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Abstract 
In some statistical process monitoring applications, quality of a process or product 

is described by more than one ordinal factor called ordinal multivariate process. To 

show the relationship between these factors, an ordinal contingency table is used 

and modeled with ordinal log-linear model. In this paper, a new control charts 

based on ordinal-normal statistic is developed to monitor the ordinal log-linear 

model based processes in Phase II. Performance of the proposed control chart is 

evaluated through simulation studies and a real numerical example. In addition, to 

show the efficiency of ordinal-normal control chart, performance of the proposed 

control chart is compared with an existing Generalized-p chart. Results show the 

better performance of the proposed control chart in detecting the out-of-control 

condition. 

Keywords: Statistical process monitoring, ordinal contingency table, ordinal-

normal control chart, Phase II 

 

1- Introduction 
   Statistical process monitoring (SPM) has been widely used to monitor various industrial processes with 

multiple correlated quality characteristics following some distributions including binomial/multinomial, 

Poisson, Gamma and so on. Some processes known as multivariate ordinal involve more than one quality 

characteristics, for which multivariate control charts based on multivariate generalized linear models 

(MGLMs) are used for monitoring purpose. MGLMs use link functions including nominal log-linear 

model (NMLLM) and ordinal log-linear model (OLLM) to relate the mean of a multivariate categorical 

quality characteristic to some predictor variables (or factors). Some researchers used ordinal contingency 

tables in real applications. For example, Armitage (1995) used two-way ordinal contingency table from a 

randomized study to compare two treatment groups (including A and B categories) for a gastric ulcer 

crater.  
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    The change in the size of the ulcer crater variable is also including four categories as larger, less than 

2/3 Healed, 2/3 or more Healed and Healed. Another research is 2006 general social survey. Respondents 

were asked, "Taken all together, would you say that you are very happy, pretty happy, or not too happy?" 

Also, they are asked regarding family income with question "Compared with American families in 

general, would you say that your family income is below average, average, or above average?” Based on 

these two questions, the OCT is formed (Agresti 2010). 

   In SPM, the contingency table is the most widely used tool for simultaneous monitoring of multivariate 

categorical processes (Kamranrad et al. 2017a). In addition, to show the relationship between ordinal 

factors and corresponding observations in ordinal contingency table (OCT) cells, OLLM are used. For 

example, Subramanyam and Rao (1989) examined the independency hypothesis in 2×n OCT and 

calculated odds ratio for several conditions. Beh and Davy (1998) developed categorical Pearson chi-

square for three-way contingency table under orthogonal multinomial distribution. Zafar et al. (2013) 

applied OLLM along with correspondence analysis in pharmaceutical industry to predict the Opiate 

material in drug detecting processes. Brzezińska (2016) proposed model for OCT by considering linear 

effect, rows, columns and simultaneous effects. Note that, there is no research in OLLM/OCT based 

processes monitoring in SPM and just, there are some researches presented to monitor multivariate 

nominal processes using a log-linear model. For example, Zhen and Basawa (2009) presented a model 

related to a time-dependent contingency table called the time series table with categorical data. Kieffer et 

al. (2012) used a generalized form of the contingency table proposed by Kijima and Matsui (2006) to 

evaluate genetic characteristic effects of 10,000 individuals on the occurrence of the cancer on nine parts 

of their bodies. 

   A new multivariate SPC procedure was developed by Zou and Tsung (2011) to monitor the shape 

parameters using exponentially weighted moving average (EWMA) control chart by adapting the spatial-

sign covariance matrix. Moreover, Yashchin (2012) used the generalized likelihood ratio test to develop a 

control chart with categorical observations, where the parameters are subject to sudden and unpredictable 

changes at unknown time points. In addition, he discussed about parameter estimation for categorical data 

in the presence of sudden changes. His proposed methodology was used to monitor a semiconductor 

production system. Li et al. (2012) proposed a generalized likelihood ratio test (GLRT) for Phase II 

monitoring of multivariate categorical processes based on the binomial and multivariate multinomial 

distribution using the log-linear model. They presented the EWMA-GLRT to improve the performance of 

the GLRT control chart under small shifts in parameters of the log-linear model. Li et al. (2013) proposed 

a new multivariate nonparametric statistical process control chart to monitor the shape parameters by 

integrating a multivariate spatial-sign test and EWMA scheme. A new multivariate binomial/multinomial 

control chart was presented by Li et al. (2014a) to monitor multivariate categorical processes where there 

is correlation between categorical quality characteristics. They used a log-linear model to illustrate the 

relationship among categorical variables that are compatible with multivariate binomial/multinomial 

distributions. It was shown that their proposed control chart is robust to detect different shifts in Phase II. 

After that, Kamranrad et al. (2017a) proposed GLT and EWMA-GLT schemes to monitor the multivariate 

categorical processes in Phase II. In addition, they proposed new diagnostic scheme to diagnose the 

parameter(s) responsible for out-of-control conditions based on GLT and EWMA-GLT in Phase II. 

Kamranrad et al. (2017b) proposed Wald and Stuart score test statistics for Phase II monitoring of the 

nominal contingency tables. To improve the performance of proposed control charts in small and 

moderate shifts in the contingency table parameters, they proposed EWMA-Wald and EWMA-Stuart 

score test statistics. In addition, they presented new schemes to diagnose the cell(s) responsible for out-of-

control condition. Results showed the superiority of EWMA-Wald control chart rather than the other 

proposed charts in small, moderate and large shifts in NLLM slope parameters. Note that Kamranrad et al. 

(2017a and 2017b) considered contingency tables with multivariate nominal processes while this research 

concentrates on the multivariate ordinal processes. Nominal variables have two or more categories 

without having any kind of natural order while an ordinal variable is a categorical variable for which the 

possible values are ordered. 
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   For monitoring ordinal categorical process, Li et al. (2014b) proposed an ordinal-normal control chart to 

detect location changes in univariate ordinal processes. In other words, they presented new control chart 

to monitor the ordinal logistic regression based processes in phase II. Hakimi et al. (2018) proposed two 

control charts including multivariate ordinal categorical and multivariate Generalized-p to monitor the 

OLLM processes in phase II. For the sake of improvement in detecting shifts in the parameters of OLLM, 

this paper develops a control chart based on ordinal-nominal (O-N) statistic to monitor the ordinal 

contingency table (OCT) based processes in phase II.  

   The rest of this paper is as follows: in the next section, the OCT based processes and related models 

(i.e. OLLM) along with their parameters are defined. The proposed statistic and the control limits for 

monitoring OLLM in Phase II are discussed in section 3. The performance of the proposed control charts 

is evaluated using simulation studies in section 4. In addition, a numerical example is applied in section 5 

to evaluate the efficiency of the proposed control chart. Finally, concluding remarks and future research 

are given in section 6. 

 

2- The multivariate ordinal processes 
   The multivariate ordinal processes have at least two factors with two or more ordered levels represented 

by OCT. The most widely used model to analyze OCT is the OLLM. The OLLM effectively characterizes 

the association and interaction effects among the ordinal variables and therefore it can be used to develop 

multivariate ordinal control charts. 

 

2-1- The ordinal log-linear model 
   As mentioned before, the OCT is used to show the simultaneous relationship between two or more 

ordinal factors. Suppose there are p variables such as pyyy ,,..., 21 each with
ih , 1,2,...,i p  possible 

levels. Therefore, the cells of the table represent 1 2 ... ph h h   possible outcomes (Kamranrad et al. 

2017a). In order to model the relationship between the count in each cell and the ordinal variable levels 

associated with it, the OLLM has been developed in the literature. Suppose a contingency table with two 

ordinal factors  1 2,y y with h1 and h2 categories. Now, the OLLM is defined as 

log ( )( ),ij i j i ju u v v           (1) 

where, Nij ij  is the expected observation value for cell (i,j). 
iu and jv are the row and column 

scores, respectively such that 
iu i and jv j . In addition,   is the constant effect,

i and j are the 

main effects of the ith row and jth column, respectively. Note that, is defined as linear by linear 

interaction parameter in OLLM which can be estimated by the following equation: 

1. 1

1 1

. 1 1.

log ( )( ),
ij i j

i i j j

i j i j

u u v v
 


 

 

 

 

 
   

 
 

 (2) 

where, 
1( ) 1i iu u   and 1( ) 1j jv v   . It is noted that, in Phase-I monitoring of OLLM (according to 

unknown parameters), parameters could be estimated using iterative Newton's single-dimensional 

algorithm (Zafar et al. 2013).  

Based on the log-linear model for nominal factors (Kamranrad et al. 2017a), the OLLM for two factors is 

defined as: 

0 1 1 2 2 1 1 2 2log ( )( ).y y y y y y        μ  (3) 
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where, μ  is the expected counts vector for OCT and
iy ( 1, 2i  ) is the mean of the ith ordinal factor. 

2-2- The generalized ordinal log-linear model 
Equation (3) can be extended for p factors as follows: 

0 1 1 2 2 12 1 1 2 2 1 1 1

2 2 2 1, 1 1 123 1 1 2 2 3 3

2, 1, 2 2 1 1 1,...,

log ... ( )( ) ... ( )( ) ...

( )( ) ... ( )( ) ( )( )( ) ...

( )( )( ) ...

p p p p p

p p p p p p p p p

p p p p p p p p p p

y y y y y y y y y y y

y y y y y y y y y y y y y y

y y y y y y

     

  

 

  

     

            

           

     

μ

1, 1 1 1 1( )...( )( )p p p p py y y y y y    

 (4) 

where, μ  is the expected counts vector for OCT and
iy ( 1,2,...,i p ) is the mean of the ith ordinal factor.  

   Note that, Li et al. (2014b) proposed the univariate ordinal-normal control chart in Phase II which is the 

base statistic for our research. Hence, in this section we overview this control chart as follows: 

 

2-3- An overview of the univariate ordinal-normal control chart 
   Li et al. (2014b) proposed ordinal-normal control chart to monitor the univariate ordinal based 

processes in Phase II. Suppose that there are known IC probabilities (0)

kp (k=1,2,…,h) for each ordinal 

level of the categorical factor. Hence, the known cumulative probabilities are 
(0)

1

k

k k

j

c p


 (k=0,1,2,…,h). 

In particular, given the thresholds ak (k=1,2,…,h), the probabilities
kp (k=1,2,…,h) corresponding to h 

ordinal levels of the categorical factor can be obtained by ( ) ( )
1

p F a F a
k k k
 


.  

Suppose that, there are h ordinal levels for a categorical factor. Hence, there are also h class intervals 

covering the values of the continuous variable that determines the factors. Such intervals are formed by 

some thresholds ak (k=1,2,…,h) 

0 1 1... h ha a a a        . 

The corresponding statistic ( iS ) for ordinal-normal control chart is presented as follows:  

     1 (0) 1 (0)

1(0)
1

1h

i k k ik

k k

S c c z
p

  





    
  , (5) 

where,  and  are the probability distribution function (pdf) and cumulative distribution function (cdf) 

of the standard normal distribution with mean (  ) equals to 0 and variance ( ) equals to 1, respectively. 

Note that, the pdf and cdf of the combined logistic-normal distribution are defined as follows, 

respectively: 
( )/

( )/ 2 ( )/

1
( ) ( )

(1 ) 1

x

x x

e
f x and F x

e e

 

   

 

   
 

 
. 

In addition, iz can be calculated as the following equation: 

1

0, ,

1

(1 ) ,
i

i j

i i j

j

b   



 z n  (6) 

where, [ ,..., ]
1

Tn n
i i ih
n is the ith ordinal level count vector of size N which is subject to multinomial 

distribution
(0)

( , )MN N p with in-control (0) (0)
[ ,..., ]

1
Tp p

h
p the ordinal level count n

k
(k=1,2,…,h) with 
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total count as
1

h

k

j

N n


 which follows ( , )MN N p , where 
1[ ,..., ]T

hp pp . Moreover, the 
1

0, ,
b

i 


 is a 

sequence of constants put in place to ensure that all the weights sum up to 1 calculated by equation (7) 

and 0 1  is the smoothing parameter and , ,...,
1 2

z z zi i i ih
  
 

z . 

1

1

0 1

0

1

, ,

1

(1 )
t

t j

t t

j t

b   

 

   (7) 

   The statistic rejects the null hypothesis, if Ri is larger than a specified threshold determined by 

simulation to obtain a desired in-control average run length (
0ARL ). Note that, the Si scheme is used to 

test the following hypothesis:  

 

0

1

: 0

: 0









H

H
, 

where  is the unknown location shift in ordinal based process parameters. Interested readers are referred 

to (Li et al. 2014b) for more details. 

As mentioned, in this paper, performance of the proposed control chart is compared with an existing 

multivariate Generalize-p control chart by Hakimi et al. (2018). Hence, in this paper we overview this 

control chart as follows. 

 

2-4- An overview of the multivariate Generalize-p control chart 
   Hakimi et al. (2018) proposed Generalized-p control chart to monitor the multivariate ordinal processes 

in Phase II. Suppose p ordinal factors with h1, h2,…, hp levels. Hence, the modified EWMA/MG-p 

charting statistic (MGt) is developed as follows: 

 

(0) 1 (0)1
( ) ( ),T

t t tMG N N
N

  w q Σ w q  (8) 

where, 
31 2

1 1 1 1

... ( , , ,..., )
phhh h

i j k p

N f i j k p
   

  is the total sample size and

3 1 2 3

(0) (0) (0) (0)
111...1 112...1 11 ... ( 1)( 1)( 1)...( 1)[ , , ..., ]

p p

T
t t t t h h t h h h hz z z z    w . In addition, covariance matrix for EWMA/MG-p 

is defined as follows: 

 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

1 2 3

p

p

p

p p p

h h h h h h h

h h h h h h h

h h h h h h h

h hp h h h h h

 
 
 
 

  
 
 
 
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Σ Σ Σ Σ

Σ Σ Σ Σ Σ
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 (9) 
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where,
i jh hΣ  is the (hi-1)×(hj-1) matrix, which is the covariance matrix between levels of the factors i and j. 

At any specific monitoring time, if MGt>S, the null hypothesis is rejected, i.e., the process is out-of-

control, where S is set to obtain a desired in-control average run length (
0ARL ). 

 

3- Proposed method 
   Consider p-way OCT (p-ordinal factors) each with h1, h2,…, hp categories. Now, the proposed 

multivariate ordinal-normal statistic (MONS) is developed as follows. 

     
31 2

1 (0) 1 (0)

... 1 ... ...(0)
1 1 1 1 ...

1
... ,

phhh h

t i j k p i j k p ijk p

i j k p i j k p

MONS f F c f F c z
P

 



   

  
    (10) 

where, 
(0)

... ... ... 1( ) ( )i j k p i j k p i j k pP F a F a    such that, intervals are formed by some thresholds 

...i j k pa  ( 1 2 31,... , 1,..., , 1,..., ,..., 1,..., pi h j h k h p h    ) for each cell of OCT. In addition, f and F are 

the pdf and cdf of the standard normal distribution, respectively and 
(0)

...i j k pc  is the in-control cumulative 

probability calculated from the following equation: 

31 2

(0) (0)

... ...

1 1 1 1

...
phhh h

i j k p ijk p

i j k p

c 
   

  ,  (11) 

where, 
31 2

(0)

...

1 1 1 1

( , , ,..., )

... ( , , ,..., )
p

ijk p hhh h

i j k p

n i j k p

n i j k p



   



 
 is the in-control probability for the ordinal (i, j, k,…,p) cell 

count and ( , , ,..., )n i j k p  is the ordinal level count for cell (i,j,k,…,p). Furthermore, tz is: 

1

0, ,

1

(1 ) ,
t

t s

t t t

s

b   



 z n  (12) 

where,
2

2 1

1 2

1

1

, ,

1

(1 )
t

t t

t t

t t

a   

 

  and 
3 3 1 2 1 2 3111...1 112...1 11 ... 121...1 12 ... 1...1 ...[ ... ... ... ... ]

p p pt t t h h t t h h t h h t h h h h tn n n n n n nn . At 

any specific monitoring time, if MONSt>L, the null hypothesis is rejected, i.e. , the process is out-of-

control, where L is set to obtain a desired in-control average run length (
0ARL ). 

 

4- Performance evaluation 

   The performance of the proposed control chart in terms of the out-of-control ARL  1ARL  criterion is 

first evaluated in this section. Then, a sensitivity analysis is performed on the size of the rows and the 

columns of the contingency table. In this study, contingency tables with 4 rows and with 5 columns are 

investigated. Meanwhile, a sensitivity analysis on the simultaneous increasing of rows and columns is 

performed.  
 

4-1- Performance evaluation of the proposed control chart 
   In this subsection, simulation experiments are performed to evaluate the performance of the proposed 

MONS control chart in terms of 
1ARL  under different shifts in the parameters of the OLLM in units of 
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their corresponding standard deviations. In addition, to show the efficiency of the proposed control chart, 

performance of MONS is compared with an existing MG-p (Hakimi et al. 2018) control chart. 

    Consider a two-way contingency table with 3 rows and 4 columns. Note that, the UCLs of the MONS 

and MG-p charts based on 3 4 contingency table are set equal to 107.61and 0.93, respectively to obtain 

a desired in-control ARL of 200. Then, the 1ARL values of the two mentioned control charts under 

different shifts in OLLM parameters and different smoothing parameters based on 5,000 simulation 

experiments are calculated and reported in Tables 1-4. Also, the standard error of the average run lengths 

(SEARL) are reported in the parenthesis below the ARL values. Moreover, the in-control parameter vector 

of the OLLM based on the mentioned contingency table is assumed  1 0 5 0 5 0 15, . , . , .  β . In addition, 

the in-control standard deviations of the OLLM parameters estimates are as follows: 

 

ˆ0
ˆ [2.14,1.43,1.28,0.89],σ


 

Note that in this paper shifts will be imposed in the parameters of the OLLM in units of their 

corresponding standard deviations. The standard deviations of the parameters estimate in the OLLM are 

obtained by using the following covariance matrix: 

 

,}])(['{)cov( 1 X/μ'μμdiagXβ N  (13) 

where X and μ
 
are the model matrix and the vector of the expected values of the contingency table cells, 

respectively. Also, )(μdiag  is a diagonal matrix of the values of the contingency table cells and N is the 

sample size of the contingency table (Agresti, 2002). 

 

Table 1. The ARL and SEARL values under the different shifts in the intercept (
0

ˆ0 .


   ) 

λ   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MONS 

96.26 

(1.05) 

132.59 

(1.67) 

155.31 

(1.94) 

173.58 

(2.00) 

188.65 

(2.04) 

200.35 

(2.69) 

188.60 

(2.21) 

179.05 

(2.01) 

154.07 

(1.68) 

132.29 

(1.35) 

99.98 

(1.05) 

MG-p 

93.57 

(1.13) 

130.25 

(1.95) 

156.84 

(1.99) 

175.69 

(2.04) 

190.05 

(2.11) 

201.05 

(3.32) 

189.98 

(2.05) 

180.39 

(2.02) 

155.61 

(2.00) 

131.58 

(1.97) 

99.48 

(1.01) 

0.1 

MONS 

94.96 

(1.06) 

123.68 

(1.49) 

152.66 

(1.79) 

176.47 

(1.99) 

188.30 

(2.02) 

199.97 

(2.69) 

187.05 

(2.00) 

180.37 

(1.93) 

150.02 

(1.21) 

131.69 

(1.14) 

99.60 

(1.00) 

MG-p 

92.68 

(1.27) 

121.15 

(1.90) 

155.03 

(1.97) 

178.41 

(2.01) 

189.87 

(2.14) 

200.10 

(3.05) 

189.19 

(2.10) 

181.04 

(2.06) 

151.36 

(1.84) 

130.01 

(2.00) 

98.08 

(1.05) 

0.2 

MONS 

95.00 

(1.02) 

122.09 

(1.36) 

150.75 

(1.65) 

177.91 

(1.97) 

187.90 

(2.25) 

200.85 

(2.09) 

183.38 

(2.00) 

175.66 

(1.99) 

151.48 

(1.64) 

121.95 

(1.59) 

98.92 

(1.08) 

MG-p 

91.05 

(1.70) 

124.87 

(1.95) 

152.97 

(1.87) 

178.84 

(1.94) 

189.31 

(1.99) 

199.96 

(2.68) 

185.37 

(1.95) 

179.65 

(1.92) 

150.33 

(2.01) 

120.05 

(2.01) 

99.21 

(1.06) 
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Table 2. The ARL and SEARL values under the different shifts in the first slope (
1
ˆ1 .


   ) 

λ   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MONS 

1.00 

(0.00) 

9.25 

(0.96) 

26.10 

(1.11) 

113.28 

(1.57) 

179.60 

(2.00) 

200.05 

(2.34) 

177.62 

(1.97) 

115.05 

(1.63) 

27.79 

(1.45) 

8.40 

(0.91) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

6.92 

(0.40) 

26.29 

(1.00) 

116.49 

(1.93) 

183.67 

(2.01) 

201.30 

(2.99) 

180.69 

(2.02) 

116.39 

(1.56) 

26.75 

(1.27) 

7.63 

(0.59) 

1.00 

(0.00) 

0.1 

MONS 

1.00 

(0.00) 

7.95 

(0.86) 

24.15 

(1.02) 

110.54 

(1.46) 

178.12 

(1.98) 

200.29 

(2.06) 

175.66 

(2.00) 

115.68 

(1.55) 

25.04 

(1.18) 

7.69 

(0.91) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

6.74 

(0.39) 

23.05 

(0.91) 

110.63 

(1.67) 

182.35 

(2.09) 

200.18 

(2.97) 

183.54 

(2.01) 

119.67 

(1.91) 

25.97 

(1.30) 

6.35 

(0.86) 

1.00 

(0.00) 

0.2 

MONS 

1.00 

(0.00) 

5.69 

(0.52) 

26.53 

(1.02) 

100.30 

(1.50) 

176.19 

(2.10) 

199.56 

(2.24) 

172.21 

(1.67) 

108.34 

(1.88) 

23.14 

(1.33) 

6.50 

(0.96) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

3.89 

(0.45) 

28.41 

(1.29) 

100.14 

(2.05) 

180.25 

(2.06) 

200.04 

(2.93) 

181.02 

(1.89) 

109.54 

(1.12) 

25.20 

(1.84) 

3.92 

(0.27) 

1.00 

(0.00) 
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Table 3. The ARL and SEARL values under the different shifts in the second slope (
2

ˆ2 .


   ) 

λ   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MONS 

1.00 

(0.00) 

6.05 

(0.91) 

23.08 

(1.00) 

114.92 

(1.48) 

170.54 

(1.94) 

201.07 

(2.14) 

177.60 

(2.00) 

128.19 

(1.69) 

21.97 

(0.99) 

5.23 

(0.47) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

5.02 

(0.31) 

22.69 

(0.92) 

115.69 

(1.25) 

171.69 

(2.02) 

200.35 

(2.98) 

182.39 

(2.09) 

130.10 

(2.00) 

22.89 

(0.91) 

4.81 

(0.19) 

1.00 

(0.00) 

0.1 

MONS 

1.00 

(0.00) 

4.50 

(0.29) 

21.46 

(0.81) 

116.10 

(1.43) 

168.00 

(1.88) 

200.54 

(2.67) 

173.80 

(1.98) 

123.95 

(1.80) 

23.47 

(1.01) 

4.93 

(0.49) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

3.70 

(0.21) 

21.57 

(0.89) 

119.67 

(1.09) 

169.27 

(2.01) 

200.10 

(3.01) 

181.29 

(2.11) 

130.04 

(1.69) 

21.69 

(0.98) 

3.98 

(0.32) 

1.00 

(0.00) 

0.2 

MONS 

1.00 

(0.00) 

3.96 

(0.33) 

16.42 

(0.93) 

111.45 

(1.25) 

150.85 

(1.77) 

199.87 

(2.51) 

174.67 

(2.00) 

129.79 

(1.91) 

21.26 

(1.11) 

3.64 

(0.47) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

3.05 

(0.88) 

15.69 

(0.98) 

115.52 

(1.00) 

161.24 

(1.89) 

200.17 

(2.99) 

180.05 

(2.09) 

135.59 

(2.00) 

19.97 

(1.30) 

3.09 

(0.29) 

1.00 

(0.00) 

 

Table 4. The ARL and SEARL values under the different shifts in   ( ˆ.    ) 

λ   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MONS 

8.12 

(0.90) 

42.95 

(1.00) 

90.68 

(1.35) 

111.93 

(1.66) 

162.34 

(1.94) 

200.28 

(2.49) 

161.15 

(2.02) 

112.58 

(1.61) 

83.96 

(1.49) 

46.07 

(1.37) 

6.79 

(0.38) 

MG-p 

7.01 

(0.39) 

41.47 

(0.82) 

91.00 

(1.80) 

112.39 

(1.91) 

166.30 

(2.05) 

200.57 

(2.99) 

162.98 

(2.02) 

114.15 

(1.99) 

85.39 

(1.53) 

45.60 

(0.99) 

6.04 

(0.30) 

0.1 

MONS 

7.00 

(0.34) 

42.07 

(1.09) 

79.00 

(1.32) 

117.44 

(1.83) 

161.59 

(1.97) 

200.58 

(2.75) 

162.34 

(1.65) 

110.04 

(1.58) 

82.38 

(1.29) 

43.49 

(1.14) 

6.47 

(0.31) 

MG-p 

6.18 

(0.52) 

39.05 

(0.92) 

79.07 

(1.69) 

111.34 

(1.87) 

163.69 

(2.02) 

200.18 

(3.14) 

161.98 

(2.00) 

112.34 

(1.79) 

81.25 

(1.78) 

40.15 

(1.05) 

5.59 

(0.19) 

0.2 

MONS 

6.90 

(0.67) 

34.08 

(0.97) 

81.39 

(1.52) 

109.84 

(1.66) 

159.96 

(1.94) 

199.29 

(2.03) 

153.19 

(1.63) 

110.38 

(1.57) 

84.17 

(1.13) 

38.87 

(1.39) 

6.02 

(0.36) 

MG-p 

5.88 

(0.17) 

32.89 

(1.01) 

80.95 

(2.04) 

110.05 

(1.64) 

161.98 

(2.05) 

200.42 

(2.90) 

154.14 

(1.75) 

111.97 

(1.78) 

83.05 

(1.36) 

35.05 

(1.41) 

5.31 

(0.21) 
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    As it is clear from tables 1 to 4, the
1ARL values of the MONS control chart are less than the ones 

obtained by the MG-p in small and moderate shifts in intercept and slope parameters of OLLM. Hence, 

the MONS chart has better performance compared to the MG-p in these mentioned shifts. MG-p has 

relatively better performance than the other control chart under large shifts in OLLM parameters. In 

addition, results show that the sensitivity of both control charts under shifts in the intercept is less than the 

other OLLM parameters. In addition, both control charts have better performance under shifts in the 

second slope parameter of the OLLM rather than the other parameters.  

    Furthermore, the performance of both control charts are compared based on different λ values and 

results show the better performance of the mentioned control charts under λ equals to 0.2. Note that, other 

simulation studies under different simultaneous shifts in the OLLM parameters based on λ=0.2 are done 

and some of them are reported in figures 1 to 6.  
 

 

Fig 1. Performance comparison of the control charts for simultaneous shifts in the intercept and the first slope 

 

Fig 2. Performance comparison of the control charts for simultaneous shifts in the intercept and the second slope 

0,0 0.1,0.1 0.1,0.2 0.5,0.1 0.1,0.5 1,0.1 1,0.5

MONS 200.36 155.3 127.19 120.97 93.58 80.66 25.94

MG-p 200.98 158.69 130.05 122.98 95.68 78.37 24.58
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Fig 3. Performance comparison of the control charts for simultaneous shifts in the first and the second slope 

 

Fig 4. Performance comparison of the control charts for simultaneous shifts in the intercept and   

0,0 0.1,0.1 0.2,0.1 0.1,0.2 0.5,0.1 0.1,0.5 0.5,0.5

MONS 200.05 144.04 96.39 91.26 26.44 23.62 6.02

MG-p 199.36 142.98 99.84 93.68 24.38 20.57 4.62
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Fig 5. Performance comparison of the control charts for simultaneous shifts in the first slope and    

 

 

Fig 6. Performance comparison of the control charts for simultaneous shifts in the second slope and    

   As it is clear from figures 1-6, the simultaneous shifts in two slope parameters lead to better 

performance of the control charts under out-of-control conditions. These results are expected because the 

simultaneous effects of two shifts in log-linear model parameters are considered; hence the control charts 

should detect the out-of-control states more quickly. In addition, these figures also indicate that both 

control charts have better performance for different simultaneous shifts in both slope and   rather than 

the other simultanous shifts in the OLLM parameters. Moreover, the results show that MONS control 

chart outperforms the MG-p control chart under small and moderate simaltaneous shifts in all the OLLM 

parameters.  

0,0 0.1,0.05 0.5,0.05 0.1,0.1 0.5,0.1 0.1,0.2 0.5,0.2
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   In addition, a sensitivity analysis is performed on the size of the rows and the columns of the OCT. In 

this study, contingency tables with 4 rows and with 5 columns are investigated. Moreover, the 

performances of the proposed schemes are investigated under simultaneous increase in the size of rows 

and columns of the OCT. The results of the sensitivity analysis in terms of
1ARL  are summarized in tables 

5 to 8. 

 

 

Table 5. ARL and SEARL values of the proposed charts under different sizes of rows and columns for different 

shifts in the intercept (
0

ˆ0 .


   ) 

Size   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MONS 

89.25 

(1.13) 

122.14 

(1.61) 

141.53 

(1.80) 

172.94 

(2.02) 

186.18 

(2.35) 

200.49 

(2.88) 

180.27 

(2.17) 

171.94 

(2.93) 

139.67 

(1.86) 

119.92 

(1.66) 

89.31 

(1.45) 

MG-p 

85.61 

(1.04) 

120.48 

(1.69) 

141.99 

(2.00) 

173.45 

(2.21) 

190.34 

(2.68) 

199.64 

(2.99) 

183.92 

(2.58) 

174.18 

(2.00) 

141.87 

(2.01) 

117.08 

(1.87) 

84.33 

(1.21) 

4×4 

MONS 

80.49 

(1.17) 

106.92 

(1.39) 

141.62 

(1.66) 

172.38 

(1.93) 

182.27 

(2.08) 

200.03 

(2.63) 

179.35 

(2.17) 

168.64 

(2.00) 

133.60 

(1.90) 

114.29 

(1.46) 

83.19 

(1.25) 

MG-p 

76.97 

(1.61) 

107.33 

(1.34) 

142.36 

(1.61) 

172.75 

(2.12) 

184.67 

(2.37) 

199.38 

(3.00) 

182.24 

(2.24) 

172.94 

(2.30) 

133.04 

(1.90) 

112.99 

(1.41) 

80.68 

(1.39) 

4×5 

MONS 

75.66 

(1.32) 

104.27 

(1.55) 

139.04 

(1.69) 

166.69 

(2.00) 

179.03 

(2.02) 

200.37 

(2.28) 

178.84 

(2.38) 

163.57 

(2.01) 

128.83 

(1.69) 

103.45 

(1.62) 

74.41 

(1.39) 

MG-p 

73.05 

(1.08) 

101.67 

(1.42) 

140.97 

(1.49) 

169.94 

(2.43) 

180.93 

(3.05) 

199.67 

(2.97) 

181.39 

(2.59) 

169.37 

(2.00) 

130.32 

(1.90) 

100.49 

(1.31) 

71.89 

(1.00) 
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Table 6. ARL and SEARL values of the proposed charts under different sizes of rows and columns for different 

shifts in the first slope (
1
ˆ1 .


   ) 

Size   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MONS 

1.00 

(0.00) 

7.99 

(0.90) 

26.08 

(0.98) 

114.45 

(1.33) 

177.81 

(2.00) 

201.02 

(2.63) 

176.69 

(2.03) 

112.48 

(1.73) 

26.61 

(1.06) 

8.13 

(0.93) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

6.04 

(0.62) 

24.09 

(1.02) 

113.49 

(1.97) 

180.69 

(2.56) 

200.94 

(3.02) 

180.01 

(2.94) 

112.49 

(1.84) 

25.03 

(1.24) 

7.00 

(0.92) 

1.00 

(0.00) 

4×4 

MONS 

1.00 

(0.00) 

8.09 

(0.88) 

27.75 

(1.00) 

111.49 

(1.21) 

176.05 

(1.81) 

200.31 

(2.30) 

174.36 

(2.01) 

110.08 

(1.59) 

25.98 

(1.00) 

8.18 

(0.82) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

6.61 

(0.49) 

24.41 

(1.14) 

110.99 

(1.95) 

181.36 

(2.67) 

201.07 

(3.01) 

179.04 

(2.91) 

110.38 

(1.98) 

24.39 

(1.07) 

8.00 

(0.67) 

1.00 

(0.00) 

4×5 

MONS 

1.00 

(0.00) 

7.91 

(0.84) 

27.00 

(0.98) 

110.62 

(1.46) 

175.63 

(2.00) 

200.58 

(2.67) 

170.96 

(1.95) 

108.37 

(1.93) 

25.61 

(1.04) 

8.05 

(0.65) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

6.09 

(0.68) 

26.01 

(1.00) 

110.99 

(2.08) 

178.73 

(2.90) 

199.47 

(2.53) 

172.94 

(2.34) 

110.31 

(1.97) 

25.36 

(1.09) 

7.94 

(0.69) 

1.00 

(0.00) 
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Table 7. ARL and SEARL values of the proposed charts under different sizes of rows and columns for different 

shifts in the second slope (
2

ˆ2 .


   ) 

Size   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MONS 

1.00 

(0.00) 

3.18 

(0.22) 

18.80 

(0.67) 

112.62 

(1.51) 

171.36 

(2.07) 

200.63 

(2.45) 

173.31 

(2.02) 

120.09 

(2.03) 

19.59 

(0.68) 

3.05 

(0.28) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

2.94 

(0.23) 

16.97 

(0.69) 

119.63 

(1.92) 

173.49 

(2.09) 

201.00 

(3.05) 

178.52 

(2.96) 

122.67 

(1.97) 

18.86 

(0.96) 

2.26 

(0.20) 

1.00 

(0.00) 

4×4 

MONS 

1.00 

(0.00) 

3.04 

(0.29) 

18.64 

(0.58) 

113.77 

(1.52) 

172.29 

(2.31) 

200.08 

(2.47) 

172.34 

(2.32) 

115.68 

(2.15) 

19.07 

(0.78) 

3.22 

(0.30) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

2.36 

(0.12) 

15.93 

(0.49) 

114.38 

(1.56) 

176.81 

(2.69) 

200.09 

(2.68) 

175.39 

(2.28) 

119.97 

(2.00) 

18.61 

(0.97) 

2.68 

(0.27) 

1.00 

(0.00) 

4×5 

MONS 

1.00 

(0.00) 

2.42 

(0.17) 

16.43 

(0.29) 

110.45 

(1.63) 

168.97 

(2.50) 

201.06 

(2.05) 

169.90 

(2.04) 

107.85 

(1.63) 

15.94 

(0.33) 

2.91 

(0.13) 

1.00 

(0.00) 

MG-p 

1.00 

(0.00) 

1.92 

(0.08) 

14.97 

(0.19) 

111.36 

(1.80) 

171.29 

(2.15) 

199.94 

(2.97) 

173.95 

(2.63) 

109.48 

(1.69) 

14.89 

(0.26) 

1.33 

(0.09) 

1.00 

(0.00) 

 

 

Table 8. ARL and SEARL values of the proposed charts under different size of rows and columns for different 

shifts in the  ( ˆ.    ) 

Size   -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MONS 

5.01 

(0.25) 

32.96 

(0.95) 

80.52 

(1.26) 

106.47 

(1.76) 

153.39 

(1.99) 

200.38 

(2.08) 

151.64 

(1.87) 

106.09 

(1.72) 

80.35 

(1.59) 

32.98 

(1.00) 

4.05 

(0.49) 

MG-p 

4.08 

(0.16) 

31.97 

(0.67) 

79.67 

(1.90) 

108.06 

(1.67) 

155.07 

(2.02) 

200.01 

(3.00) 

153.98 

(1.80) 

108.25 

(1.38) 

82.64 

(1.48) 

32.05 

(1.12) 

3.14 

(0.31) 

4×4 

MONS 

4.55 

(0.17) 

29.65 

(0.97) 

77.46 

(1.30) 

104.98 

(1.67) 

151.27 

(1.93) 

200.97 

(2.20) 

152.67 

(1.91) 

105.32 

(1.94) 

78.96 

(1.42) 

32.47 

(1.03) 

3.92 

(0.18) 

MG-p 

3.00 

(0.09) 

27.74 

(0.26) 

79.93 

(1.14) 

105.68 

(1.42) 

154.19 

(1.48) 

200.94 

(2.66) 

155.30 

(1.93) 

108.89 

(1.68) 

80.06 

(1.19) 

30.57 

(0.68) 

2.84 

(0.23) 

4×5 

MONS 

3.31 

(0.08) 

26.92 

(0.38) 

74.93 

(0.90) 

102.94 

(1.27) 

150.08 

(1.99) 

199.75 

(2.40) 

149.93 

(2.05) 

102.39 

(1.74) 

75.52 

(1.28) 

29.68 

(0.93) 

2.67 

(0.21) 

MG-p 

1.69 

(0.04) 

23.50 

(0.34) 

72.26 

(0.94) 

104.50 

(1.29) 

154.00 

(2.02) 

200.53 

(2.73) 

153.34 

(2.53) 

105.60 

(1.89) 

75.49 

(1.03) 

27.04 

(0.67) 

2.00 

(0.10) 
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   As it is clear from tables 5 to 8, the MONS control chart has better performance compared to another 

proposed control chart in detecting out-of-control condition under small and moderate shifts in the 

parameters of the OLLM. In other words, the results in the mentioned tables indicate that the MONS 

control chart has better performance than the MG-p chart for monitoring the OCT based processes with 4 

rows and 5 columns under small and moderate shifts. In addition, comparing the results between tables 1 

to 4 and tables 5 to 8 show that by increasing the dimension of ordinal contingency table, the performance 

of both control charts improve in terms of both out-of-control ARL and SEARL criteria. 

 

5- A numerical example 

    In this section, a numerical example is given to demonstrate the applicability of the proposed method 

and compare its performance with the existing method in monitoring OLLM based processes based on a 

real case extracted from Agresti (2010).   

 

5-1- Performance comparison 
Consider a real study by Lumley (1996) to compare an active treatment with a control treatment for 

patients having shoulder tip pain after laparoscopy surgery. The two treatments were randomly assigned 

to 41 patients. The patients rated their pain level on the fifth day after surgery. The OCT for this study is 

as following table: 
 

Table 9. Shoulder tip score after laparoscopic surgery 

Treatments 

Pain score (1:low and 5:high) 

1 2 3 4 5 

Active 19 2 1 0 0 

Control 7 3 4 3 2 

 

   In this subsection, we compare the performance of the proposed control chart and MG-p under two 

different shifts in the second slope and   parameters of the OLLM. For this aim, we impose shifts of -

0.2
2̂

  in 2 and 0.2 ̂  in , respectively and results are shown in Figures 7-10. The OLLM for the 

above OCT with two ordinal factors including treatment (T) and pain score (PS) under in-control state is 

defined as follows: 

log 1 0.5 0.5 0.15( )( ); 1,2 1,2,3,4,5.T PS T T PS PS T and PS       μ  (14) 

Note that, the UCLs of the MONS and MG-p charts based on the model in Equation (14) are set equal to 

36.98 and 0.598, respectively by using 5000 simulation runs to achieve a desired in-control ARL of 200.  
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Fig 7. MONS control chart under -0.2
2̂

  shift in 2  

 

Fig 8. MG-p control chart under -0.2
2̂

  shift in 2  
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Fig 9. MONS control chart under 0.2 ̂  shift in  

 

Fig 10. MG-p control chart under 0.2 ̂  shift in  

 

   Figures 7 to 10 compare the performance of the MONS and MG-p control charts under the mentioned 

shifts in 2  and . According to these figures, the signals received by the MONS and MG-p control 

charts occur at the 19th and 31th sample under -0.2
2̂

  shift in 2  and 106th and 122th sample under 0.2 ̂  

shift in , respectively. These results show that the MONS control chart detects the out-of-control 

condition faster than another chart under the mentioned shifts in 2  and of the OLLM. 
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6- Conclusion and future research 
   In this paper, new MONS control chart was proposed to monitor the M-OLLM based processes in 

Phase II. The results obtained using simulation studies showed better performance of the MONS control 

chart in small and moderate shifts in all parameters of OLLM compared to the MG-p chart. In addition, 

some sensitivity analyses were done to evaluate the efficiency of the proposed control charts based on 

different values of smoothing parameters as well as different number of rows and columns of the OCT. 

The results showed that the proposed control char has better performance in detecting the out-of-control 

condition under 0.2λ  in most individual shifts in M-OLLM parameters rather than the other smoothing 

parameters considered. Similar results are obtained under simultaneous shifts in the parameters of OLLM 

as well. Moreover, as the dimension of the contingency table increases, the performance of the proposed 

control chart improves. At the end, a real numerical example was applied to demonstrate the applicability 

of the proposed scheme and the results showed the superiority of MONS control chart rather than the 

MG-p chart in faster detection of the out-of-control condition. As a future research, monitoring the 

ordinal categorical processes in Phase I can be investigated. Moreover, modeling and monitoring the high 

dimensional ordinal contingency tables for both Phases I and II can be a suitable area for future research.  
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