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Abstract 
Several methods have been proposed for ranking the decision making units (DMUs) in 

data envelopment analysis (DEA) with imprecise data. Some methods have only used 

the upper bound efficiencies to rank DMUs. However, some other methods have 

considered the both of the lower and upper bound efficiencies to rank DMUs. The 

current paper shows that these methods did not consider the DEA axioms and may be 

unable to produce a rational ranking. We show that considering the imprecise data as 

stochastic and using the expected efficiencies to rank DMUs give better results. Indeed, 

we propose a new ranking approach, based on considering the DEA axioms for 

imprecise data that removes the existing drawbacks. Some numerical examples are 

provided to explain the content of the paper. 

Keywords: Data envelopment analysis (DEA), efficiency measure, expected 

efficiencies, imprecise data 

 

 

1-Introduction 
   Charnes et al. (1978) developed data envelopment analysis (DEA) for performance evaluation of 

several similar decision making units (DMUs). In this model, it is supposed that the values of inputs and 

outputs are exactly known. However, in many real applications, these values are imprecise.  

Imprecise data have various types: interval (bounded) data, weak and strong ordinal data, ratio bound 

data, multiplied order data, and so on. The mathematical representation of these data is given in Park 

(2007). So far, different approaches have been developed to calculate the relative efficiencies with the 

imprecise data in DEA. Some methods are given to rank DMUs based on only the upper bound 

efficiencies (Cooper et al. 1999, 2001; Kim et al. 1999; Lee et al. 2002; Zhu 2003, 2004; Park 2004). 

Some other methods are developed to calculate the lower and upper bound efficiencies to rank DMUs 

(Despotis and Smirlis 2002; Wang et al. 2005; Kao 2006; Park 2007). 

   Cooper et al. (1999) considered the interval and weak ordinal data in DEA and named the new 

nonlinear model as imprecise DEA (IDEA). They converted the model into an equivalent linear model 

through the scale transformation and variable alterations. Kim et al. (1999) used IDEA for performance 

evaluation in Telephone offices. Lee et al. (2002) extended the IDEA concept to the additive DEA model. 

Despotis and Smirlis (2002) developed two linear programming to estimate the lower and upper bound 

efficiencies by considering the pessimistic and optimistic state for each DMU.  
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   Zhu (2003) showed that the scale transformation in the Cooper et al. (1999, 2001) approach is 

redundant. He converted the interval and weak ordinal data into the exact data to estimate the relative 

efficiencies.  

   Zhu (2004) used the method for performance evaluation in the Korean Mobile Telecommunication 

Company. Zhu (2003) and Park (2004) have used the same variable alteration to convert the nonlinear 

IDEA model into a linear model. 

   Wang et al. (2005) proposed two linear mathematical programming to obtain the lower bound and upper 

bound efficiencies by considering a unique production frontier for all DMUs. Kao (2006) emphasized that 

the efficiency scores should be imprecise in the presence of imprecise data. He proposed two two-level 

mathematical programming to calculate the lower bound and upper bound efficiencies. Park (2007) used 

the concept of supremum and infimum and proposed a mathematical programming for calculating the 

lower bound efficiencies.  

    Park (2010) investigated the dual model of IDEA and its relationships with primal problem based on 

the duality theory in IDEA. Marbini et al. (2014) investigated the performance evaluation in the presence 

of interval data, without sign restrictions. He et al. (2016) developed some DEA models to improve the 

inputs and outputs of inefficient DMUs such that their upper bound efficiency scores become one, in the 

presence of interval data. Ebrahimi et al. (2017) proposed a new nonlinear model to efficiency measure in 

the presence of both general weight restrictions and different types of imprecise data. They proposed a 

simulation-based genetic algorithm to estimate the efficiencies. Ebrahimi and Rahmani (2017) developed 

a mixed integer DEA model to find the best BCC-efficient DMUs by solving only one model. Ebrahimi 

and Khalili (2018) developed a new mixed integer DEA model to find the best DMU in the presence of 

both weight restrictions and different types of imprecise data. They utilized the model to find the best 

supplier in the presence of assurance region type I and interval and ordinal data. Ebrahimi et al. (2018) 

investigated the existing methods to estimate the efficiencies in the presence of interval and ordinal data. 

They illustrated some drawbacks of the existing methods and proposed a new method to calculate the 

efficiency scores. 

    It should be noted that the IDEA approach has been used to efficiency measure in many real-life 

applications. Farzipoor Saen (2007) applied the proposed method by Zhu (2003) for ranking the suppliers 

in the supplier selection problem. Asosheh et al. (2010) presented a mixed integer IDEA model to find the 

most efficient information technology (IT) projects. Ebrahimi et al. (2014) studied the drawbacks of the 

proposed model by Asosheh et al. (2010). They showed that the model is unable to find the best IT 

project and proposed a new approach to eliminate the drawbacks. Toloo and Nalchigar (2011) developed 

a new mixed integer imprecise DEA model to find the best supplier in the supplier selection problem. 

They used the proposed method of Zhu (2003) to handle the imprecise data and utilized their model to 

find the best supplier among 18 supplier in the presence of both interval and ordinal data. 

    Karsak and Dursun (2014) presented a supplier selection methodology by using the IDEA and Quality 

function deployment (QFD). Toloo (2014) presented a mixed integer programming IDEA model to 

determine the best supplier in the supplier selection problem. Chen et al. (2017) developed some 

mathematical DEA models to cope with bounded and Likert scale data. They have used the models for 

performance evaluation of the regional energy efficiency in China. Khalili-Damghani et al. (2015) applied 

the DEA model to efficiency measure of combined cycle power plant in the presence of interval data. 

Baghery et al. (2016) applied the DEA model to prioritize failures in the automotive industry with interval 

data. Toloo et al. (2018) developed some new DEA models to calculate the lower and upper bound 

efficiencies in the presence of interval dual-role factors. They used the models to efficiency measure in 

bank branches. 

    As literature review shows, different approaches have been developed to calculate the relative 

efficiency scores in the presence of imprecise data. In the next section, we show that considering the 

lower bound and upper bound efficiencies to rank DMUs may gives incorrect ranking. We explain the 

problems in the theory and use some numerical examples to clarify them. Therefore, the main 

contributions of the paper is as follows: 

 Showing the drawbacks of existing methods to rank DMUs in the presence of imprecise data. 
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 Developing a new algorithm to rank DMUs, based on considering the DEA axioms for imprecise 

data. The algorithm eliminates the drawbacks. 

It should be here emphasized that the proposed approach in this paper uses a set of exact data instead of 

imprecise data to calculates the efficiencies and expected efficiencies. To efficiency measure in the 

presence of random noise in terms of measurement errors, specification errors and also chance constraint 

DEA models the interested readers can refer to Olesen and Petersen (2016). 

   The rest of the paper is organized as follows: in section 2, we explain the drawbacks of the existing 

approaches. Section 3 explains the developed approach of this paper. Numerical examples and 

conclusions are given in sections 4 and 5, respectively. 

 

2-The problems of the existing methods 
    This section explains the problems of the existing methods to efficiency measure in the DEA model 

with imprecise data. First, we study the proposed method by Park (2007). He applied the concept of 

supremum and infimum and developed the following model (1) to estimate the lower bound efficiency 

score of DMUp. 
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   In this model 
i  and 

r  represent the imprecise data for inputs and outputs, respectively. 

It should be noted that the upper bound efficiency score can be calculated by using the mentioned 

methods in the previous section, such as Cooper et al. (1999, 2001) and Zhu (2003). The model to obtain 

the upper bound efficiency score is as follows: 
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Based on the lower and upper bound efficiencies, Park (2007) classified DMUs into three groups, as 

follows. 

Inefficient: the upper bound efficiency score is less than one. 

Potentially efficient: the upper bound efficiency score is equal to unity, but the lower bound is less than 

one. 

Perfectly efficient: the lower bound efficiency score is equal to unity. 

To solve the model (1), the procedure of calculating the Inf and Sup for ordinal data is as follows. 

Suppose the i
th
 inputs of DMUs is in a weak ordinal format, as shown in (3). 

ikpiippiii xxxxxx   ...... 1,1,21               (3) 

Since, DEA models have the unit-invariant property, therefore, Park (2007) normalized the data of 

relation (3) as shown in (4). 

1......0 ''
1,

''
1,

'
2

'
1   ikpiippiii xxxxxx               (4) 

Now, the Inf and Sup are calculated as follows (DMUp is under evaluation): 

pjxxxxxxx

xxxxxxx

ikpiippiiiij

ikpiippiiiip









,0}1......0inf{

1}1......0sup{

''
1,

''
1,

'
2

'
1

'

''
1,

''
1,

'
2

'
1

'

              (5) 

In other words, before solving the model (1), the weak ordinal data (3) is replaced with the following 

integer numbers. 

pjxx ijip  0&1  

Obviously, these numbers are infeasible to use in the model (1). Indeed, the correct numbers are 

10&1  pjxpbx ijib , to keep the relation (3). 

   To show the problem in more detail, let the numerical example is used in Park (2007). In this example, 

there are eight telephone offices with three inputs and three outputs. The data of third output is in the 

weak ordinal format as follows: 

}{ 3832363137333534
8

33 xxxxxxxxRxD                (6) 

    According to the Park (2007) approach, to evaluate the DMU1 the vector of )0,0,0,0,0,0,0,1(*
3 x  is 

used instead of weak ordinal data (6), that is infeasible. However, applying the feasibility condition 

implies that we should use )0,1,0,1,1,1,0,1(*
3 x . Furthermore, Park (2007) method uses only zero and one 

for all ordinal data. It should be noted that, the probability of occurrence of these data is near to zero in 

practice. 

   The above discussion shows that Park (2007) has used a set of infeasible integer numbers instead of 

weak ordinal data. As a result, the obtained lower bound efficiency score will be incorrect with these data. 

It should be noted that Park (see the last paragraph on pp. 536) claimed that the efficiency score will be 

safe and sound if the exact data set is infeasible or not. But, it is so easy to give an example to show that 

the claim is incorrect. 

   Moreover, in the following example, we show that the Park (2007) method and also some other existing 

methods give incorrect result in some cases. 
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Example 1: Consider three DMUs, each uses two weak ordinal inputs to produce one ordinal output, as 

given in table 1. 

 
Table 1. Data for 3 DMUs 

DMU No. Input 1 (ordinal)
* 

Input 2 (ordinal)
* 

Output (ordinal)
*
 

1 11x  21x  11y  

2 12x  22x  12y  

3 13x  23x  13y  

* ranking such that 111213 xxx  , 212223 xxx  , 131211 yyy   

     It is easy to see that DMU3 dominates DMU2, and DMU2 dominates DMU1. In other words, a wise 

decision maker ranks these DMUs as: DMU3> DMU2> DMU1. However, we show that the existing 

methods give an incorrect ranking for the example.  

    Applying the proposed methods of Cooper et al. (1999, 2001), Zhu (2003, 2004), Park (2004) and other 

existing methods to calculate the upper bound efficiency scores, yield that all of the DMUs are efficient. 

It should be noted that just in one special situation, 111213 xxx   & 212223 xxx   & 131211 yyy  , that 

occurs with zero probability in practice, all of the DMUs are efficient. 

    Also, the existing methods to rank DMUs based on considering the both of lower and upper bound 

efficiencies give incorrect results. We use the approach of the Park (2007) to calculate the lower bound 

efficiencies. The efficiencies are calculated in both states, considering the feasibility condition and 

without considering the feasibility conditions. The results are summarized in table 2. 

 
Table 2. The results of the Park (2007) method to calculate the lower bound efficiencies 

The DMU under 

evaluation 

The values of 

variables 

Without considering feasibility Considering feasibility 

DMU1 DMU2 DMU3 DMU1 DMU2 DMU3 

'*
11x  1 0 0 1 1 1 

'*
12x  0 1 0 0 1 1 

'*
13x  0 0 1 0 0 1 

'*
21x  1 0 0 1 1 1 

'*
22x  0 1 0 0 1 1 

'*
23x  0 0 1 0 0 1 

'*
11y  0 1 1 0 0 0 

'*
12y  1 0 1 1 0 0 

'*
13y  1 1 0 1 1 0 

Lower bound 

efficiencies 
0 0 0 0 0 0 

 

    The results show that based on Park (2007) approach, the efficiency scores of the three DMUs is equal 

to [0 , 1]. In other words, the DMUs have the same rank, that is unacceptable. It should be noted that the 

proposed methods by Despotis and Smirlis (2002), Wang et al. (2005) and Kao (2006) also gives a similar 

result. In other words, all of the existing methods produce incorrect ranking for the example. 
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In the next example, we find another problem in Park (2007) method. Indeed, we show that the method is 

unable to calculate the lower bound efficiencies in some cases. 

Example 2: Consider two DMUs, each uses one ordinal input to produce one precise output.  

 
Table 3. data for 2 DMUs 

DMU No. Input (ordinal)
* 

Output (exact) 

1 11x  2 

2 12x  4 

* ranking such that 1211 xx   

The basic maximin DEA model to calculate the relative efficiency score is as follows: 
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The model can be converted to the linear CCR-DEA model (Khalili et al. 2010). 

The result of calculating the Inf and Sup based on Park (2007) approach is presented in table 4. It is easy 

to see that it is impossible to calculate the efficiencies for these data by using the model (7), except DMU1 

by considering the feasibility condition. So, the ranking of DMUs is not possible. 

 
Table 4. The values of ordinal data by using the Park (2007) method 

 

Overall, the drawbacks of the existing methods can be summarized as follows: 

 Replacing ordinal data with a set of infeasible integer numbers to calculate the lower bound 

efficiencies. Obviously, the infeasible solutions lead to the incorrect optimal solution in the 

mathematical programmings. 

 Produce incorrect ranking, as shown in the example 1. 

 In some cases, the existing methods are unable to calculate the lower bound efficiencies, and so 

unable to rank DMUs. 

 Using only zero and one instead of ordinal data that their occurrence possibility is near to zero in 

practice. 

 

3-The proposed algorithm 
   The existing interval-data methods are capable to find the largest possible efficiency and the smallest 

possible efficiency scores. However, the probability of their occurrence is too small to have practical 

meaning. In the following, we propose a new method to rank DMUs in the presence of imprecise data, by 

considering the efficiency distribution. First, we mention the first axiom of the DEA that helps us to 

develop this method. 

The DMU under  

evaluation 

The values of variables 

Without considering feasibility Considering feasibility 

DMU1 DMU2 DMU1 DMU2 

'*
11x  1 0 1 0 

'*
12x  0 1 1 1 

Lower bound efficiencies 
Cannot be 

calculated 

Cannot be 

calculated 
0.5 

Cannot be 

calculated 
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   The production possibility set (PPS) and the DEA model are based on some axioms. The first axiom is 

inclusion of observation. In the presence of imprecise data, there is not precise observed data to construct 

the PPS. To clarify the topic, consider the data presented in table 3. For this data, the PPS with constant 

returns to scale (CRS) technology is  4&0:),( 2  yxRyx  that has been shown in figure 1. For this 

PPS, the production frontier is the line between )0,0(  and )4,0( , that is meaningless. In other words, by 

this PPS it is impossible to calculate the relative efficiencies. This problem shows that the DEA axioms 

are necessary to build the PPS and determine the production frontier. The previous methods did not 

consider the axiom that leads to the incorrect results. 

 

 

 

 

 

 

   To consider the inclusion of observation axiom, the imprecise data can be replaced with random 

numbers. In other words, we generate a sufficient amount of random data instead of imprecise data. More 

specially, for ordinal data of table 3, the random data can be generated as follows. First, we generate a 

random number in interval [0 , 1] for x12. Then, the value of x11 is randomly generated in interval of [0 , 

x12]. Since, there is no information about the probability distribution of the imprecise data, so it can be 

assumed uniform. In this case, the steps of the proposed algorithm are as follows: 

 Generating uniform random data with N iterations. 

 Calculating efficiencies for all DMUs with the data obtained from previous stage. At this stage, N 

efficiency scores for each DMU will be obtained. 

 Calculating the average efficiency score of efficiencies. Indeed, the average efficiency is an 

estimation of the expected value of efficiencies. 

 Ranking DMUs based on the expected efficiencies, DMUj1 dominates DMUj2 if and only if the 

expected efficiency score of DMUj1 is greater than DMUj2.  

   Obviously, increasing N leads to obtain the more exact expected efficiencies. If we were able to extract 

the efficiency distribution, we could calculate the exact value of expected efficiencies. Indeed, the 

average efficiency is an estimation of expected efficiency, so these values will be approximately equal by 

increasing the value of N. To show the benefits of the proposed approach we apply it to examples 1 and 2, 

in the next section. 

 

4-Numerical illustration 
   In this section, to demonstrate the capability and applicability of the proposed method we apply it to the 

data presented in tables 1 and 3 and discuss the results. 

Example 3: As discussed in example 1, the existing methods are unable to rank the three DMUs, 

presented in table 1. We apply the proposed approach in the previous section for this example with 

001.0 . The results are provided in table 5, for different values of N. The minimum, maximum, 

standard deviation (SD) and average efficiencies are calculated for each DMU. As we expected, the 

DMU2 

DMU1 

PPS 

 

y 

x 

Fig 1. PPS for the data presented in table 3 

Production frontier 
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DMU3 is always efficient, for different values of N. But, the DMU1 and DMU2 are inefficient with the 

average efficiency scores of 0.0914 and 0.336, respectively. A visual inspection reveals that the averages 

efficiencies do not differ much for 1000N  for all DMUs. For 2000N  the differences between the 

average efficiencies appears at the third digit after the decimal point for all DMUs. 

   As it can be seen and also we expected, as the value of N increases, the lower bound and upper bound of 

the efficiencies expand accordingly. 

 

Table 5. The result of the proposed approach for data presented in table 1 

N 

The Average, Standard Deviation (SD), Minimum and Maximum efficiency scores. 

DMU1 DMU2 DMU3 

Ave. SD Min Max Ave. SD Min Max 
Ave

. 
SD Min Max 

10 0.0418 0.1869 0.0094 0.0908 0.3260 0.2793 0.0516 0.5403 1 0 1 1 

100 0.0961 0.1265 4.4268e-05 0.5347 0.3422 0.2574 0.0046 0.9086 1 0 1 1 

1000 0.0987 0.1166 2.4921e-06 0.7990 0.3361 0.2343 7.6826e-04 0.9717 1 0 1 1 

2000 0.0912 0.1099 3.1149e-05 0.7607 0.3334 0.2321 6.1184e-04 0.9834 1 0 1 1 

5000 0.0914 0.1096 2.4148e-06 0.8172 0.3359 0.2320 4.7377e-05 0.9930 1 0 1 1 

Rank 3 2 1 

 

   It should be noted that considering the efficiency distribution is very important. In most of existing 

methods, only the lower and upper bound efficiencies are used to rank the DMUs. As it can be seen, for 

5000N , the average efficiency score of DMU2 is near to 0.336 with lower bound of 4.74*10
-5

 and 

upper bound of 0.993. The efficiency distribution of DMU2 is shown in figure 2 for different values of N. 

We divided the efficiency score of [0 , 1] into 20 equal segments. The Y-axis is the efficiency frequency 

for different range of efficiency. The charts show that the efficiency distribution is not uniform. If it was 

uniform, then the expected efficiency score of DMU2 was near to 0.5, instead of 0.336. 

   Also, we calculate the SD of efficiencies that shows the amount of variation or dispersion of 

efficiencies. A low SD implies that the data points tend to be close to the mean data, while a high SD 

implies that the data points are spread out over a wider range of values. As we expect, the SD of DMU3 is 

zero, since it’s lower bound efficiency score is equal to one, and so this DMU is perfectly efficient. 

Moreover, the SD of DMU2 is greater than the SD of DMU1. This is because the efficiency score of 

DMU2 varies between approximately zero and one but, the efficiency score of DMU1 varies between 

approximately zero and 0.81. It should be noted that by increasing the value of N the value of SD are 

reduced. This matter can be seen by considering the figure 2, that for large value of N the curve of 

efficiency distribution is more smooth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Mean
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N=100 N=1000 

 

  

N=2000 N=5000 

  

Fig 2. the efficiency distribution of DMU2 for different values of N 

 

Example 4: in example 3, it is explained that the Park (2007) method is unable to calculate the efficiency 

scores to rank the DMUs. 

   Now, we apply the proposed method for the example. The results summarized in table 6, show that the 

DMU1 with the expected efficiency of 0.844 has a better rank in comparing to DMU2 with the expected 

efficiency score of 0.757. Also, Since, the variation of efficiency scores of DMU1 is significantly less than 

the DMU2, so it’s SD is less than the SD of DMU2. 
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Table 6. The result of the proposed approach for data presented in table 3 

N 

The Average, Standard Deviation (SD), Minimum and Maximum efficiency scores. 

DMU1 DMU2 

Ave. SD Min Max Ave. SD Min Max 

10 0.8923 0.1826 0.5263 1 0.5603 0.2742 0.0372 1 

100 0.8687 0.1793 0.5014 1 0.7014 0.3003 0.0269 1 

1000 0.8486 0.1810 0.5010 1 0.7511 0.3175 0.018 1 

2000 0.8451 0.1846 0.5001 1 0.7579 0.3219 0.0019 1 

5000 0.8443 0.1851 0.5000 1 0.7573 0.3244 7.1378e-05 1 

Rank 1 2 

 

   This example shows that the efficiencies of average data differ from average efficiencies. Indeed, the 

expected values of 11x  and 12x  with the uniform data generation are 0.25 and 0.5, respectively. This 

average data implies that the two DMUs are both efficient. However, our proposed approach considers 

the expected efficiencies instead of the efficiencies of expected data. The efficiency distributions of 

DMU1 and DMU2 are shown in figure 3 and 4 for different values of N, respectively. The chart shows that 

more than 50% of efficiency frequency are in interval [0.95 , 1]. This matter implies that we need to 

consider the distribution of the efficiency scores in the interval. Most of existing methods rank DMUs 

based on just the lower and upper bound efficiencies, without considering the efficiency distribution. 

 

Fig 3. The efficiency distribution of DMU1 for different values of N 
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Fig 4. the efficiency distribution of DMU2 for different values of N 

 

5-Conclusions 
   The paper explains the drawbacks of the existing methods in the DEA to rank DMUs with imprecise 

data. We show that the methods did not consider the DEA axioms, so may produce incorrect ranking in 

some cases. It is shown that the Park (2007) method uses a set of infeasible integer data instead of 

imprecise data. It is also shown that in some cases, the method is unable to calculate the efficiencies or 

produces a rational ranking. 

   It was emphasized that the DEA model and the PPS are based on some axioms, especially the inclusion 

of observation axiom. It is shown that with imprecise data, we maybe unable to determine the PPS and 

the production frontier correctly. Therefore, by considering the DEA axioms, a simple practical algorithm 

is presented to rank DMUs in the presence of imprecise data. 

   The proposed approach considers the efficiency distribution and expected efficiencies to rank the 

DMUs, instead of the lower and upper bound efficiencies. It is explained that the approach covers the 

mentioned problems and gives more reliable results. 
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