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Abstract 
Health service management plays a crucial role in human life. Blood related operations 
are considered as one of the important components of the health services. This paper 
presents a bi-objective mixed integer linear programming model for dynamic location-
allocation of blood facilities that integrates strategic and tactical decisions. Due to the 
epistemic uncertain nature of strategic decisions, in order to cope with the inherent 
uncertainties, a robust possibilistic programming approach is applied to the proposed 
model. Finally, to test the applicability of the proposed model, sensitivity analysis and 
some numerical examples are being proposed. 
Keywords. Health service management, robust possibilistic programming, blood 
supply chain, disaster, dynamic bi-objective model 
 

1-Introduction and literature review 
Healthcare services play a vital role when the human lives are addressed. This important issue has 

been received the attention of both practitioners and academia for many years and still is an interesting 
research avenue (Smith‐Daniels et al., 1998), (Møller-Jensen and Kofie, 2001), (Oztekin et al., 2010), 
(Zepeda et al., 2016) and (Detti et al., 2017). Along with the other components of the health service 
network, blood supply chain is an important part of healthcare systems especially when addressing 
emergencies and disasters. Natural disasters like earthquakes and floods or even man-made disasters 
cannot be predicted efficiently. Eventually, any disaster will absolutely cause a sudden increase in 
demand of blood products. To avoid any devastating shortages in blood and its direct derivative 
products the national blood supply chain managers should come up with a precise, robust and effective 
supply-consumption plan. Reaching such narrow plan is practically impossible because most of the 
parameters of these systems are tainted with a high degree of uncertainty (Mousazadeh et al., 2018) and 
(Azadeh et al., 2017). The ultimate goal of a healthcare system is “to reduce healthcare inequalities”, to 
achieve this goal, designing a proper decision making system for determining the optimal location-
allocation decisions for blood products is an immediate need.  

Facility location problem is one of the early problems which its applications are widely used in 
healthcare systems. 
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 Location-allocation problem is a classical extension of facility location problem which locates a set 
of new facilities regarding minimum transportation costs and determines an optimal number of facilities 
to be placed in a specific area in order to satisfy the demand (Azarmand and Neishabouri, 2009).  

Location-allocation problem have been investigated thoroughly in several healthcare studies, 
interested readers can refer to Ahmadi-Javid et al. (2017) for more details.  

Blood distribution problems are categorized into three hierarchical levels; single hospitals (Heddle 
et al., 2009), regional blood centers (Gregor et al., 1982) and (Berzigotti and Bosch, 2016) and supply 
chain level (Fahimnia  et al., 2017) and (Beliën and Forcé, 2012)). Some researchers have studied all 
these levels, while others have focused only on one level.  

Generally, there are three specific time horizon for planning relief activities in case of emergencies: 
before, during and after a disaster. Here, we study the after disaster time interval. Remember that the 
post-disaster period is comparatively short and yet the most important window in saving the victims. In 
order to address this gap this study mainly focuses on this specific period and a short-term planning 
model with uncertainty considerations is proposed. 

In contrast with traditional and common objectives in the business world, relief supply chains mostly 
focus on objectives related to human life. Cost-based objective functions usually are in conflict with 
service level and satisfaction degree based objectives. In this study the main objective is to be as 
responsive as possible in life saving and yet to be efficient at the same time. 

Blood is one of the most important items in after disaster relief procedure and this paper proposes a 
multi-period, multi-objective optimization model with a robust possibilistic approach to handle the 
problem dynamics, trade-offs and uncertainties. The proposed multi-objective disaster relief logistics 
model is formulated as a mixed-integer, programming location-allocation model using a robust and 
minimax approach to obtain a more equitable, robust and reliable distribution plan of blood.  

There aren’t adequate studies addressing the after disaster relief programs from the perspective of 
blood supply chain management. Here studies on both blood supply chain management and after 
disaster relief programming efforts along with the studies directly addressing the after disaster relief 
programming in the blood supply chain are investigated. On the other hand, relevant literature on 
location-allocation problem in healthcare and blood supply chain network design should be investigated 
to point out the gap. A comprehensive survey on applications of operational research in healthcare 
services is presented in Rais and Viana (2011).  

As the investigations on relevant literature reveals, the epistemic uncertainty of input parameters in 
blood supply chain problem has been underrated and there are not adequate mathematical models. 
Considering in real-life after disaster relief programs, all of the parameters are highly tainted with 
uncertainty and ambiguity. For that reason, neglecting the vague nature of input parameters may lead 
to a tragedy and expose the managers to high risks. To fill out this gap, a novel dynamic multi-objective 
mathematical programming model based on robust possibilistic programming approach is proposed for 
location-allocation decisions for an after disaster relief plan. 

The remainder of the paper is organized as follows. Section 2 focuses on the problem definition and 
model assumptions, parameters and model formulations. Next is introducing the procedure in which the 
multi-objective model is reduced into a single objective one. Section 4 is the implementation and 
evaluation of the proposed model. At last, in the final section of the paper conclusions and future 
research directions are formulated. 

2-Problem description and formulation 
Here, a multi-period bi-objective model for after disaster blood supply chain management is 

proposed. In this problem, the donators serve as the supply points whether donating blood directly to a 
main blood facility known as blood storage and processing center (MBF) or to a temporary blood 
collecting facility (TBF). Collected blood in each TBF must be delivered to the storage and processing 
center for preserving and further use. A scheme of events in this chain is illustrated in figure 1. To 
increase the blood donators’ coverage, a TBF can possibly move to another location at the end of each 
period. 
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Fig 1. Scheme of the events in the under study blood supply chain 

The indices, parameters and variables used to formulate the problem are as follows: 
Indices 
I Index of blood donator group locations (BDG)i=1,…,I 
J Index of temporary blood facility candidate locations (TBF) j=1,…,J 
N Index of main blood facility candidate locations (MBF) n=1,…,N 
T Index of planning time periods t=1,…,T 
Parameters 

𝐶̃𝐶𝑖𝑖𝑖𝑖 Cost of transportation from BDGi to TBFj 

𝐶̃𝐶𝑖𝑖𝑖𝑖 Cost of transportation from BDGi to MBFn 
𝐶̃𝐶𝑗𝑗𝑗𝑗 Cost of transportation from TBFj  to MBFn 
𝐶̃𝐶𝑗𝑗1𝑗𝑗2 Travelling cost of a TBF from locationj1to location j2 
𝐶𝐶𝑎𝑎�𝑝𝑝𝑗𝑗 Collecting capacity of the jthTBF 
𝐶𝐶𝑎𝑎�𝑝𝑝𝑛𝑛𝑠𝑠  Storage capacity of the nthMBF 
𝐶𝐶𝑎𝑎�𝑝𝑝𝑛𝑛

𝑝𝑝 Processing capacity of the nthMBF 

ℎ�𝑛𝑛𝑡𝑡  Inventory handling cost at nthMBF in period t per unit 

𝐷𝐷�𝑛𝑛𝑡𝑡  Quantity of demand in nthMBF in period t 

𝑆̃𝑆𝑖𝑖𝑡𝑡 Quantity of possible blood supply from BDGi in period t 

𝐴̃𝐴 Possible maximum number of TBFs 
Variables 
𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡  Equals 1, if BDGi is assigned toTBFj in period t, 0 otherwise 
𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖

𝑡𝑡  Equals 1, if BDGi is allocated toMBFn in period t, 0 otherwise 

𝑌𝑌𝑌𝑌𝑗𝑗1𝑗𝑗2
𝑡𝑡  Equals 1, if a TBF is going to move from location j1 to location j2 in period t, 0 

otherwise 
𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗𝑡𝑡  Equals 1, if TBFj is allocated toMBFn in period t, 0 otherwise 
𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑡𝑡  Quantity of donated blood from BDGi toTBFj in period t, 0 otherwise 
𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖

𝑡𝑡  Quantity of delivered blood from BDGi toMBFn in period t, 0 otherwise 
𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗

𝑡𝑡  Quantity of delivered blood fromTBFj toMBFn in period t, 0 otherwise 
𝐼𝐼𝑛𝑛𝑡𝑡  Quantity of inventory held inMBFn in period t 
𝐵𝐵𝑛𝑛𝑡𝑡  Quantity of shortage in MBFn in period t 

Using the abovementioned notations, the proposed problem can be formulated as follows. 
 1 1

( )n

T t

t
MinZ Max B

=
= ∑                                                                                                                             (1) 
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The first objective function represented in equation (1) minimizes the maximum amount of shortage 

in demand points. As in this problem any shortage may lead to loss of lives (not profit), the min-max 
approach is much better than min-sum approach. We will linearized this objective later. Second 
objective function represented in equation(2), minimizes the summation of attributed costs, including 
transportation costs and blood process and holding costs. It is clear that these two objective functions 
are opposing each other. 

Constraints (3) ensure that each blood donating group is covered by at least one temporary blood 
facility or one main blood facility in each period. Constraints (4) indicate that each temporary blood 
facility is assigned to a main blood facility. Constraints (5)-(7) ensure that there is a material flow as 
long as an entity is assigned to an upper echelon entity. Constraints (8) indicate the supply limitations 
in blood donating groups. Constraints (9) indicate the capacity limitations on temporary blood facilities. 
Constraints (10) indicate the limitations on delivered bold quantities to the main facilities. Constraints 
(11) and (12) indicate the capacity limitations in main blood facilities. Constraints (13) indicate the 
material flow balance in main blood facilities in each period. Constraints (14) indicate the shortage and 
unsatisfied demand amounts in each period. Constraints (15)-(18) ensure that the temporary blood 
facilities assignments and movements follow a feasible sequence in each period. Constraints (19) are 
the non-negativity and binary restrictions of variables. 

As already mentioned, first objective function is a nonlinear equation which could easily be changed 
to a linear equation as following: 
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Where (MaxShortaget ) stands for the possible maximum value of the Bk

t.  
2-1-Accounting for data uncertainty 

Parameters of after disaster planning models are tainted with a huge degree of uncertainty. Modeling 
and investigating these problems without uncertainty considerations will not lead to a practical approach 
to be used in after disaster relief programs. Furthermore, as this problem deals with human life 
robustness of the solutions is in high regard in comparison with profit based problems. In order to deal 
with the uncertain nature of the problem, a robust possibilistic programming approach based on Me 
measure is applied to the proposed model. Me measure is one the most recent fuzzy measures in the 
literature. 

2-2-Fuzzy mathematical programming approach 
Fuzzy mathematical programming approach is one the frequently used programming approaches 

when addressing uncertainty along with flexible goals and elastic constraints. Possibilistic chance-
constraint programming (PCCP) approach is one of the wide spread methods in the literature because 
of its ability on controlling the confidence level of constraints and its compatibility with different types 
of fuzzy numbers (Pishvaee  et al., 2012a). Necessity (N) and Possibility (π) measures are representing 
the extreme attitude of the parameters. However, CCP models based on Credibility (Cr) measure are 
proven to be more effective (Pishvaee et al., 2012b). Given a trapezoidal fuzzy number, 
ξ=(d1,d2,d3,d4)where d1<d2<d3<d4.  

While credibility measure is more flexible than two extreme optimistic and pessimistic measures, 
this approach provides DMs with a single moderate point between necessity and possibility. Xu and 
Zhou (Xu and Zhou,, 2013) developed a new fuzzy measure (Me measure) to provide a spectrum of 
decisions instead of a single moderate point. In equation(21), λ ( 0 1λ≤ ≤ ) is the tuning parameter which 
states the optimistic or pessimistic attitude of the DM.  

 
 ( ) ( ) ( ) ( )1Me Nξ λπ ξ λ ξ= + −                                                                                                       (21) 
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And if 0ξ ≥ , based on equation(22), expected value using Me measure is calculated as follows: 
 

 ( ) ( )0

1 2 3 40

1 ( ) ( )
2 2

MeE Me r dx Me r dx d d d dλ λξ ξ ξ
+∞

−∞

−  = ≥ − ≤ = + + +  ∫ ∫                                    (23) 

 
The crisp counterparts of both ( )Me rξ α≥ ≥  and ( )Me rξ α≤ ≥  would be as follows: 
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In healthcare problems where they are highly sensitive to the uncertain parameters the main goal of 
managers is to satisfy the possibilistic chance constraints with a fairly high chance. So in these problems 
managers tend to develop a pessimistic approach rather than an optimistic one. In other words, the λ 
parameter would take a value less than 0.5. 

To work more convenient we develop the compact form of the proposed model as follows: 
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, ( , )

0,1   
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Min Z TY WX

X Y G x y
Y X 0 & integer

=
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∈

∈ ≥

                                                                                                         (26) 

Now without losing any generality, assume that T and W vectors are representing the imprecise and 
fuzzy parameters of the model. Expected value operator is used to convert the objective functions to 
their crisp equivalent and Me measure is adopted to deal with constraints contain vague parameters. The 
parameters are assumed to follow a trapezoidal possibility distribution, 𝜉𝜉 = (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜉𝜉4). With these 
descriptions the (26) model can be reformulated as follows: 
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By applying transformations discussed in equations (23) through(25), the crisp equivalent of the 

model (27) is as follows: 
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While the (28) model deals with data ambiguity, it fails to track the objective function value’s 
deviation from the expected value. These deviations cost a lot especially in healthcare systems where 
any lost means human life. Secondly, in this approach the minimum confidence level of constraints are 
determined based on decision maker’s preferences which won’t necessarily lead into optimality. To fill 
out these shortcomings, a combination of robust programming and fuzzy programming approaches are 
introduced (Zahiri et al., 2014). 

A robust solution has feasibility robustness along with optimality robustness (Pishvaee et al., 2012a).  
A solution is feasibly robust only if it remains feasible for all realizations of imprecise parameters and 
it is optimally robust if it the equivalent objective function value remains (near) optimal for all 
realizations of uncertain parameters. In classical robust possibilistic programming approach the 
Necessity measure is applied to deal with vague and imprecise data but as already discussed, Me 
measure provides a more realistic perspective of the problem for the decision makers. The Me-based 
robust possibilistic programming model is developed as follows: 
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  (29) 

In model(29), the first term in both objective functions are the expected values of objective functions. 
For the second objective function the second term is minimizing the deviations of upper bound of 
objective function values from the expected values to control the optimality robustness of the solutions. 
The parameters ψ and ω are the preference weight parameters of the optimality robustness over the 
feasibility robustness. The last two terms of second objective function are controlling the feasibility 
robustness of the solutions. These terms minimize the violations of RHS of the chance constraints from 
their worst realized value of the uncertain parameters with penalty parameters , , ,δ σ δ σ′ ′ . Interesting fact 
about these penalty values is that they can be interpreted due to the problem context, for instance, 
shortage costs can easily be redefined into these parameters. The upper bound of the second and third 
objective functions are calculated as follows: 

 
 max

2 4 4Z T Y W X= +                                                                                                                          (30) 

3-Coping with objective functions 
In the literature of multi objective optimization problems there are three main approaches to tackle 

with multi objective function problem; priori, interactive and posteriori classes (Deb, 2014). Interactive 
class of approaches accumulates the favorable features of the other two approaches while preventing 
the inefficiencies of them. In contrast with the priori approaches, interactive methods look into the 
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preferences of the DMs and generate Pareto-optimal solutions. In this study the interactive method 
proposed by Torabi and Hassini (2008), (TH) is applied to the proposed model. TH method is one of 
the most wide spread interactive approaches in coping with multi objective models. Interested readers 
may refer to (Lalmazloumian et al., 2016), (Farrokh et al., 2018), (Alavidoost et al., 2016), (Tofighi et 
al., 2016), (Mirmohseni et al., 2017) and (Mohammed and Wang, 2017). 

The steps of the TH approach are as follows: 
 Calculate the positive/negative ideal solution (PIS & NIS) for each objective function 
 Determine the following linear fuzzy membership function for each objective function: 
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                                                                                                  (31) 

 Convert the crisp multi-objective model into a single-objective model as follows: 
  
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k k
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Max w x

x k
x F and
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µ τ
τ
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∈ ∈

∑

                                                                                                       (32) 

 
Where τ0indicate the minimum satisfaction degree of objective functions, ϕ and wk stand for the 
coefficient of compromise between objective functions and importance of the jth objective function. 

 Determine the values of importance weight of the objective functions and coefficient of 
compromise between objective functions and solve the single-objective model. 

4-Implementation and evaluations 
In this section the validation and performance of the proposed model solution approach is 

investigated by two test problems. All the proposed models are coded in GAMS 24.7.4 optimization 
software using CPLEX solver and all the executions are implemented on a Corei7 2.40 GHz laptop with 
8 GB of RAM. Note that the triangular fuzzy numbers of given uncertain parameters are considered as
(0.9 , ,1.1 )ϕ ϕ ϕ . Problems size is 3*6*1*3 and 10*25*5*5 and input parameters follow a uniform 
distribution. The parameter values for test problems are given in table 1.  

 
Table 1. The numerical values of the parameters in the test problems 

Parameter Range Parameter Range 
𝑐̃𝑐𝑖𝑖𝑖𝑖  ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(55,75) 𝐶𝐶𝑎𝑎�𝑝𝑝𝑛𝑛

𝑝𝑝
 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(1000,1500) 

𝑐̃𝑐𝑖𝑖𝑖𝑖 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(110,140) ℎ�𝑛𝑛𝑡𝑡  ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(50,150) 
𝑐̃𝑐𝑗𝑗𝑗𝑗 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(30,45) 𝐷𝐷�𝑛𝑛𝑡𝑡  ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(250,350) 
𝑐̃𝑐𝑗𝑗1𝑗𝑗2 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(100,120) 𝑆̃𝑆𝑖𝑖𝑡𝑡 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(800,900) 
𝐶𝐶𝑎𝑎�𝑝𝑝𝑗𝑗 ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(100,120) 𝐴̃𝐴 10 

𝐶𝐶𝑎𝑎�𝑝𝑝𝑛𝑛𝑠𝑠  ~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(1500,2500)   
 
The optimal solutions for test problems are presented in table 2. In these test problems the weight 

factor for the first objective function is always higher than the second one, as the shortage amounts in 
proposed model may lead to human casualties. As the weight factor for the first (second) objective 
function increases the optimal value of the corresponding objective decreases (increase). The τ0 is the 
minimum satisfaction degree of the objective functions and as it’s higher when the DM has a moderate 
attitude toward the problem. The most maximum value of TH objective function is obtained when there 
is a reasonable balance among objective functions satisfaction degrees. Note that the values of Z1and 
Z2 are calculated based on model (29).  
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Table 2. Results of test problems under proposed model (ϕ=0.1) 
Weight 
factors 

Test 
problem MaxShortaget 𝑍𝑍1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑍𝑍2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 τ0 ( )

jZ xµ  TH 
value 

(0.5,0.5) 
1 (8,13,7) 3910 209736 0.88 (0.91,0.88) 0.848 
2 (43,27,19,33,20) 15271 709203 0.84 (0.89,0.84) 0.838 

(0.6,0.4) 
1 (7,13,6) 3862 213640 0.83 (0.93,0.83) 0.864 
2 (32,23,17,23,18) 14610 712939 0.80 (0.90,0.8) 0.850 

(0.7,0.3) 
1 (6,10,5) 3717 221406 0.79 (0.95,0.79) 0.888 
2 (27,20,15,16,9) 14052 730081 0.78 (0.94,0.78) 0.877 

(0.8,0.2) 1 (6,10,2) 3694 229687 0.77 (0.99,0.77) 0.924 
2 (17,16,8,10,5) 13503 741507 0.76 (0.95,0.76) 0.895 

(0.9,0.1) 1 (5,7,0) 3604 240037 0.75 (0.99,0.75) 0.938 
2 (13,12,4,3,2) 13122 756320 0.73 (0.95,0.73) 0.906 

 
 
Figure 2 depicts the conflicts of objective functions, Z1 V.s. Z2, for normalized objective function 

values of both test problems presented in table 2. As expected, as the values of first objective decrease 
the values of the second objective function increase in both test problems. DMs can choose any pair of 
solutions based on their preferences. The parameter ϕ in TH approach plays a balancing role between 
objective functions minimum satisfaction degrees and summation of objective function satisfaction 
degrees. For small amounts of ϕ the importance of high weighted objective function is highlighted while 
for large values of ϕ the minimum satisfaction degree is given more importance in model(32). Figure 3 
runs the gamut from 0.1 to 1 for the parameter ϕ. The weight factor for first objective function is high 
as it is the first priority in after disaster relief programs and that’s why first objective function values 
are more sensitive to the fluctuations of ϕ.  

 
Fig 2.Normalized Pareto solutions for both test problems 
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Fig 3. Normalized optimal objective function values for a spectrum of ϕ in TH approach (Test problem 1) 

Finally, the behavior of the proposed model under different controlling parameters is studied. 
Maximum shortage amounts, objective functions values, objective function satisfaction degrees and TH 
objective function values are reported in table 3. Maximum shortage quantities are dependent on the 
values of ϕ in(32), in higher values of ϕ their values are like an upper bound for them in the lower values 
of ϕ. The parameters ω and ψ are indicating the penalty of violations in objective functions. For various 
values of these controlling parameter the general behavior of the proposed model is the same. The 
minimum value of λ in which the model is feasible is 0.5 and for a higher values the optimal solutions 
of the model in λ=0.8 is investigated. The constraints violations controlling parameters are considered 
to be equal to 0.6 which is indicating the relative importance of limitations on right hand side values of 
constraints 

 
Table 3. Optimal solutions for second test problem, w (0.9, 0.1) and A=10  

σ, σ', 
δ, δ' ω ψ λ ϕ Max Shortage Z1 Z2 ( )

j
Z

xµ  TH 
value 

0.6 

50 

100 
0.5 0.2 0 13566 538111 (1,0.79) 0.849 

0.8 0 13566 536021 (1,0.8) 0.836 

0.8 0.2 0 13701 405289 (1,0.79) 0.940 
0.8 (18,33,22,14,17) 14182 399058 (0.89,0.79) 0.832 

200 
0.5 0.2 0 14566 1020071 (1,0.8) 0.922 

0.8 0 14566 1045082 (1,0.78) 0.832 

0.8 0.2 0 14566 785637 (1,0.78) 0.830 
0.8 (19,30,41,15,7) 15927 735272 (0.91,0.79) 0.803 

150 

100 
0.5 0.2 0 14566 608291 (1,0.77) 0.873 

0.8 (0,0,4,0) 14570 536021 (0.99,0.8) 0.947 

0.8 0.2 0 14566 396635 (1,0.79) 0.943 
0.8 0 14746 391668 (1,0.8) 0.901 

200 
0.5 0.2 0 14566 1206740 (1,0.76) 0.935 

0.8 (0,0,12,5,0) 14583 1023263 (0.98,0.79) 0.876 

0.8 0.2 0 14566 840692 (1,0.76) 0.907 
0.8 0 14566 748123 (1,0.79) 0.903 

300 

100 
0.5 0.2 0 15566 540113 (1,0.79) 0.904 

0.8 (0,20,27,0,0) 15613 536032 (0.97,0.8) 0.891 

0.8 0.2 (0,1,0,4,4) 15907 392073 (0.99,0.8) 0.963 
0.8 (17,18,19,20,15) 15677 392490 (0.91,0.8) 0.875 

200 
0.5 0.2 (0,0,26,0,0) 15592 1023578 (0.96,0.79) 0.942 

0.8 (0,12,26,0,0) 15604 1020071 (0.94,0.8) 0.931 

0.8 0.2 (0,1,0,4,0) 15907 730453 (0.99,0.8) 0.938 
0.8 (17,18,19,10,0) 15961 731486 (0.91,0.8) 0.862 
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5-Conclusion 
Health service management plays a profound role in human life. Blood service operations are 

considered as the key components of health service systems. The real-life problems are mostly 
considered as problems with highly uncertainty in their parameter values; disasters on the other hand, 
propagate these uncertainties. For dealing with epistemic uncertainty in input parameters of these 
problems, input parameters are assumed to follow a trapezoidal fuzzy number distribution and a robust 
possibilistic programming approach is applied to solve the proposed model. Proposed model is a 
dynamic, multi-objective location-allocation mathematical model for designing a blood supply chain 
for after disaster relief programs. The proposed model is consisted from three distinguishable set of 
nodes; blood donors, temporary blood collection facilities and processing and storage centers. Two 
objective functions are developed, including minimizing the maximum possible shortage and 
minimizing the total costs. To cope with the objective functions the Torabi-Hassini approach is applied. 
A set of Pareto optimal solutions is calculated to provide the managers with a wide range of possible 
solutions. Sensitivity analysis on the trade-off coefficient between objective functions and controlling 
parameters are provided. The proposed model proves to be useful especially in short-term after disaster 
relief programs. 

Developing long-term planning programs and considering the perishability of blood products are 
possible direction for future research. Another direction can be extending the proposed model to tackle 
with blood SC management as an integrated planning period for before, during and after disaster.  
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