ 𝐾, 𝜏(𝑖) for 𝑖 ∈ 𝑅𝑘 and the total violation of capacity and time windows MeanCV and 

MeanTWV are calculated. Here is the process of calculating the total cost of VRP. If the value of 
MeanCV and MeanTWV are zero, the solution is feasible and the process continues otherwise, the 

total cost is considered as the total cost of the infeasible solution. Further, VRP should be converted to 

E-VRP. To this end, after confirming the feasibility of route 𝑘(𝑘 ∈ 𝐾), the total charge consumption 

(TCC) of the route is calculated, if it is less than the capacity of the battery, the path will be released 

in the same way and at the same cost, else the required charging station number (NCS) is calculated.  

   We insert these stations respectively. The first station is inserted between the pairs of nodes 

considering the following hints: 

1) The charge consumption from origin to the first station is less than battery capacity. 
2) The constraint of time windows is met. 

3) The cost of the detouring is at least possible. 

Other charging stations are inserted considering the following hints:  

1) The charge consumption from the previous station to this one is less than battery capacity. 
2) The constraint of time windows is met. 

3) The cost of the detouring is at least possible. 

If one of the above hints is not met, the charging station is removed from the route.  
   After inserting NCS number of the charging station, the total charge consumption between the last 

station and the end depot is calculated. If this value of a solution is higher than battery capacity, a new 

charging station is inserted according to the above. 
Figure 7 shows a schematic of insertion and removal process of E-VRP (Schneider et al. 2014). 

 

 

 

 

                                                

 

 

 

  

                                                

 

 

 

Fig 7. Insertion and Removal of a charging station 

Finally, the total cost of the route is calculated by adding the cost of detouring and the charging cost 

to the 𝐶(𝑘). 
 

4-5- Handling the parallel links in the proposed SA 

   The above description is used for solving an E-VRPTW on a simple graph. For converting the graph 

to a multigraph, we randomly generate the sequence of positive integer numbers which is smaller or 
equal to the number of parallel edges. Each member of the sequence represents the parallel edge of 

the pairs of nodes. Therefore the value of distance, time and charge consumption between pairs of 

  a) Insertion process 

b) Removal 

CS 

j i 

CS 

j i 

CS CS 
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nodes is calculated based on the related sequence. Figure 8 shows a schematic of the selection process 
of parallel edges in the proposed approach. 

 

 

 

 

1 3 … 2         3 3 … 

 

 

                                                 

 

Fig 8. Selection process of parallel edges 

5- Computational study 
   In this section, we express the computational results obtained from solving instances with different 

scales and sensitivity analysis on some parameters of the mathematical model.  

  

5-1- Numerical results 
    We perform the presented model on a computer equipped with an Intel Core i5 processor with 2.5 

GHz speed and 4 GB RAM and operating on Windows 8.1. We also analyze the performance of a SA 
algorithm on the small-scale instances solved by using GAMS software version 23.5.1 with CPLEX 

solver. The value of parameters related to the E-VRPTW is addressed in Schneider et al. (2014). The 

parameters of the queuing system and alternative paths are presented in table 3 and table 4 

respectively. 
   Yang. J. et al. (2017) calculated the average battery charge time at public charging stations for the 

various power of charging devices and average daily service rates. According to the data of this paper, 

the average service rate is considered to be 2. Due to the queuing system stability, the value of 

𝜌(𝑖) should be less than 1. Otherwise, the system is unstable and the queue length is infinite. 

Moreover, the average arrival rate of EVs is randomly generated, so that it should be satisfied the 

system stability and also the waiting time at charging station does not exceed the time windows of 
station and depot nodes. 

 

    Table 3. Queuing system parameter values for the numerical experiments. 

Parameter Description Values 

𝑛𝑠(𝑖) 
Number of 

chargers 
Uniform[20,35],Integer 

𝜆 
Average arrival 

rate 

Uniform[
𝜇.min

𝑖
𝑛𝑠(𝑖)

2
, 𝜇. min

𝑖
𝑛𝑠(𝑖)], 

Integer 

 

 

   According to table 4, we solve three types of instances which are different from the perspective of 

alternative paths. The main data of instances are produced in Schneider et al. (2014). It should be 

noted that instances of type 1, 2 and 3 have one, two and three parallel edges between pairs of nodes, 
respectively. Also, each type of instances has specific parallel edges distance and variable cost. 

Moreover, the pairs of nodes are randomly chosen.   

1.Route 2.Route 



300 
 

 

                                     Table 4. Alternative paths parameter values for the numerical experiments 

Ins. type 

# of 

parallel 
edges 

𝑑1 𝑑2 𝑐1 𝑐2 𝑐𝑐𝑠 

1 1 𝑑1 0.5𝑑1 𝑑1 𝑑2 + 0.65𝑑1 5 

2 2 𝑑1 0.6𝑑1 𝑑1 𝑑2 + 0.42𝑑1 5 

3 3 𝑑1 0.4𝑑1 𝑑1 𝑑2 + 0.70𝑑1 5 

   

 We assume the average speed of EVs on each arc as a constant value which is addressed in Schneider 

et al. (2014). The charging cost is also assumed to be 5. The results of solving different scaled 

instances in the simple graph and multigraph are presented in Table 5.  
   We found the best solution for all instances based on the number of customers (C), the number of 

Charging stations (CSs) and the number of EVs required (K). Furthermore, the best solution value is 

calculated by selecting the minimum number of vehicles. The obtained answers for simple graphs are 

more or equal to multigraphs. Because in simple graphs, due to the long distance of edges, the battery 
consumption is much higher. %Δf shows a percentage of cost reduction. It implies that using a 

multigraph network may decrease the total cost of EVs routing. Moreover, visiting the station 

increases the charging cost as well as the objective function. Multigraphs may reduce the number of 
visits to the charging station. 
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Table 5. Numerical results 

Inst. 

 
Inst. 
type 

#of 
C 

#of 
CSs 

#of 
K 

λ 

                    Best Solution       Time(s)* %Δf 
data          GAMS    SA GAMS SA  

      S.            M.      S.            M.           M.  

1 c103c5 1 5 1 2 30 177.97 177.97 177.97 177.97 0.56 2.2 0 

2 c101c5 1 5 2 3 31 257.15 245.23 257.15 245.23 0.27 3.9 4.64 

3 rc204c5 3 5 3 2 38 190.16 183.34 190.16 183.34 0.43 5 3.59 

4 r202c5 2 5 2 2 28 147.65 147.65 147.65 147.65 0.48 1.9 0 

5 rc105c5 3 5 4 2 37 256.3 247.04 256.3 247.04 1 2.6 3.61 

6 r103c10 2 8 2 2 37 157.91 150.89 157.91 150.89 0.62 4.3 4.45 

7 r203c10 2 8 4 1 45 217.06 217.06 217.06 217.06 20.2 4.42 0 

8 rc204c5 3 8 2 2 29 349.84 232.16 349.84 232.16 5.99 4.6 33.63 

9 r201c10 2 10 3 2 25 256.15 250.48 256.15 250.48 5.49 8.8 2.14 

10 c202c10 1 10 4 2 34 305.69 303.47 305.69 303.47 6.8 6.17 0.73 

11 r103c10 2 10 2 3 41 211.87 200.63 211.87 200.63 20.5 12.2 5.31 

12 rc205c10 3 10 3 2 36 349.79 344.75 349.79 344.75 1.43 9.16 1.44 

13 c104c10 1 10 4 2 27 288.93 284.29 288.93 284.29 10.8 9.5 1.61 

14 c208c15 1 12 3 2 23 310.28 310.28 310.28 310.28 4.73 8.31 0 

15 r103c15 2 12 4 3 20 315.57 315.57 315.57 315.57 5.1 9.41 0 

16 rc103c15 2 12 4 4 29 404.55 402 404.55 402 42 11.6 0.63 

17 c208c15 1 15 4 2 41 315.55 315.55 315.55 315.55 12.1 19.8 0 

18 rc103c15 3 15 5 4 22 417.67 412.05 417.67 412.05 574 22.3 1.35 

19 c202c15 1 15 5 2 35 408.62 408.62 408.62 408.62 954 38.11 0 

20 r102c15 2 15 7 5 32 459.34 449.50 459.34 449.50 721 31.7 2.14 

21 c101-21 2 18 5 3 47 - - 196.1 191.13 - 16.07 2.53 

22 c101-21 3 20 5 3 41 - - 206.99 201.8 - 24.27 2.5 

23 c202-21 1 20 4 2 43 - - 217.88 198.06 - 26.06 9.1 

24 c101-21 3 22 5 3 41 - - 222.16 222.16 - 37.18 0 

25 c101-21 3 24 6 4 36 - - 253.8 251.03 - 49.9 1.09 

26 c101-21 2 26 5 4 48 - - 255.18 255.18 - 117.5 0 

27 c202-21 1 26 3 3 40 - - 264.49 264.49 - 24.32 0 

28 c101-21 3 28 6 4 39 - - 259.18 256.41 - 91.8 1.07 

29 c202-21 3 30 4 3 40 - - 277.67 277.67 - 40.79 0 

30 rc108-21 3 30 3 3 29 - - 423.08 419.12 - 134.6 0.94 

Avg.        279.15  271.19 - - 2.86 

            * t(min) 

 

5-2- Sensitivity analysis 

    In order to illustrate the impact of some parameters, sensitivity analysis is performed in this section. 
The sensitivity analysis of the waiting time in the queue (see equation (5)) in terms of service rates 

and different arrival rates are displayed in figure (9) and figure (10). We consider 20, 30 and 40 

number of the server at each station as well as 2 and 1 per hour for service rates. 
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Fig 9. The waiting time in the queue at the charging station for the service rate of 1 

 

Fig 10. The waiting time in the queue at the charging station for the service rate of 2 

    According to the above figures, in order to a specific number of server, the higher service rate can 

service the higher value of λ, so that the stability of the queuing system is retained. Also, for the 

specified λ, the waiting time in the queue in figure (10) is less than figure (9), since its service rate is 
higher. As the popularity of these vehicles increases, the arrival rate is expected to rise in the near 

future. So the number of stations and charging devices in each station and service rates should be 

increased to allow the system to meet demand. As shown in figures (9) and figure (10), by increasing 

the average arrival rate of EVs, at a fixed service rate, the number of charging devices (chargers) 
should be increased. Moreover, by increasing the power of the charging devices, the charging time of 

the battery and as a result, the service rate will be increased, so that the system will be able to service 

more vehicles.  
    In figure (11), the sensitivity analysis of the EV battery capacity and its effect on the objective 

function are shown. The higher battery capacity improves the driving range of EV, so the charging 

cost is reduced. Therefore, special attention should be paid to the battery industry in order to prepare 
high quality and high capacity batteries. 
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Fig 11. The effect of battery capacity on the objective function 
 

 

6- Conclusion and future works 
    We propose the modeling of electric vehicle routing on multigraphs (distance-cost/energy 

consumption/cost) considering the queuing system in battery charging stations. Then the proposed 

model was solved by CPLEX solver and SA algorithm for the instances of different scales and the 
results were presented in a table. The demand for EVs is expected to rise in the near future. Therefore 

the importance of investigating issues related to them is also remarkable. One of the advantages of 

this research is the use of a queuing system in battery charging stations. Nowadays, one of the most 

important weaknesses in these vehicles is the shortage of their charging stations in the network. So 
considering the queuing system in modeling shows the importance of increasing the number of 

stations and the power of charging devices, as well as the effort to reduce the battery charge time. 

Another advantage of this paper is the use of multigraph which keeps available alternative paths with 
several criteria in the network. To this end, we develop E-VRPTW with alternative paths based on 

two criteria of energy consumption and cost because multigraphs are more consistent with transport 

networks. So these two cases bring the E-VRPTW model closer to reality. The proposed directions for 

future research are as follows: 

1. Proposing an exact algorithm like benders algorithm or column generation method to solve 
the large instances in an acceptable computational time. 

2. Incorporating the decisions about the location of charging stations in the proposed model.  

3. Utilizing two types of battery charging stations and swapping stations in the model. 
4. Developing useful research in the field of battery charging and consumption rates. 
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