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Abstract 
The cost game arises when a group of retailers who observe demand for a common 

good decide to cooperate and make join orders following the EOQ policy. In this 
paper we present a new class of inventory games that is strategically equivalent to 

that class of inventory cost games: inventory games with advance payments. This 

model extends the traditional inventory model to the situation where advance 
payments of retailers are required. We propose a core distribution, which is based on 

a proportional allocation, as well as a population monotonic allocation scheme, for 

inventory games with advance payments. Then, we examine the stability of grand 

coalition from both a myopic and farsighted perspective, and conclude that it is 
always stable from both points of view. To complete our study, we develop a 

sensitivity analysis for the model and evaluate the changes produced on the proposed 

core distribution. 
Keywords: Inventory games, advance payments, cooperative cost games, core 

distribution. 

 

1- Introduction 
   Inventory cost games were introduced by Meca et al. (2004). This class of games arises when a group 
of retailers who observe demand for a common good decide to cooperate and make joint orders following 

the EOQ policy. By placing joint orders, these retailers can reduce their total cost of operations and get 

some benefits for the group.  This kind of cooperation is becoming increasingly popular in the economic 

literature since the supply chain management has undergone radical changes in recent years with 
increasing emphasis on cooperation and information sharing. Recent surveys on cooperation among 

supply chain agents can be seen in Nagarajan and Sosic (2008), Meca and Timmer (2008), Dror and 

Hartman (2011), and Fiestras-Janeiro García-Jurado, Meca, and Mosquera (2011).  
   Multiple and various extensions of inventory cost games studied in Meca et al. (2004) can be found in 

the literature of game theory and inventory management.  Meca et al. (2003) revisit inventory cost games 

but now allowing shortages. They see that n-person EPQ situations with shortages lead to exactly the 
same class of inventory cost games. In addition, they provide a non-cooperative approach to them. 

Necessary and sufficient conditions are given for the existence and uniqueness of the so-called 

constructive equilibrium in which all the players make joint orders.  
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   Meca, Guardiola and Toledo (2007) introduce the class p-additive games inspired by the class of 
inventory games that arises from inventory situations with temporary discounts (Toledo, 2002). It 

contains the class of inventory cost games.  

   Other variations of Meca et al. (2004) can be found in Anily and Haviv (2007), in Zhang (2009), and in 

Dror and Hartman (2007), but in all these papers authors consider problems that are different from all of 
the above. In the two first papers, it is considered that agents use POT (Power of Two) policies instead of 

EOQ policies, while in the third paper it is considered that, if a group of agents place a joint order, its 

fixed cost is the sum of the first component plus the sum of the second component of the agents in the 
group. Fiestras-Janeiro et al. (2012) deal with the cost allocation problem in an inventory transportation 

system with a single item and multiple agents that place joint orders using an EOQ policy. This model 

extends the one studied in Meca et al. (2004) by changing the structure of the fixed costs. They consider 
that a part of the fixed cost depends on each agent and that it is proportional to the distance between the 

agent and the supplier. It is assumed that agents are located on a line route. Then, they introduce and 

characterize a rule, with the same flavor as the Shapley value but less computational effort, which allows 

them to allocate the costs generated by the joint order.  This has good properties from the point of view of 
stability. Fiestras-Janeiro et al. (2013) propose a new cost allocation rule, the so-called AMEF value, 

which is also inspired by the Shapley value. They prove that, under suitable conditions, the AMEF value 

provides core allocations.  
   Fiestras-Janeiro et al. (2014) deal with an inventory problem arising in a farming community in the 

Northwest of Spain. Each farm has its own silo (warehouse), with limited capacity, for keeping the feed. 

The only costs associated with the silos are their building costs since their maintenance costs are 
irrelevant; thus, the storage cost of each stockbreeder is in fact zero. They analyze then two models with n 

decision makers, all those facing continuous review inventory problems without holding costs, with 

limited capacity warehouses and without shortages. The fact that shortages are not allowed simplifies 

strongly the search for optimal policies. However, the case with shortages can be also used in this context 
Fiestras-Janeiro et al. (2015) shows. They consider that each firm uses its limited capacity warehouse for 

storing purposes and that it faces an economic order quantity model where storage costs are irrelevant 

(and assumed to be zero) and shortages are allowed. They show that firms can save costs by placing joint 
orders and obtain an optimal order policy for the firms. Some results that can be helpful for allocating the 

joint costs among the firms are finally provided. 

   A recent extension, very close to this paper, is Li et al. (2014). They present the class of inventory 

games with permissible delay in payments. The benefits retailers can obtain from permissible delay in 
payments by the supplier are obvious (i.e., a source of financing when they are short of cash). For 

suppliers, permissible delay in payments can promote their sales and reduce their on-hand stock. They 

prove that this class of games is balanced (the core is nonempty). Then, they propose a core distribution 
of the cost that can be reached through population monotonic allocation scheme (PMAS). Under this cost 

distribution, the grand coalition is shown to be stable from a farsighted point of view. In addition, we can 

mention other researches in the field of inventory cost games that done in the recent years. Lai et al. 
(2016) developed a distribution system, where multiple suppliers cooperate in supplying a product under 

two dispatching policies that called time-based policy and quantity-based policy. They proved this game 

is convex and monotone and also used PMAS scheme for cost allocation. Chen and Zhang (2016) 

proposed the inventory cost game with backlogging. They proved that class of games have a non-empty 
core but not necessarily the optimal dual solution defines a core allocation. Jouida et al. (2017) developed 

a horizontal cooperation game between a supplier and multiple retailers and studied the features of the 

stable coalitions. Hezarkhani et al. (2018) presented a two-stage cooperative inventory game for 
replenishment of multiple products. They showed that buyers can reduce their cost by cooperation. 

   In this paper, we propose a new extension of inventory cost games (Meca et al., 2004), to the situation 

with payments in advance. Advance payment purchasing systems are very common in supply chain 
transactions. In the real world, especially in monopolistic or oligopolistic market, when a supplier is 

powerful, (s)he wants to reduce the risk of the cash flow, and would like the buyer to pay in a fixed period 

before delivering the product. This scheme called advance payment or prepayment in the literature. The 
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advance payment scheme is very common in Europe and U.S. utility markets, real estate etc. (Schulz et 
al., 2015). In such systems the capital cost of the retailers will increase, because they have incurred 

interest costs on the purchasing cost of products that have not been received yet but on the other side, the 

supplier earn interested capital. Each retailer seeks for determining its optimal inventory costs by 

developing an economic order quantity model with advance payment for multiple retailers. If the retailers 
decide to cooperate and place their orders jointly, they can reduce the total average cost generated by the 

cooperation. By using cooperative game theory we study such cooperation and show that cooperation of 

all the retailers in ordering is always beneficial; i.e., the grand coalition can achieve a lower cost than the 
added cost if they act individually.  

   Our paper is also related to the literature on inventory models with payments in advance. Maiti et al. 

(2009) consider inventory model under advance payment and stochastic lead time and solved their model 
with genetic algorithm. Gupta et al. (2009) also solved the inventory model under advance payment with 

genetic algorithm but they considered interval valued inventory costs. Chen et al. (2012) examined the 

three payment scheme on the newsvendor problem, this schemes including payment in the time of 

delivery, delayed payment, advance payment. Mateuta and Zanchettin (2013) studied the interaction 
between supplier credit sales and customer advance payment. Taleizadeh et al. (2013) developed the 

economic order quantity (EOQ) model with considering advance payment and partial backordering. 

Zhang et al. (2014) developed the inventory model under partial advance payment and partial delay in 
payment. Taleizadeh (2014) developed EOQ model for deteriorating item under multiple prepayments. 

Beullens and Janssens (2014) developed an inventory model with considering the timing of the cash flow 

and used the net present value concept to analyze the model under three payment structures including 
symmetric time, delay in payment and advance payment. Zhang et al. (2016) investigated the supply risks 

on capacity in advance payment scheme. Teng et al. (2016) studied an EOQ model with advance payment 

and considering expiration date for deteriorating goods. Taleizadeh (2017) presented a lot-sizing model 

with considering advance payment, partial backordering and product rejection as a stochastic event. 
   The contribution of our paper is threefold. First, we present the class of inventory games with advance 

payments and show that this class of games is strategically equivalent to the class of inventory cost games 

introduced by Meca et al. (2004). This fact guarantees the existence of a core distribution as well as a 
population monotonic allocation scheme, and allows us to conclude that inventory games with advance 

payments are totally balanced, and so the grand coalition is a myopic stable outcome.  Second, we 

examine the stability of grand coalition from a farsighted perspective. We show that grand coalition 

belongs to the largest consistent set, i.e., it is a farsighted stable outcome under the proposed cost 
distribution. Third, we develop a sensitivity analysis for the model and evaluate the changes produced on 

the proposed cost distribution. 

   The rest of this paper is organized as follows. We start by introducing preliminaries on cooperative 
game theory in section 2. In section 3 we introduce the basic inventory model with advance payments 

under cooperation in order. Section 4 presents the class of inventory games with advance payments. 

Section 5 presents a numerical example to illustrate those games and a sensitivity analysis for the model. 
Concluding remarks in section 6 close the paper. 

 

2- Preliminaries 
   To begin with we will introduce some basic concepts of cooperative game theory that we will use 

throughout the paper and will enable a self-reading of it. A cost game is a pair of ( , )N c with N={1,2,…,n} 

being the set of players (finite), and c is the characteristic function, which measures the cost generated by 
each of the possible coalitions that can be formed between players of N. Formally, 

   : 2 ,  , 2 ,  0n nc R c S S c     . We will consider some properties of cost games. A cost game

( , )N c is concave if for all i N and for all     { }S T N i  , we have that 

        ( )c S i c s c T i c T     and it is monotone if for all    S T N   it holds that



130 
 

   c S c T . The concavity property provides us with additional information about the game: the 

marginal contribution of an agent diminishes as a coalition grows, and so it is profitable for the agents in N 
to form the grand coalition. 

   One of the main issues treated in cooperative game theory is how to divide the benefits from cooperation 

if the grand coalition has formed. In the case of cost games, we are interested in providing a distribution of 

the total cost, c(N), so that no coalition has an incentive to leave the grand coalition and pay less. One way 

to share these benefits is according to an allocation in the core. The core of a cost game ( , )N c is the set 

( ) { ( ) ( ) , }n

i i

i N i S

C c x R x c N and x c S for all S N S
 

       (1) 

   When an element of the core  x C c  is proposed (henceforth, a core distribution), where player i 

has to pay ix , every coalition S of players should pay at most his own cost since ( )i

i S

x c S


 . A game 

( , )N c is balanced if it has a non-empty core (see Bondareva, 1963, and Shapley, 1967), and it is called 

totally balanced if each sub game (S,cS) is balanced, where    ,Sc T c T T S   . In addition, 

Shapley (1971) shows that concave games are always balanced. 

   A refinement of the core is the set of distributions of the total cost x that can be reached through a 

population monotonic allocation scheme, in short, PMAS. These schemes were introduced in Sprumont 

(1990) and defined as follows. A vector  
,

S

i i S N S
y y

  
  is a PMAS of the cost game ( , )N c if and 

only if satisfies the following two conditions. Firstly, it should hold that  S

i

 

y
i S

c S


 , for all non-empty 

coalition S of N. Secondly, for all non-empty coalition S and R in N and for all player i in S it should be 

hold that S R N  implies , S R

i iy y i S   . Also from Sprumont (1990) it follows that a core 

distribution,  x C c , is reached through a PMAS of the game ( , )N c if there exists  
,

S

i i S N S
y y

  
  

a PMAS such that 
N

i iy x . Moreover, every cost game with PMAS is totally balanced. However, it is 

not possible to get a PMAS with any random selection of cost-distributions and there are totally balanced 
cost games without PMAS.  

   Let ( , )N c and ( , )N c cooperative cost games. We say that c and c’ are strategically equivalent if there 

exist 0k   and 1 2( , ,..., )na a a a  such that    . i

i S

c S k c S a


   , for all coalition S in N.  Note that c 

and c’ play symmetric roles and we can also write  

' ( )
( ) i

i S

ac S
c S

k k

   (2) 

   There exists a relationship between "equivalence" and "core-distributions". The following well known 
theorem tells us that if we are studying a game in characteristic function form, then we are simultaneously 

studying all games which are strategically equivalent to it. 

Theorem1. Let ( , )N c and ( , )N c be strategically equivalent cooperative cost games such that 

   . i

i S

c S k c S a


   . Then, the following statements hold:  

1. If ( , )N c is concave, ( , )N c is concave. 

2. If ( , )N c is monotone, ( , )N c is monotone. 

3. A distribution x is in the core of c’ if and only if (k·x +a) is in the core of c.  



131 
 

   As Chwe (1994) points out, core-distributions provide a kind of stability from myopic point of view. As 
we already mentioned, the idea behind the core is that no subset of players can benefit by defecting from 

the grand coalition with one step, if so the grand coalition is considered to be unstable. However, this idea 

avoids the possibility that an initial defection may trigger a sequence of further moves, which eventually 

can lead to an outcome wherein the players who initiated the deviations would receive higher cost than that 
they would obtain in the grand coalition. Therefore, farsighted players may not choose to defect in the first 

place, and thus the grand coalition, which appeared unstable from a myopic view, may actually be stable 

from a farsighted point of view. A new solution concept, the largest consistent set (in short, LCS), which 
allows players to look ahead and consider possible further deviations, was introduced by Chwe (1994). 

Basically, the LCS approaches stability analysis from a farsighted perspective, i.e., considers the effect of 

externalities and allows players to consider multiple possible further deviations, while the core approaches 
stability analysis from a myopic perspective, i.e., considers only one step deviation.  

   Formally we define the LCS as follows. By L we denote coalition structures where L is a partition of the 

player set N, i.e. L={L1,L2,. . .,Lm}. For two coalition structures L1, L2, we say that player i strongly prefers 

coalition structure L2 to L1, i.e., L1<LL2 if the cost given to him/her under L2 is strictly lower than under L1. 
In other words, L1<LL2 if and only if xi

L2<xi
L1, where xi

Li denotes player i’s cost under coalition structure L. 

For a coalition S in N, L1<SL2, if L1<LL2 for all iS. By →S we denote the following relation: L1<SL2 if the 

coalition structure L2 is obtained when S deviates from coalition structure L1. We say that L1 is directly 
dominated by L2, i.e., L1<L2 if there exists a coalition S such that L1 →SL2 and L1<SL2. We say that L1 is 

indirectly dominated by Lm, i.e., L1<<Lm if there exist L1,L2,…,Lm and S1,S2,…,Sm such that Li→SiLi-1 and 

Li<SiLm for i=1,2, . . . ,m-1. 

  A set Y is called consistent if the following condition holds: L Y if and only if for all L’, C such that 

L→C L’ there exists B Y  where L’=B or L’<<B such that L<≠CB. Chwe (1994) shows that although 

there can be many consistent sets, there uniquely exists a LCS, which contains all other consistent sets. 

The LCS has the following merit that if one outcome is not in the LCS, it cannot possibly be stable. The 

LCS is the set of all outcomes that can possibly be stable. 
   We conclude this preliminary section by describing inventory games introduced by Meca et al. (2004) as 

models for cooperation in inventory situations. The player set N consists of a group of retailers dealing 

with the ordering of a certain commodity (every individual agent’s problem being an EOQ problem). In an 
inventory cost game, a group of players minimize their total cost by placing their orders together as one 

big order (paying a fix ordering cost A). To coordinate the ordering policy of the retailers, some public 

information is needed: the demand and holding cost for each retailer, i.e., id  and ih  for all i N . Then 

an inventory cost situation is given by the following 3-tuple  i, i, i N
, , d hN A


   with

i iA 0,d 0,h 0, i N     . The corresponding inventory cost game (N, cI) is defined as follows,  

.,,2:)(  


SNShAdSc j

Sj

jI  (3) 

   Meca et al. (2004) show that inventory cost games are concave and monotone. Moreover, the c2-

proportional rule with c2=(cI(i)
2/cI(N))i∈N, or SOC-rule, on inventory cost games is a core-distribution 

which can be reached through a PMAS for (N, cI). Meca et al. (2003) revisit inventory cost games and the 

SOC-rule. They prove that the wider class of n-person EPQ inventory situations with shortages leads to 

exactly the same class of cost games.  
 

3- The basic inventory model with advance payments  
   We consider a supply chain with one supplier and a finite number of retailers. The retailers purchase 

one common good from the supplier and they are asked to pay all of the purchasing cost before the date of 

delivery. There is a single good and each retailer has its own private warehouse. The demand for the good 
for all retailers is assumed to be known, constant. No retailer is allowed to run out of stock i.e., shortages 

are not allowed. The replenishment lead time is assumed to be deterministic and constant, and without 
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loss of generality equal to zero. The supplier offers a discount retailer prices if all the payment are paid in 
advance. During the time between that the purchasing cost has been paid and the inventory has been 

settled, the payment generates interest cost. This supply chain can be seen as an advance payment 

purchasing system. In such a system the capital cost of the retailers will increase because they has 

incurred interest costs on the purchasing cost of products which have not yet been received. Each retailer 
seeks for determining its optimal inventory costs. Then, an economic order quantity model with advance 

payment for multiple retailers is developed.  

   We denote the demand and holding cost per time unit of retailer i N  by Di≥0 and hi>0, respectively. 

The rest of the parameters, that are common to all retailers, are the unit purchasing cost with advance 

payment (C>0), the fixed ordering cost per order (A>0), the length of advance payment (t0≥0), the interest 
charges per euro investment in stocks per year, (Ic≥0) and the  replenishment cycle (T). 

   If the retailers place orders separately, each retailer i N has to pay a purchasing cost of i iD T C , an 

ordering cost A at time t0, and a capital cost 0i i cD T CI t  from time t0 to (t0+T). After receiving inventory 

(s) he incurs a holding cost of / 2i i iD T h  , and the cost of the interest when the goods are kept in stock  

during one cycle is 
2 / 2i i cD T CI . Hence, the average total cost per time unit, as a function of the 

replenishment cycle, is given by 

0( )
2 2

i i ci i i
i i i c

i

D CT ID T hA
TC T D CI t

T
     (4) 

The minimal cost is obtained in    * ' * '' * with   0 and  0i i i i iT TC T TC T  . It follows that  

* 2

( )
i

i i c

A
T

D h CI



 (5) 

and the minimal average cost per time unit is   

    0

* * 2i i i i C i CTC T AD h CI D CI t    (6) 

  If a group of retailers decide to cooperate and place orders jointly, the ordering cost can be shared 

among them but each retailer has to pay its own holding cost. Consider S N  the group of retailers 

decides to cooperate. Cycle length should be the same for all retailers (by a similar argument as the one 

given by Meca et al. 2004), let say𝑇𝑆, they have a common fixed cost to order jointly, but each retailer has 
its own holding cost. Once the cost of interest charges before receiving products and holding cost 

including capital cost have been calculated, the average total cost per time unit is now given by the 

following: 

0( )
2 2

i i s i c s
s s i c

i S i S i Ss

D h T D CI TA
TC T D CI t

T   

       (7) 

It is easy to show that the optimal replenishment cycle length for coalition S N is 

 
* 2

s

i i ci s

A
T

D h CI





 (8) 

and the minimal average total cost is 
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   *

02s s i i c i c

i s i s

TC T AD h CI D CI t
 

     (9) 

   Next Proposition shows that optimal replenishment cycle length satisfies a monotonicity property: it is 

decreasing with respect to coalitions; i.e., the larger a coalition is, the shorter is the optimal replenishment 
cycle length.  

Proposition1. If S R N   , then (T
s

* ³T
R

*) . 

Proof. Since  i i c

i s

D h CI


  is increasing in the number of elements and A is fixed, it follows 

immediately that when number of firms in coalition increase the cycle length decreasing. Hence
* *

s RT T . 

   The following Proposition proves that the cooperation of all the retailers is always beneficial in a basic 

inventory model with advance payments; i.e., the grand coalition can achieve a lower cost than the added 

cost if all retailers act individually. 

Proposition2. Given an inventory model with advance payments, it holds that    * *

N N i i

i N

TC T TC T


 . 

Proof. Using the Proposition 1, we prove that  

   * * *

0 0[( ) ]N N i c i N i c i c i N i c

i N i N i N

TC T h CI D T D CI t h CI D T D CI t
  

       
 

                 

 * *

0[( ) ]  i c i i i c i i

i N i N

h CI D T D CI t TC T
 

    
 

(10) 

We define an inventory situation with advance payments as the 6-tuple  0 c, i, i, i N
,  ,  , t , I D hN A C


  

with 0 ,,  ,  , 0,  0,  0, for all i Nc i iA C t I D h    . 

   Now we are ready to introduce the class of inventory games with advance payments that is based on the 

inventory situation described just above. 
  

4- Inventory cost games with advance payments  
   In this section we focus on the study of interactions among possible coalitions of retailers. We are 

interested in finding a stable distribution of the total cost generated by the grand coalition that allow us to 

conclude that this coalition is a stable outcome, from both a myopic and farsighted perspective, for 
inventory cost games with advance payments. From the myopic perspective, every coalition can freely 

form and the rest of the retailers may regroup. But if retailers are farsighted, they need to consider a set of 

ultimate outcomes instead of their individual outcomes. The farsighted coalition will be stable when the 

LCS forms as we will describe in this section. The LCS defines possible stable outcomes of all retailers 
and a coalition may chose not to deviate. 

   Given an inventory situation with advance payments  0 c, i, i, i N
,  ,  , t , I D hN A C


 , we define the 

corresponding inventory cost game with advanced payments (N, cA) as follows. For all coalitions S N ,  

  0( ) 2 i i c i c

i s i s

Ac AD h CI DS CI t
 

     

( ) 0Ac    

(11) 

   The reader may notice that the inventory cost with advance payments generated by coalition 𝑆 ⊆ 𝑁 

consists of two parts: (1) inventory cost  2 i i c

i s

AD h CI


 , (2) capital cost due to the interest charged

0i c

i s

D CI t


 . 



134 
 

   Next Proposition shows that the study of class of inventory cost games with advanced payments can be 
done simultaneously to the class of inventory cost games (see Meca et al. 2004), since both classes are 

strategically equivalent. 

 

Proposition3. Inventory cost games with advanced payments are strategically equivalent to inventory 
cost games.  

 

Proof.  Denote by i i cH h CI  . Then, for all S N , there exists k=1 and 0 ,i i c i Na D CI t  , such 

that,  

  02( ) (2 )A i i I ii i c i c i

i s i s i s i s i s

ADc h CI D CI tS H a aD SA c
    

          (12) 

Hence (N,cA) and (N,cI) are strategically equivalent.  

 
   We consider now the following issue. Is it profitable for the agents in N to form the grand coalition to 

place joint orders? The following Proposition proves that the answer to this question is positive because 

inventory cost games with advanced payments are concave.   
 

Proposition4.  Inventory cost games with advanced payments are concave and monotone. 

 

Proof.  It is a direct consequence of Theorem1 and Proposition 3. 
 

   Based on the relationship between "equivalence" and "core-distributions", we can define a cost 

distribution for retailer iN as follows:   
 

0

( )
( ) 2 ( )

( )

i i c
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(13) 

  The first part of this cost distribution β allocates the inventory cost in proportion to D
i
h
i
+CI

c( ) , and 

the second part is the individual capital cost charged. D
i
CI

c
t
0
.  

   Next proposition shows that β is always a core distribution and can be reached through a PMAS. Hence, 
inventory cost games with advanced payments are totally balanced. It means that the grand coalition is 

always a stable outcome from a myopic perspective.  

 

Theorem2. Let  0 c, i, i, i N
,  ,  , t , I D hN A C


  be an inventory situation with advance payments and (N, 

cA) the corresponding inventory game. The cost distribution β always belongs to the core and it can be 

reached through a PMAS. 

Proof. First we prove that β belong to the core of (N, cA). Indeed, denote by i

Si

iI HADSc 

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We know by Meca et al. (2004) that ).(
)(

)( 2

I

NiI

I cC
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 Hence, ).()( AA cCc    

Second, we prove that β can be reached through a PMAS. We define  
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Obviously ).(Scy A

Si

S
i 



In addition, by Proposition 1, we can see that ,i S S R N      , 

yi
S =DiTs

*(hi +CIC )+DiCICto ³DiTR
*(hi +CIC )+DiCICto = yi

R.  (15) 

Hence, 𝑦 = (𝑦𝑖
𝑆)𝑖∈𝑆≤𝑁,𝑆≠∅ is a PMAS such that ).( Ai

N
i cy    

   To complete this section, we prove that the grand coalition is also a stable outcome from a farsighted 

perspective. As we already announced, we adopt the concept of LCS to analyze stability from a farsighted 
view. A Similar application of LCS can be seen in Li et al. (2014). The following Theorem states that 

under the core distribution β, the grand coalition is also farsighted stable. 

 

Theorem3. Let  0 c, i, i, i N
,  ,  , t , I D hN A C


  be an inventory situation with advance payments and (N, 

cA) the corresponding inventory game. The grand coalition is a farsighted stable outcome under the core 

distribution β.  

Proof.  Suppose we have n players in game from the set of {1,2,...,n}, we show that any deviation from 
the grand coalition is deterred and return in the grand coalition. Hence as the results the grand coalition is 

farsighted stable. In following has shown if k retailers want to deviate from the grand coalition is deterred 

by sequence: 

             11,2,..., 1,..., , 1,.., 1, 2,..., , 1,..., .... 1,..,nn c k k n c k k n c n     
 

(16) 

Consider, 

       1 11,2,...,  ,  1  ,  .... ,   ,  1,2,...,n nC k C C n C n   
 

(17) 

Let, 

              1 2 1 21,..., , 1,..,  ,  1, 2,..., , 1,...,  ,  1,..,  ,  1,...,n nk k n k k n n n             (18) 

According to lemma (2), we have: 

1 1 2 2 1 1 ,   ,  ... ,  n nc c c          (19) 

We can see 1   and 1 c  , hence the deviation by (1,..,k) is deterred. 

   Our last result shows that under the core distribution β the grand coalition is in the LCS, that is, the 

grand coalition is also farsighted stable. Therefore, from Theorems 2 and 3, we can conclude that the 

grand coalition is stable both from a myopic and farsighted point of view. 
   In the following we illustrate our cooperative model by means of a numerical example and develop 

sensitivity analysis that evaluates the changes produced on the core distribution proposed. 
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5- Numerical example and sensitivity analysis  
   We consider a two echelons supply chain with one supplier and four retailers who purchase a single 

good. The common parameters are A=900, C=500, Ic=0.15, t0=0.1, and the individual parameters for each 
retailers shown in table 2. 

 
Table 2. Data for each retailer 

i Di hi 

1 1000 400 

2 1400 250 

3 900 300 

 
   First we study the optimal replenishment cycle and minimal average cost per time unit for each retailer 

when they place their orders separately. All of them can be obtained from (2) and (3), respectively, and 

they are shown in table 3.  

 
Table 3. Optimal replenishment cycle and minimal average cost when the retailers place order separately 

I Ti
* TCi(Ti

*) 

1 0.061559 36740.38 

2 0.062897 39118.18 

3 0.07303 31397.52 

 

  When the retailers cooperate, the inventory cost with advance payments for each coalition can be 
obtained from (6), and the optimum replenishment cycle time for each coalition is calculated according 

(5). By using Theorem2 we can obtain a core distribution β that is reached through a PMAS (βi
S). In table 

4 we can see the optimal replenishment cycle, the cost game, and the PMAS. Notice that the distribution 
for the grand coalition is given by β1=25400.12, β2=27646.43, β3=19468.5. 

   Table 4 shows that  (1) larger coalitions have smaller replenishment cycle time (TN*<TS*, for all S),  (2) 

the cost of gran coalition (72515.05) is lower than the added individual costs (74186.08), (3) the PMAS, 

which the core distribution β is reached through, reduces considerably the costs of the retailers in the 
grand coalition (βi

N<< βi
S, for all S). 

   Now we analyze the changes produced in the core distribution β and the optimal replenishment cycle 

for the grand coalition (TN
*) under small changes in the parameters of the model. The results of this 

sensitivity analysis for β and TN
* are shown in tables (5) and (6), respectively. 

 
Table 4. Cost game and cost distributions 

Coalition TS* cA(S) (βi
S) PMAS 

{1} 0.061559 36740.38 β1
{1}=36740.38 

{2} 0.062897 39118.18 β2
{2}=39118.18 

{3} 0.073030 31397.52 β3
{3}=31397.52 

{1,2} 0.043900 58914.54 β1
{1,2}=28397.21 , β2

{1,2}=30517.33 

{1,3} 0.047000 52492.65 β1
{1,3}=29857.24 , β2

{1,3}=22635.41 

{2,3} 0.047600 55019.03 β2
{2,3} =32184.43 , β3

{2,3}=22834.6 

{1,2,3} 0.037600 72515.05 β1
N=25400.12 , β2

N =27646.43 , β3
N =19468.5 
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Table 5. Sensitivity analysis for β 

Variable β Changes in parameter A (%) 

  -75 -50 -25 25 50 75 

β1 16450.1 20157.3 23002 27512.9 29423.1 31179.6 

β2 19073.2 22624.4 25349.2 29670.3 31500 33182.6 

β3 13109.3 15743.3 17764.5 20969.7 22326.9 23575 

 Changes in parameter C (%) 

  -75 -50 -25 25 50 75 

β1 18955.6 21106 23254.2 27543.5 29684.3 31822.5 

β2 17972 21217.5 24441.6 30833.6 34004.5 37160.5 

β3 13389 15425 17451.3 21477.4 23478.7 25472.7 

 Changes in parameter Di (%) 

  -75 -50 -25 25 50 75 

β1 10825.1 16407.3 21127 29387.9 33173.1 36804.6 

β2 11198.2 17374.4 22724.2 32295.3 36750 41057.6 

β3 8046.75 12368.3 16077 22657.2 25701.9 28637.5 

 Changes in parameter hi (%) 

  -75 -50 -25 25 50 75 

β1 17973.8 20908.3 23311.4 27270.9 28980 30563.4 

β2 22021.2 24149.1 25995.2 29153.4 30548 31852.2 

β3 14829.8 16621.2 18134.2 20675.6 21786 22820 

 Changes in parameter Ic (%) 

  -75 -50 -25 25 50 75 

β1 18955.6 21106 23254.2 27543.5 29684.3 31822.5 

β2 17972 21217.5 24441.6 30833.6 34004.5 37160.5 

β3 13389 15425 17451.3 21477.4 23478.7 25472.7 

 Changes in parameter t0 (%) 

  -75 -50 -25 25 50 75 

β1 19775.1 21650.1 23525.1 27275.1 29150.1 31025.1 

β2 19771.4 22396.4 25021.4 30271.4 32896.4 35521.4 

β3 14406 16093.5 17781 21156 22843.5 24531 

  
   Each parameter changes from -25% to +75% and the effect of these changes on distribution β is shown 

in figures (2) - (7). We can conclude that the cost distribution β is slightly sensitive to increases in each 

parameter. It is highly sensitive to variations in demand but it is almost insensitive to variations in holding 
cost per time unit.  
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Fig 2. Effect of changes in A on β 

 

 
Fig 3. Effect of changes in hi on β 

 

 
Fig 4. Effect of changes in C on β 
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Fig 5. Effect of changes in Ic on β 

 

 
Fig 6. Effect of changes in Di on β 

 

 
Fig 7. Effect of changes in t0 on β 

 
  Sensitivity analysis for TN

* in return of parameters changes shown in table (6), and graphically can be 

seen in figure (8). It shows that the optimal replenishment cycle for the grand coalition is also highly 

sensitive to variations in demand as well as to variations in fixed ordering cost per order and holding cost 

per time unit.  
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Table 6. Sensitivity analysis for TN
*  

Variable Ts
* Changes in parameter A (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.01884 0.02665 0.03264 0.04213 0.04615 0.04985 

 Changes in parameter C (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.04079 0.03967 0.03864 0.0368 0.03597 0.0352 

 Changes in parameter Di (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.07537 0.05329 0.04351 0.03371 0.03077 0.02849 

 Changes in parameter hi (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.05985 0.04875 0.04216 0.03438 0.03182 0.02976 

 Changes in parameter Ic (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.04079 0.03967 0.03864 0.0368 0.03597 0.0352 

 Changes in parameter t0 (%) 

 
-75 -50 -25 25 50 75 

Ts
* 0.03768 0.03768 0.03768 0.03768 0.03768 0.03768 

 
 

 
Fig 8. Optimal replenishment cycle values related to changes in each parameter 

 

6- Conclusions 
   In this paper we had considered an advance payment purchasing system. In such a system the capital 

cost of the retailers will increase because they have incurred interest costs on the purchasing cost of 
products which have not been received yet. Each retailer seeks for determining its optimal inventory costs 

by developing an economic order quantity model with advance payment for multiple retailers. If the 
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generated by the cooperation; i.e. cooperation of all the retailers is more beneficial than individual 
actions. By using cooperative game theory we have studied such cooperation and have presented the class 

of inventory games with advance payments. We have proved that this class of games is strategically 

equivalent to the class of inventory cost games introduced by Meca et al. (2004). A core distribution, as 

well as a population monotonic allocation scheme, for those games has been proposed. Then we have 
examined the stability of grand coalition from both a myopic and farsighted perspective, and have come 

to the conclusion that the grand coalition is always stable from both points of view. Finally, we have 

developed a sensitivity analysis for the core distribution proposed and for the optimal replenishment cycle 
of the grand coalition. This analysis has shown that the core distribution is highly sensitive to variations 

in demand but it is almost insensitive to variations in holding cost per time unit. Likewise, the optimal 

replenishment cycle for the grand coalition is highly sensitive to variations in demand as well as to 
variations in fixed ordering cost per order and holding cost per time unit. 
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