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Abstract

Control charts are standard statistical process control (SPC) tools for detecting
assignable causes. These charts trigger a signal when a process gets out of control
but they do not indicate when the process change has begun. Identifying the real
time of the change in the process, called the change point, is very important for
eliminating the source(s) of the change. Knowing when a process has begun to
change simplifies the identification of the special cause and consequently saves
time and expenditure. This study uses genetic algorithms (GA) with optimum
search features for approximately optimizing the likelihood function of the process
fraction nonconforming. Extensive simulation results show that the proposed
estimator outperforms the Maximum Likelihood Estimator (MLE) designed for
step change regarding to speed and variance.
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1. Introduction and literature review

Statistical process control (SPC) has played an important role in industry for many years. The
control chart is a powerful SPC tool that monitors changes and discovers variation in a process in
order to distinguish between special and common causes of variation. In SPC, upper and lower
control limits can be defined based on the probability distribution of the product’s quality
characteristics. When the sample observations of the process are within the control limits, we
conclude that the process is in control. However, if the sample observations fall outside the control
limits, an out-of-control signal is received. The time when a special cause manifests itself into a
process is referred to as change point. Once a change is detected, process engineers begin their search
for the special cause disturbing the process. Upon signaling, control charts do not provide specific
information regarding the cause of process change nor when the process changed. They only suggest
that a change has occurred.

The process parameter(s) are usually be affected by changes in the process. These changes may be
classified into single step change, multiple step changes, drift, and monotonic change (Amiri,
Allahyari, 2012). They have provided a thorough overview of change point estimation problems in
different types of control charts, and classified published articles according to different criteria such
as the types of changes and the applied estimation approaches.

Samuel and Pignatiello (1998) analyzed a step change in the rate parameter for a Poisson process.
Samuel, Pignatiello and Calvin (1998a and 1998b) considered step change in a normal process mean
and normal process variance. Samuel and Pignatiello (2001) proposed an MLE for the process
fraction nonconforming change point by applying the step change likelihood function. They evaluated
the performance of their proposed estimator when an np chart signals out of control point and
concluded that their estimator has reasonably good accuracy and precise performance (Pignatiello and
Samuel, 2001). Perry, Pignatiello and Simpson (2007) developed a change-point estimator from the
change likelihood function for a binomial random variable without assuming any change type. The
only assumption in their research is that the predicted change type is monotonic. They also compared
the performance of their estimator with the one suggested by Samuel and Pignatiello (2001).

Perry and Pignatiello (2006) proposed the MLE for the change point of a normal process mean
when a linear trend disturbance is present. The performance of the proposed estimator was studied and
compared with the performance of MLE designed for step changes. Perry, Pignatiello and Simpson
(2006) compared the performance of the MLE for the time of drift in a Poisson rate parameter
designed for linear trends with the MLE of the process change point designed for step changes when a
linear trend disturbance is present. They showed that the MLE of the process change point designed for
linear trends outperforms the MLE designed for step changes and the CUSUM control chart estimator.
Noorossana and Shademan (2009) proposed a MLE for the change point of a normal process mean that
does not require the knowledge of the exact change type but assumed that it is monotonic (isotonic or
antitonic). Zandi et al. (2011) introduced MLE for the change point of process fraction nonconforming
when the process was subjected to a linear trend disturbance.

In the context of SPC, the fuzzy set theory has been used to model fuzzy data, particularly for
constructing attribute control charts based on linguistic data. Zarandi, Alaeddini and turksen (2008)
combined fuzzified sensitivity criteria and fuzzy adaptive sampling rules to make more sensitive and
proactive control charts. Their hybrid method keeps the rate of false alarms reasonably low.
Ghazanfari et al. (2008) used data clustering to estimate the change point in Shewhart control charts.
Their approach is “applicable to both phase I and phase Il of normal and non-normal processes.
Alaeddini, Ghazanfari and Nayeri (2009) developed a hybrid fuzzy clustering and statistical approach
for change point estimation. Their approach can effectively estimate the change point in processes
with either fixed or variable sampling strategies. Zarandi and Alaeddini (2010) extended the fuzzy
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statistical clustering (FSC) to a general form so as to estimate the change point in a wide range of
processes. Kazemi, Bazargan and Yaghoobi (2013) extend the FSC approach to estimate the process
change point in the presence of the linear trend disturbance. Their approach provides an accurate
estimate of the process change point in different control charts.

Genetic algorithm was first developed by Holland (1975). It uses computer programs to simulate
the evolutionary process with the chromosome as the solution to the solved problem. Based on the
environmental adaptation of chromosomes, researchers identified a fitness value such that a
researcher could determine whether a chromosome would survive until the next generation. The
evolutionary process continues until the target has been met. By self-adaptation and an iteration
threshold, the algorithm has the ability to evolve to the optimum solution for a problem.

In this research, first the step change-point problem of a process fraction nonconforming is
introduced and a new method for obtaining an approximate MLE for the step change point of the
process fraction nonconforming is proposed. The method uses a genetic algorithm for optimizing the
likelihood function. The proposed estimator can be used for the detection of a change point when
either p or np chart has shown a signal. Next, the obtained estimator is compared with the MLE of
the process fraction nonconforming change point.

2. Process step change model

The binomial distribution is often used to model the number of successes in n trials. Often in an
industrial quality control setting, the binomial distribution is used to model the number of defective
items in a sample of size n. In other words the probability that there are x defectives in a random
sample of n items is

P = = (0)pra-pr @

Where 0 < x <n and O < p < 1 denotes the process fraction nonconforming. We will
assume that the process is initially in-control and the observations come from a binomial distribution
with p = p,, a known parameter value and at an unknown point in time 7 (known as the process
change point), p changes to p = p; = dpy, Where p, # p; and § is the unknown magnitude of the
change. Values of ¢ > 1 represent an increase in p while 6 < 1 represents a decrease or improvement

inp.
Let D; denote the number of nonconforming units in the i th subgroup and n; be the size of the i th

subgroup, Then p; = D"/ni represents the subgroup fraction nonconforming. We assume that the first

signal of a change in p occurs at subgroup number T. Hence either D < LCLp or Dy > UCLp but
for < T, LCLp < Di < UCLp. We further assume that the control chart signal is not a false alarm.
Thus, Dy,D,,...,D; are the numbers of nonconforming units from the in-control process while
D741, Dzyo, ..., Dy are from the changed process. We now focus on t identifying the last subgroup

from the in-control process or equivalently, T + 1, the first subgroup from the changed process.

Samuel and Pignatiello (2001) consider the derivation of the maximum likelihood estimator
(MLE) of t the process fraction nonconforming change point. Maximum likelihood estimation
techniques are discussed in Casella and Berger (2002). Samuel and Pignatiello first compute the value
of p; that maximizes the likelihood function, or equivalently its logarithm and then propose the
maximum likelihood estimate of the change point 7.
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Suppose that n; =n, =--- = ny = n, The likelihood function is:
T T
— n D; n_D; n D; n_D;
L) =] [ (5 )p@—pom2x [ | (5 ) e —por @)
i=1 ! i=td1 ¢

In this paper, we propose an estimator using GA for step change point model from binomial
process. We consider both t and p, together for optimizing likelihood function.

3. Genetic algorithm

Genetic algorithm is random search method for global optimization. GA is a method triggered by
the basic structure of organism evolution and was first proposed by John Holland in 1975. It
combines Charles Darwin’s principle of “natural selection” and “survival of the fittest” with the
computer-constructed evolution mechanism to select better species from the original population. The
information is exchanged randomly, in the hope of a superior offspring. The genetic algorithm uses a
population of strings to encode the initial candidate solutions and then employs genetic operators
(selection, mutation, crossover) to generate new populations based on the initial population, and
gradually evolves towards the best solution. The convergence speed of GA is closely related to the
procedure and parameters of the genetic operators such as selection, mutation and crossover.

The genetic algorithm not only avoids the trap of local optimization, but also reduces much
computational time to find the optimum. Therefore, it is quite capable of solving optimization
problems. Owing to its diverse characteristics, the genetic algorithm has diverse applications such as
engineering, social sciences, and medicine.

3.1. Simulation study on the estimation of the change point with GA

This section performs a simulation study to estimate the change point. The estimation is based on
using GA to optimize the likelihood function of a binomial step change model. The GA procedure for
identifying change point of a binomial model is as follows:

Stepl: Initialize algorithm parameters p.(crossover) and p,,(mutation), iteration and number of
chromosomes, these parameters will be fixed during the entire optimization process.

Step2: Initialize a random population.

Step3: For each chromosome, calculate its fitness value.

Step4: Based on the Roulette wheel selection, select chromosomes.

Step5: Generate the new generation, based on crossover and mutation.

Step6: If the stopping criterion is satisfied, then stop and return the best chromosome, otherwise, go to
step 3.

We know that the values of parameters p,and t are in intervals [0, 1] and [1, T ] respectively. The
following steps illustrate the whole searching process.

(1) Randomly generate a population with each chromosome containing 2 digits. Then process the
reproduction of the new generation fitness.
(2) Apply convex crossover and use 0.8 as the crossover rate and 0.05 as the mutation rate, too.
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For the simulation study, we first generate random observations. For this purpose we compute our
estimators using an np chart. In other words, we estimate the change point after an np chart has
signaled that a process change has occurred.

The observations are randomly generated in subgroups of size n =150 from a binomial
distribution with parameter p, = 0.1 for subgroups 1, 2, ..., 100. If any of these subgroups produced a
D; which exceeded a control limit, all data from that subgroup are discarded and another subgroup is
generated to replace it. By continuing, if needed, so that no false alarms are observed during the in-
control phase of the simulations. Then, starting with subgroup 101, observations are randomly
generated from a binomial distribution with parameter p; = dp,, until the np chart issued a signal. At
this point, the estimators 7, and 5. where computed using GA and the method proposed by Samuel
and Pignatiello (2001) respectively.

This procedure is repeated for a total of 10000 independent simulation ones for each of several

values of §. The average of these 10000 change point estimates is determined along with their mean
squared errors (MSE). The results for § > 1 and § < 1 are shown in Tables 1 and 2. E(T) is the
expected time at which the control chart first signals a disturbance in the process fraction
nonconforming. The estimation of the probability that the change-point estimated value, falls within
a certain interval around true change point (z = 100) for different values of & is reported in Tables 3
and 4.

The results in Table 1 and Table 2 show that, except for § =1.5and 6 = 0.5 the MSE ;is
smaller than MSE ¢, . This shows that the estimator based on genetic algorithm performs at least as
well as the estimator proposed by Sumuel and Pignatiello. We note that, as the & increases to 3 or
decreases to 0.5, the mean squared error for both estimators, decreases. However, more accurate
estimates are obtained using the proposed method in almost all cases. Thus, it can be concluded that
the proposed estimator outperforms the previous estimator and provides a more accurate estimate of
the true process change point when a step change in process fraction nonconforming is present.

We next consider the frequency with which the change point estimation is within a distance m from
the true change point, for m = 1,2, ...,10,15 . The results are reported in Table 3 and Table 4 for
different § values. Table 3 shows that % is more precise for all values of §. Naturally, as the &
increases, the precision of the two estimators improves. The estimated change point and precision of
the estimates for two different change point estimators are plotted in Figures 1-4. These figures show
that the precision provided by the proposed estimator in most cases is better than that of the other

estimators. Moreover, the precision of both estimators improves are improved value of & increases.

Table 1. Accuracy performances for two estimators of the change point (for increases in fraction
nonconforming) when used with an np chart.

F) E(T) ¢ T MSE MSE .,
1.1 237.987 108.823 110.759 31.9752 32.7066
1.2 148.449 101.141 102.39 10.7549 10.8331
1.3 120.497 100.054 101.366 5.8681 6.778
1.4 110.05 99.376 100.97 4.4174 5.1533
1.5 105.578 99.836 99.685 4.2114 4.2102

2 101.299 99.882 99.81 1.6508 1.6515

3 101 99.981 99.981 0.15705 0.15705




Approximating the step change point of the process ... 123

Table 2. Accuracy performances for two estimators of the change point (for decreases in fraction
nonconforming) when used with an np chart.

) E(T) ¢ T MSE MSE .,
0.9 510.64 101.453 102.624 29.2154 30.1246
0.8 423.304 99.877 100.972 7.15199 7.3436
0.7 264.235 100.0975  100.2247 3.169197 3.3099
0.6 152.82 99.9539 99.9479 1.69655 1.8562
0.5 118.56 99.98 99.99 0.997796 0.97132

Table 3. Precision of estimators (for increases in fraction nonconforming) when used with an np
chart, in-control process fraction nonconforming (p, = 0.1, n = 150, T = 100)

) 1.1 1.2 1.3 1.4 1.5 2 3

ﬁ(ﬁGfT) 0056 0193 0327  0.444 0603 0.8890. 0.984
P@Ec=1) 003 0070 0100 0103 0585 857  0.984

p(Rc—t|<1) 0128 0343 0553 0711 0815 0960 0.997
AR, —t|<1) 0111 0297 0479 0580 0796 0.960 0.997

p(]Rc—t|<2) 0186 0454 0681 0818 0897 0980 1
p(3.. —1|<2) 0170 0.415 0.63 0772 0895 0977 1

p(ITc —t|<3) 0239 0540 0767 0884 0947 09820. 1
p(|%. —t|<3) 0204 0502 0728 0866 094 982 1

p(]Rc —t|<4) 0282 0608 0804 0924 0961 0984 1
p(3.. —t|<4) 0256 0572  0.797 091 0962 0984 1

p(]Rc —t|<5) 0319 0667 0880 0944 0974 09870. 1
p(R.—t|<5) 0292 0636 0851 0945 0974 987 1

p(]Rc —t|<6) 0353 0713 0.90 0962 0977 09890. 1
p(R.—t|<6) 0333 0692 0884 0961 0977 989 1

p(jfc—t|<7) 0383 0748 0917 0973 0982 0990 1
o(F. —t|<7) 0378 0729 0905 0975 0982 099 1

p(|ic—t|<8) 0416 0783 0937 0978 0.985 1 1
p(R,. —t| <8 0404 0757 0922 0978 0985 1 1
p(|ic—t| <9) 0441 08040. 0948 0979 0.987 1 1
B3, — 7] <9) 0431 791 0.938 0.98  0.987 1 1
p(|gc —t| <10) 0465 0825 0956 0981 0.991 1 1
(3., — 7| <10) 0458 0811 0953  0.983 0.991 1 1
p(|tg — | <15) 0566 0.8940. 0.981 0988 0.994 1 1

(7. — 1| <15) 0543 908 0982 0988 0.994 1 1
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Table 4. Precision of estimators (for decreases in fraction nonconforming) when used with an np
chart, in-control process fraction nonconforming (p, = 0.1, n = 150, 7 = 100)

5 0.9 0.8 0.7 0.6 0.5
E(AEG =1) 0.074 0.220 0401 05664 8';3123
P(Tse = 1) 0.047 0.414 0.132 0.5530 '

p(lfG s 0.181 0.39397 0.64193  0.79639  0.92137

Pt — Tl < 1) 0.158 0.388 0.58894  0.71127  0.8224
P(Ite =l = 2) 0.25 0542  0.76229 8'2%2}1 0.97177
Pt — Tl = 2) 0.241 0.533 0.75477 : 0.94349
P(Tc — 1| < 4) 0.332 0.707 0.8997  0.97384  0.99194
B([R,. — 1| < 4) 0.329 0.699 0.8794 0.9659  0.99194

P — 1| < 5) 0362 073568  0.9338  0.98295  0.99597
p(]3.. — 7| <5) 0359 073266 090754 0.98195  0.97679

p(Izc — | < 6) 0.413 0.78191  0.95286  0.99498 1
p([7.. — | < 6) 0.398 0.7799 0.9407  0.9829  0.99698
Pt —t|<7) 0.452 0.80905  0.96289 1 1
b3 — 7| < 7) 0.441 0.80704  0.95578  0.99599  0.99899
p(|tc — 1/ <8) 0.482 0.83216  0.97192 1 1
(IR — 7] < 8) 0.468 0.83015  0.96281  0.999 1
p(|tc —t|<7) 0.452 0.80905  0.96289 1 1
([ — 1| < 7) 0.441 0.80704  0.95578  0.99599  0.99899
p(|tc — | <9) 0.513 0.85226  0.97894 1 1
(7. — 7| < 9) 0.499 0.85025  0.97085 1 1
p(|5 — 1| < 10) 0.546 0.912 0.98195 1 1
p(3.. — 1| <10)  0.532 0.910 0.9799 1 1
p(jtc—t/<15) 0648 0.954 0.99198 1 1

(IR — 1] <15) 0642 0.95 0.99097 1 1
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Figure 1. Estimated change point for two different change point estimators and expected time of the first
genuine alarm from np chart (ET) with different magnitude of change.
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Figure 2. Precision of estimators for the estimated accurate change point p*(Z = 7).
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Figure 3. Precision of estimators for tolerance 1 subgroup p(]7 — 7| < 1).
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Figure 4. Precision of estimators for tolerance 2 subgroup p(|T — 7| < 2)
4. Conclusion

When a control chart signals an out-of-control condition, a search begins to identify and to
eliminate the source(s) of the special cause. Change point detection techniques provide useful starting
points in the procedure of searching for a special cause following a control chart signal. An estimated
change point accompanied by confidence intervals on the process change point would provide an
appropriate starting point in the search for a special cause following a control chart signal. Estimation
of the genuine time and the real source of the disturbance cause(s) in the process fraction
nonconforming is valuable for process engineers and technicians who would like to gain easier and
quicker identification of the variables and/or procedures that might cause a change in their processes.

The most difficult aspect in estimation the change point of the processes is the identification and
finding of the procedure used to estimate nuisance parameters (like p, ), while we are only interested
to find the time t (known as the process change point). Since the genetic algorithm (GA) procedure
can simultaneously select an appropriate subset of the parameters in the likelihood function, it reduces
the huge searching time compared to the traditional estimation methods. Rather than relying on the
gradient information, it searches the optimal solution by simulating the natural evolution process. GA
has proven to be a suitable method for solving large scale optimization problems which are nonlinear,
non-convex and non-continuous. It has several significant advantages, such as strong robustness,
convergence to global optimum and parallel search capability.

In this article, a new estimator based on optimizing the likelihood function with GA was proposed
that helps to identify the change point when a disturbance of step shifts happened in the process
fraction nonconforming. The performance of the proposed method was compared with a previous
estimator developed by Samuel and Pignatiello (2001) in the presence of step change type. The
performance of the two estimators was compared using an np chart with different values for p; . The
results show that the proposed approach performs better than the previous approach. The results also
indicate that our estimator is particularly effective for estimating the time of a decrease in the process
fraction nonconforming. The estimation of the time of the change in the process fraction
nonconforming that is obtained using our estimator will be useful to process engineers who will be
able to more easily and quickly identify variables and procedures for might cause a change in their
processes.
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The following problems may be considered for future research:

(1) In this study, we used GA and its application for optimizing the likelihood function to find
the real time of change in binomial process. Employing GA for other kinds of changes, for
example, monotonic or linear trend disturbance for binomial or other processes such as
normal, Poisson can be a research topic for future.

(2) Because of the ability of GA in optimization of functions with many variables, using GA for
estimating multiple change points in the processes can be regarded as a future research.

Acknowledgements: The authors would like to express their gratitude to the anonymous referees
for their comments and suggestions on the first version of this paper. We are also grateful to Prof. M.
Tata for editing the English text.
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