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Abstract 
This study proposes a new multi-item inventory model with hybrid cost 

parameters under a fuzzy-stochastic constraint and permissible delay in payment. 

The price and marketing expenditure dependent stochastic demand and the 
demand dependent the unit production cost are considered. Shortages are allowed 

and partially backordered. The main objective of this paper is to determine selling 

price, marketing expenditure, credit period, and variables of inventory control 
simultaneously for maximizing the total profit. To solve the problem, first some 

transformations are applied to convert the original problem into a multi-objective 

nonlinear programming problem, of which each objective has signomial terms. 

Then, the multi-objective nonlinear programming problem is solved by first 
converting it into a single objective problem and then by using global 

optimization of signomial geometric programming problems. At the end, several 

numerical examples and sensitivity analysis are done to test model and solution 
procedure and also obtain managerial insights. 

 Keywords: Signomial geometric programming, delay in payment, fuzzy-

stochastic recourse, price and marketing dependent stochastic demand, EOQ. 

 

1- Introduction  
   By changing market trends and increasing competition in business world, the trade credit is gaining 

popularity among many retail establishments. Under this policy, sellers offer a specified period to buyers 
to pay its payments without penalty in order to stimulate sales and decrease the cost of holding inventory. 

In practice, a permissible delayed payment reduces the holding cost because under this policy the amount 

of capital invested in inventory during the credit period decreases. Moreover, during the credit period, 

buyers can accumulate revenue on sales and earn interest on that revenue by banking business or share 
marketing investment. In today’s competition market, most companies use the trade credit strategy to 

increase the sales and attract more customers. Therefore, the trade credit strategy plays a main role in 

modern business operations. In recent years, a substantial amount of research has been dedicated to model  
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inventory policies involving trade credit policy. For the first time, Goyal (1985) developed an EOQ model 
under permissible delay in payment. Then, Aggarwal and Jaggi (1995) extended this model for 

deteriorating items. Jamal et al. (1997) first formulated an EOQ model with allowable shortages and 

permissible delayed payments. Chung and Huang (2003) generalized the model of Goyal (1985) from the 

EOQ model to the EPQ model. Huang (2007) supposed the supplier would suggest partially permissible 
delayed payment if the order quantity is smaller than a pre specified quantity. Liang and Zhou (2011) 

proposed a two-warehouse inventory model for deteriorating item with allowable delay in payments. 

Taleizadeh et al. (2013) considered an EOQ problem with partial delay in payments and partial 
backordering. Sarkar et al. (2015) developed an inventory model for deteriorating items under two level 

trade credit and time - dependent determination rate.  

   In all above cited articles, it is assumed that demand rate and production cost is constant while these 
considerations are not true in real world markets.  Some researchers considered unit production cost as  a 

function of demand (Islam and Roy 2006; Panda et al. 2008) or order quantity (Samadi et al. 2013; 

Tabatabaei et al. 2017), or quality (Cheng 1991). Moreover, in real situation, demand rate depends on 

different parameters such as selling price and marketing expenditure. Pricing is an important strategy for 
companies to enhance their profit. In fact, there is a negative correlation among selling price and demand 

rate. That is, demand rate decreases as selling price increases. Ho et al. (2008) analyzed an integrated 

inventory model with price dependent demand under permissible delay in payment. They determined the 
optimal ordering, pricing, payment period, and shipping to maximize the total profit. Soni (2013) 

formulated an inventory model with assumption that demand rate is a multivariate function of selling 

price and inventory and delay in payment is permitted. Other works that considered price dependent 
demand  and trade credit simultaneously are as follows: Soni and Patel (2012), Maihami and Abadi 

(2012), Chung et al. (2015), Maihami et al. (2017) and etc. 

   Apart from the selling price, in most conditions, marketing expenditure is also important in influencing 

demand. A company can stimulate demand by increasing advertising, hiring more sales people, providing 
attractive space, and etc. All of those activities are costly. There are a lot of works that have been 

considered demand rate as a function of marketing expenditure; for example He et al. (2009), Pang et al. 

(2014), Samadi et al. (2013), De and Sana (2015), Tabatabaei et al. (2017), and etc. 
   Recently, to better demonstrate the real situation, some researches formulated their models with 

stochastic demand. He et al. (2009) investigated the issue of supply chain coordination by considering 

price and marketing dependent stochastic demand. Maihami and Karimi (2014) proposed an EOQ model 

with price dependent stochastic demand and partial backordering for non-instantaneous deteriorating 
items.   Maihami et al. (2017) developed an pricing inventory model for non-instantaneous deteriorating 

items with considering partial backordering, price dependent stochastic demand under two- level trade 

credit policy. 
   One of the extensions of the inventory models that has received more academic attention in the recent 

years, is imprecision in defining input parameters. In general, the existing information can be 

deterministic, fuzzy or probabilistic. Pramanik et al. (2017) developed an inventory model with fuzzy cost 
parameters under three level trade credit policy and price dependent demand. Das et al. (2004) formulated 

multi-item stochastic and fuzzy-stochastic inventory models under space and budgetary constraints. In the 

both models, demand and budgetary resource are considered random. They considered space resource as 

fuzzy number in fuzzy-stochastic model. But in many real situations, an organization may face situation 
that several cost parameters may change in such way that a part is random and another part is fuzzy. 

These cost parameters are called hybrid cost parameters. Panda et al. (2008) proposed two inventory 

models with hybrid cost parameters. In model 1: They considered resource parameters as fuzzy number; 
in model 2:  some resource parameters were considered as fuzzy stochastic and some as fuzzy. They 

provided a framework for an EOQ model in fuzzy- stochastic environment and solved their problem by 

using Geometric Programming (GP) method. 
   GP problem is a class of non-linear optimization problems that has particular objective functions and 

constrains. This method has very useful computational and theoretical properties to solve complex 

optimization problems in different fields such as engineering, management, science, etc. This technique 
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was extended rapidly by researchers, especially engineering designers. Signomial Geometric 
Programming (SGP) problem was the first extension of GP problems. SGP problems are categorized in 

class of non- convex optimization problems and NP- hard problems. SGP technique is well used for 

solving inventory models in literature (Mandal et al. 2006; Samadi et al. 2013; Sadjadi et al. 2015). In this 

technique degree of difficulty (DD2) has an important role. When DD ≤ 2, many researchers have applied 

dual geometric programing for solving inventory models. But if  DD ≥ 3,, solving inventory models will 

be difficult. Since, the important section SGP is the method used.  

   A comparison of mentioned papers is illustrated in Table 1. From the Table 1, some of the major 
shortcomings of previous papers in the formulation of inventory models can be summarized as follows: 

 Most inventory models with delayed payments have failed to consider uncertain demand.  

 Most previous studies have assumed the unit cost is constant. 

 No inventory model with delayed payments is developed in a fuzzy-stochastic environment. 

 No inventory model with delayed payments has considered the price and marketing cost 

dependent demand.  

   Incorporating all phenomena mentioned above, this paper develops a multi-item EOQ model under 
budgetary constraint with considering the probabilistic demand and permissible delay in payment in a 

fuzzy-stochastic environment. Shortages are allowed and partially backordered. We consider the price and 

marketing expenditure dependent stochastic demand function. We also adopt the demand depended unit 

production cost. The cost parameters are represented by hybrid numbers and the total budget to purchase 
inventory is considered as fuzzy-stochastic quantity. The main objective of this paper is to determine 

selling price, marketing expenditure, credit period, and variables of inventory control simultaneously for 

maximizing the total profit. For solving our problem, we first convert out model into a multi-objective 
nonlinear programming (MONP) problem, of which each objective has signomial terms, with using the 

methods to turn the fuzzy- random parameters to crisp ones. Then, we solve the MONP problem by first 

converting it into a single objective problem and then by using global optimization method discussed by 

Xu (2014) for solving SGP problems. 
   The rest of this paper is been organized as follows: assumptions and notations that are required to model 

the proposed problem are given in section 2. The mathematical formulation of the problem is presented in 

Section 3. Section 4 provides the solution method. Numerical examples and sensitivity analysis are done 
to test model and solution method and also obtain managerial insights in sections 5 and 6. Finally, 

conclusions with future research are given in section 7. 
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Table 1. Brief review of mentioned studies 

Studies  Unit cost Demand  DP FSC Shortage  

  C P-M O D S F   Full  Partial  

Huang 

(2007) 

Constant  *   *       

Panda et al. 

2008 

Demand 

dependent 

*   *    *   

Liang and 
Zhou (2011) 

Constant  *   *   *    

Taleizadeh 

et al. (2013) 

Constant  *   *   *   * 

Samadi et al. 

2013 

Order quantity 

dependent  

 *    *   *    

Maihami and 

Karimi 

(2014) 

Constant    *   *     * 

De and Sana 

(2015) 

Constant   *  *  *   *  

Tabatabaei 

et al. 2017 

Order quantity 

dependent 

 *  *   

 

    

Maihami et 

al. (2017) 

Constant    *  *  *    

Pramanik et 

al. (2017) 

Constant    * *   *    

This study  Demand 

dependent 

 *   *  * *  * 

Note: Constant (C), Price-Marketing dependent (P-M), Other (O), Deterministic (D), Stochastic (S), Fuzzy(F),  

Delay in Payment (DP), Fuzzy-Stochastic Constraint (FSC). 
1 DD = the number of decision variables + the numbers of terms in objective functions and constraints -1 

 

 

2-   Notation and assumption  
We formulate our problem by following notations and assumptions: 

2-1- Notations  
indices:  

𝑖 Sets of product types 𝑖 = 1.2.3… . 𝑛 

Crisp parameters: 

𝐼𝑒  Interest earned rate ($/year) 

𝐼𝑝 Interest charged rate ($/year) 

𝛽𝑖 The percentage of shortages that will be backordered for each item 𝑖 
𝐶𝑖 Unit purchasing cost of  an item ($/unit) 

𝛼𝑖 Price elasticity to demand  

𝜒𝑖 Marketing expenditure elasticity to demand  

𝛾𝑖 Demand elasticity to purchasing cost 

𝑀0 Upper limit of credit period  

Hybrid parameters: 

𝐴̃𝑖 Ordering cost ($/order) 

𝜋̃𝑖 Backordering cost ($/unit/year) 

𝑔̃𝑖 Goodwill loss for unit lost sales 

ℎ̃𝑖 Holding cost ($/unit/year) 

Fuzzy-stochastic parameter: 

𝑦̂̃ Total available production cost 
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Decision variables: 

𝑃𝑖 The portion of demand that will be satisfied from warehouse 

𝑇𝑖 The length of an inventory cycle time 

𝑆𝑖 The unit selling price of item 𝑖 
𝐺𝑖 Marketing expenditure per unit of item 𝑖 
𝑀𝑖 The period of permissible delay in payment of item 𝑖 (credit period) 

Independent decision variable: 

𝜆𝑖 Demand rate of item 𝑖  
𝑄𝑖 The order quantity of item 𝑖 
𝐵𝑖 Partial backordered amount at time 𝑇𝑖 

Note: ~ and ˄ denote randomization and fuzzification of the parameters, 𝑦̂̃ and  𝑏̃ denote that 𝑦 and  𝑏 are 

fuzzy-stochastic parameter and hybrid parameter, respectively. 

2-2-Assumptions 

 The demand rate of item 𝑖 , 𝜆𝑖 = 𝜆𝑖(𝑆𝑖 . 𝐺𝑖) + 𝜉𝑖 , contains two parts: 

 𝜆𝑖(𝑆𝑖 . 𝐺𝑖): a power function of selling price and marketing expenditure as follows: 

𝜆𝑖(𝑆𝑖 . 𝐺𝑖) = 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖  (1) 

            where 𝑉𝑖 is scaling factor and   𝛼𝑖 ˃ 1 and 𝜒𝑖  ˃ 0  are selling price elasticity and marketing 

elasticity,   respectively. 

 𝜉𝑖: a continuous random variable by specified and time – independent distribution function 

𝐸(𝜉𝑖) = 𝜇𝑖. 
 Unit cost is a decreasing function of demand rate which is calculated as follows: 

𝐶𝑖 = 𝑈𝑖𝜆𝑖
−𝛾𝑖 (2) 

 Shortages are allowed and are as combination of lost sales and backorders. 

 There is no deterioration. 

 Replenishment rate is instantaneous and lead time is zero. 

 The time horizon is infinite. 

 There is a limitation on the total production cost with fuzzy- stochastic quantity. 

 For each item, ordering cost, holding cost, and shortage costs (𝐴̃𝑖 . ℎ̃𝑖 . 𝜋̃𝑖 . 𝑔̃𝑖) are considered as hybrid 

numbers.    

 In the presented supply chain, the retailer purchases the items in each cycle under the trade credit 

strategy provided by the supplier. It means the supplier gives a full credit period of  
𝑀𝑖  years for each item to the retailer. During the credit period 𝑀𝑖, the retailer sells the products and 

collects the sale revenue and obtains interest at a rate 𝐼𝑒  ; the retailer must settle the account at time 

𝑀𝑖 for each item and pays for interest charges on goods in stock with rate 𝐼𝑝. 

 

3-   Model formulation 
The behavior of the considered inventory system with price and marketing expenditure dependent 

stochastic demand and demand dependent unit cost under permissible delayed payment is shown in Fig 1. 

According to Fig 1, the order quantity of item 𝑖, 𝑖 = 1.2.3… . 𝑛 , is obtained as: 

𝑄𝑖 = 𝑃𝑖𝑇𝑖𝜆𝑖 + 𝛽𝑖𝜆𝑖(1 − 𝑃𝑖)𝑇𝑖 = (𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜉𝑖)(𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖))𝑇𝑖 (3) 
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       Fig 1. Inventory diagram  

   The main goal of the problem is to determine the selling price (𝑆𝑖), marketing expenditure (𝐺𝑖), credit 

period (𝑀𝑖), cycle time (𝑇𝑖),  and the portion of demand that will be satisfied from stock (𝑃𝑖) so that the 

total average profit of the inventory system is maximized. So, the following are components of the total 
annual profit: 

The expected sales revenue (𝑆𝑅𝑖) for the 𝑖the item per cycle is: 

 

𝑆𝑅𝑖 = 𝐸(𝑆𝑖𝑄𝑖) = (𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖)(𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖))𝑆𝑖𝑇𝑖   (4) 

 

The expected marketing expenditure (𝐶𝑀𝑖) for the 𝑖the item per cycle  is : 

 

𝐶𝑀𝑖 = 𝐸(𝐺𝑖𝑄𝑖) = (𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖)(𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖))𝐺𝑖𝑇𝑖   (5) 

 

The expected holding cost (𝐶𝐻𝑖) for the 𝑖the item per cycle  is : 
 

𝐶𝐻𝑖 = 𝐸 (ℎ̃𝑖
𝜆𝑖𝑃𝑖 × 𝑃𝑖𝑇𝑖  

2
) = 0.5ℎ̃(𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖)𝑃𝑖

2𝑇𝑖
2   (6) 

Where ℎ̃𝑖 = (ℎ𝑖1. ℎ𝑖2. ℎ𝑖3)(+)
′(𝜇ℎ𝑖 + 𝜎ℎ𝑖

2 ) 

The expected production cost (𝐶𝑃𝑖) for the 𝑖the item per cycle  is : 

 

𝐶𝑃𝑖 = 𝐸(𝐶𝑖𝑄𝑖) = 𝑈𝑖(𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖)
1−𝛾𝑖

(𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖))𝑇𝑖     (7) 

 

The ordering cost (𝐶𝑂𝑖) for the 𝑖the item per cycle  is : 
 

𝐶𝑂𝑖 = 𝐴̃𝑖     (8) 

Where 𝐴̃𝑖 = (𝐴𝑖1. 𝐴𝑖2. 𝐴𝑖3)(+)
′(𝜇𝐴𝑖 + 𝜎𝐴𝑖

2 ) 

The expected backorder cost (𝐶𝐵𝑖) for the 𝑖the item per cycle  is : 

 

𝐶𝐵𝑖 = 𝐸 (𝜋̃𝑖
𝛽𝑖𝜆𝑖(1 − 𝑃𝑖)𝑇𝑖 × (1 − 𝑃𝑖)𝑇𝑖

2
) = 0.5𝜋̃𝑖𝛽𝑖(𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖)(1 − 𝑃𝑖)

2𝑇𝑖
2    (9) 

Where 𝜋̃𝑖 = (𝜋𝑖1. 𝜋𝑖2. 𝜋𝑖3)(+)
′(𝜇𝜋𝑖 + 𝜎𝜋𝑖

2 ) 

The expected lost sale cost (𝐶𝐿𝑖) for the 𝑖the item per cycle  is: 
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𝐶𝐿𝑖 = 𝐸 (𝑔̃𝑖(1 − 𝛽𝑖)𝜆𝑖(1 − 𝑃𝑖)𝑇𝑖) = 𝑔̃𝑖(1 − 𝛽𝑖)(𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖)(1 − 𝑃𝑖)𝑇𝑖     (10) 

Where 𝑔̃𝑖 = (𝑔𝑖1. 𝑔𝑖2. 𝑔𝑖3)(+)
′(𝜇𝑔𝑖 + 𝜎𝑔𝑖

2 ) 

   The interest payable per cycle and the interest earned per cycle are calculated by the relationship of   

credit period (𝑀𝑖) and the length of time in which no inventory shortage happens( 𝑃𝑖𝑇𝑖) , hence we 

consider the following two cases:  

Case 1- 𝑴𝒊 ≤  𝑷𝒊𝑻𝒊  
 In this case, the expected interest payable (𝐼𝑃1𝑖) per cycle for the items not sold after the time 𝑀𝑖 is as 

follows (see Fig 2): 

𝐼𝑃1𝑖 = 𝐸 (𝐶𝑖𝐼𝑝
𝜆𝑖(𝑃𝑖𝑇𝑖 −𝑀𝑖) × (𝑃𝑖𝑇𝑖 −𝑀𝑖)

2
) = 0.5𝐶𝑈𝑖𝐼𝑝(𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖)

1−𝛾𝑖(𝑃𝑖𝑇𝑖 −𝑀𝑖) 
2   (11) 

 

The expected interest earned (𝐼𝐸1𝑖) per cycle during the positive inventory is as follows (see figure 2): 

𝐼𝐸1𝑖 = 𝐸 (𝐼𝑒𝑆𝑖 (𝛽𝑖𝜆𝑖(1 − 𝑃𝑖)𝑇𝑖𝑀𝑖 +
𝜆𝑖𝑀𝑖

2

2
))   (12) 

 = 𝐼𝑒𝑆𝑖(𝛽𝑖(1 − 𝑃𝑖)𝑇𝑖𝑀𝑖 + 0.5𝑀𝑖
2)(𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖)  

 

Case 2- 𝑷𝒊𝑻𝒊 ≤  𝑴𝒊  ≤  𝑴𝟎  
In this case, the expected interest earned (𝐼𝐸2𝑖) per cycle during [0.𝑀𝑖] is (see Fig 2): 

𝐼𝐸2𝑖 = 𝐸(𝐼𝑒𝑆𝑖 (𝛽𝑖𝜆𝑖(1 − 𝑃𝑖)𝑇𝑖𝑀𝑖 +
𝜆𝑖𝑃𝑖

2𝑇𝑖
2

2
+ 𝜆𝑖𝑃𝑖𝑇𝑖(𝑀𝑖 − 𝑃𝑖𝑇𝑖)))   (13) 

 = 𝐼𝑒𝑆𝑖(𝛽𝑖𝑇𝑖𝑀𝑖 − 0.5𝑃𝑖
2𝑇𝑖
2 + (1 − 𝛽𝑖)𝑃𝑖𝑇𝑖𝑀𝑖)(𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖)  

 

In this case, the retailer does not need to pay any interest, that is 𝐼𝑃2𝑖 = 0. 

Therefore, the average total profit per year for 𝑛 items for case 1 (𝐴𝑇𝑃1) and case 2 (𝐴𝑇𝑃2) is : 

𝐴𝑇𝑃𝑗 =∑[
1

𝑇𝑖
(𝑆𝑅𝑖 − 𝐶𝑀𝑖 − 𝐶𝐻𝑖 − 𝐶𝑃𝑖 − 𝐶𝑂𝑖 − 𝐶𝐵𝑖 − 𝐶𝐿𝑖 − 𝐼𝑃𝑗𝑖 + 𝐼𝐸𝑗𝑖)]

𝑛

𝑖=1

 𝑗 = 1.2 (14) 

 

After simplification, the following results are obtained: 

𝐴𝑇𝑃1(𝑥) =∑(𝑁𝑖𝑋𝑖𝑆𝑖

𝑛

𝑖=1

− 𝑁𝑖𝑋𝑖𝐺𝑖 − 0.5(ℎ̃𝑖 + 𝜃1𝑖𝜋̃𝑖)𝑋𝑖𝑃𝑖
2𝑇𝑖 + 𝜃1𝑖𝜋̃𝑖𝑋𝑖𝑃𝑖𝑇𝑖 − 0.5𝜃1𝑖 𝜋̃𝑖𝑋𝑖𝑇𝑖 (15) 

 
−𝜃2𝑖𝑔̃𝑖𝑋𝑖 + 𝜃2𝑖𝑔̃𝑖𝑋𝑖𝑃𝑖 − 𝜃3𝑖𝑁𝑖𝑋𝑖

1−𝛾𝑖 − 𝜃4𝑖𝑋𝑖
1−𝛾𝑖𝑃𝑖

2𝑇𝑖 − 𝜃4𝑖𝑋𝑖
1−𝛾𝑖𝑀𝑖

2𝑇𝑖
−1 + 2𝜃4𝑖𝑋𝑖

1−𝛾𝑖𝑃𝑖𝑀𝑖 

 
+𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖 − 𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖𝑃𝑖 + 𝜃6𝑖𝑋𝑖𝑆𝑖𝑀𝑖

2𝑇𝑖
−1 − 𝐴̃𝑖𝑇𝑖

−1) 

𝐴𝑇𝑃2(𝑥) =∑(𝑁𝑖𝑋𝑖𝑆𝑖

𝑛

𝑖=1

− 𝑁𝑖𝑋𝑖𝐺𝑖 − 0.5(ℎ̃𝑖 + 𝜃1𝑖𝜋̃𝑖)𝑋𝑖𝑃𝑖
2𝑇𝑖 + 𝜃1𝑖𝜋̃𝑖𝑋𝑖𝑃𝑖𝑇𝑖 − 0.5𝜃1𝑖 𝜋̃𝑖𝑋𝑖𝑇𝑖 (16) 

 
−𝜃2𝑖𝑔̃𝑖𝑋𝑖 + 𝜃2𝑖𝑔̃𝑖𝑋𝑖𝑃𝑖 − 𝜃3𝑖𝑁𝑖𝑋𝑖

1−𝛾𝑖 + 𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖 − 𝜃6𝑖𝑋𝑖𝑆𝑖𝑀𝑖𝑃𝑖
2𝑇𝑖 + 𝜃7𝑖𝑋𝑖𝑆𝑖𝑀𝑖𝑃𝑖 

 
−𝐴̃𝑖𝑇𝑖

−1) 
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Where  

𝑋𝑖 = 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖 (17- 1) 

𝑁𝑖 = 𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖) (17- 2) 

𝜃1𝑖 = 𝛽𝑖  ˃ 0 (17- 3) 

𝜃2𝑖 = 1− 𝛽𝑖  ˃ 0 (17- 4) 

𝜃3𝑖 = 𝑈𝑖  ˃ 0 (17- 5) 

𝜃4𝑖 = 0.5𝑈𝑖𝐼𝑝 ˃ 0 (17- 6) 

𝜃5𝑖 = 𝛽𝑖𝐼𝑒  ˃ 0 (17- 7) 

𝜃6𝑖 = 0.5𝐼𝑒  ˃ 0 (17- 8) 

𝜃6𝑖 = (1 − 𝛽𝑖)𝐼𝑒  ˃ 0 (17- 9) 

𝑥 = (𝑆𝑖 . 𝑇𝑖 . 𝐺𝑖 .𝑀𝑖 . 𝑃𝑖 . 𝑋𝑖 . 𝑁𝑖)˃ 0 (17- 10) 

Whit,  

ℎ̃𝑖 = (ℎ𝑖1. ℎ𝑖2. ℎ𝑖3)(+)
′(𝜇ℎ𝑖 + 𝜎ℎ𝑖

2 ), 𝜋̃𝑖 = (𝜋𝑖1. 𝜋𝑖2. 𝜋𝑖3)(+)
′(𝜇𝜋𝑖 + 𝜎𝜋𝑖

2 ) , 𝑔̃𝑖 = (𝑔𝑖1. 𝑔𝑖2. 𝑔𝑖3)(+)
′(𝜇𝑔𝑖 +

𝜎𝑔𝑖
2 ), 𝐴̃𝑖 = (𝐴𝑖1. 𝐴𝑖2. 𝐴𝑖3)(+)

′(𝜇𝐴𝑖 + 𝜎𝐴𝑖
2 ), and 𝑖 = 1.2.3… . 𝑛. 

As explained above, we consider a limitation on the total budget for purchasing inventory with fuzzy 

stochastic quantity as follows: 
 

∑𝐶𝑃𝑖

𝑛

𝑖=1

≤ 𝑦̂̃   ⇒   ∑𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖

𝑛

𝑖=1

𝑇𝑖 ≤ 𝑦̂̃ (18) 

Where 𝑦̂̃ = (((𝑦1
1. 𝑦1). 𝑞1); ((𝑦2

1. 𝑦2). 𝑞2) ; ((𝑦3
1. 𝑦3). 𝑞3)). 

Therefore, the mathematical model of the problem is: 

𝑀𝑎𝑥  𝐴𝑇𝑃𝑗 𝑗 = 1.2 (19) 

s.t. ∑𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖

𝑛

𝑖=1

𝑇𝑖 ≤ 𝑦̂̃ (20) 

 𝑋𝑖 = 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖 (21) 

 𝑁𝑖 = 𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖) (22) 

 𝑥 = (𝑆𝑖 . 𝑇𝑖 . 𝐺𝑖 .𝑀𝑖 . 𝑃𝑖 . 𝑋𝑖 . 𝑁𝑖) ˃ 0 (23) 

 𝑀𝑖 ≤  𝑃𝑖𝑇𝑖   for  𝑗 = 1  (24) 

 𝑃𝑖𝑇𝑖 ≤  𝑀𝑖 ≤  𝑀0   for  𝑗 = 2 (25) 

Where, 𝑦̂̃ = (((𝑦1
1. 𝑦1). 𝑞1); ((𝑦2

1. 𝑦2). 𝑞2) ; ((𝑦3
1. 𝑦3). 𝑞3)) and 𝑖 = 1.2.3… . 𝑛. 
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Mi  PiTi

 Ti

Bi

Bi

λi PiTi

λi PiTi - λi Mi

 λi Mi

Mi PiTi  TiBi

Bi

λi PiTi

 Ti

λ
i P

iT
i

Case 1: Mi    PiTi
Case 2: PiTi    Mi

Interest earned

Interest payable

 
Fig 2.  Inventory diagram for cases 1 and 2 

4- Solution method 
   In this section, we first convert out model into a multi-objective nonlinear programming (MONP) 
problem, of which each objective has signomial terms, with using the methods of converting the fuzzy- 

random parameters to crisp one. Then, we solve the MONP problem by first converting it into a single 

objective problem and then by using global optimization method discussed by Xu (2014) for solving SGP 

problems. 

Case 1- 𝑴𝒊 ≤  𝑷𝒊𝑻𝒊  
Following example-1 in Luhandjula (1983) , we first convert the fuzzy-stochastic constraint (20) into the 

following deterministic form: 

𝑞1
(∑ 𝜃3𝑖𝑁𝑖𝑋𝑖

1−𝛾𝑖𝑛
𝑖=1 𝑇𝑖) − 𝑦1

1

𝑦1 − 𝑦1
1 + 𝑞2

(∑ 𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖𝑛

𝑖=1 𝑇𝑖) − 𝑦2
1

𝑦2 − 𝑦2
1 + 𝑞3

(∑ 𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖𝑛

𝑖=1 𝑇𝑖) − 𝑦3
1

𝑦3 − 𝑦3
1 ≥ 𝛼 

(26) 

After simplification, we have: 

−
(

𝑞1

𝑦1−𝑦1
1 +

𝑞2

𝑦2−𝑦2
1 +

𝑞3

𝑦3−𝑦3
1)

(
𝑞1𝑦1

1

𝑦1−𝑦1
1 +

𝑞2𝑦2
1

𝑦2−𝑦2
1 +

𝑞3𝑦3
1

𝑦3−𝑦3
1 + 𝛼)

(∑𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖

𝑛

𝑖=1

𝑇𝑖) + 1 ≤ 0 (27) 

 
 Then, we rewrite the constraint (21) as follows: 

𝑋𝑖 = 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖 ⇒ {
𝑋𝑖 ≤ 𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖         1

 𝑋𝑖 ≥ 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 + 𝜇𝑖        2
   (28) 

So, we have: 

1
⇒  𝑋𝑖 ≤ 𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖  ⇒  𝑋𝑖 − 𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
−𝜒𝑖 ≤ 𝜇𝑖  ⇒  𝜇𝑖

−1𝑋𝑖 − 𝜇𝑖
−1𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 ≤ 1 (29) 
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 2
⇒ 𝑋𝑖 ≥ 𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖 + 𝜇𝑖  ⇒  𝑉𝑖𝑆𝑖

−𝛼𝑖𝐺𝑖
𝜒𝑖𝑋𝑖

−1 + 𝜇𝑖𝑋𝑖
−1 ≤ 1  (30) 

 
Following the same manner as described for constraint (21), we convert constraints (22) and (24) into the 

following form: 

𝑁𝑖 = 𝛽𝑖 + 𝑃𝑖(1 − 𝛽𝑖) ⇒ {
𝛽𝑖
−1𝑁𝑖 − 𝛽𝑖

−1(1 − 𝛽𝑖)𝑃𝑖 ≤ 1

𝛽𝑖𝑁𝑖
−1 + (1 − 𝛽𝑖)𝑃𝑖𝑁𝑖

−1 ≤ 1
  (31) 

𝑀𝑖𝑃𝑖
−1𝑇𝑖

−1 ≤ 1     (32) 

 

The objective function of the problem is maximizing the total profit and is written as: 

𝑀𝑎𝑥  𝐴𝑇𝑃1(𝑥). Since, 𝑀𝑎𝑥  𝐴𝑇𝑃1(𝑥) is equivalent  − 𝑀𝑖𝑛 (−𝐴𝑇𝑃1(𝑥)⏟      
𝑍1(𝑥)

) , thus, the problem (19)-(24) 

can be rewritten as follows: 

   𝑀𝑖𝑛  𝑍1(𝑥) (33) 

s.t. 𝜇𝑖
−1𝑋𝑖 − 𝜇𝑖

−1𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖 ≤ 1 (34) 

 𝑉𝑖𝑆𝑖
−𝛼𝑖𝐺𝑖

𝜒𝑖𝑋𝑖
−1 + 𝜇𝑖𝑋𝑖

−1 ≤ 1 (35) 

 𝛽𝑖
−1𝑁𝑖 − 𝛽𝑖

−1(1 − 𝛽𝑖)𝑃𝑖 ≤ 1 (36) 

 𝛽𝑖𝑁𝑖
−1 + (1 − 𝛽𝑖)𝑃𝑖𝑁𝑖

−1 ≤ 1 (37) 

 

−
(

𝑞1

𝑦1−𝑦1
1 +

𝑞2

𝑦2−𝑦2
1 +

𝑞3

𝑦3−𝑦3
1)

(
𝑞1𝑦1

1

𝑦1−𝑦1
1 +

𝑞2𝑦2
1

𝑦2−𝑦2
1 +

𝑞3𝑦3
1

𝑦3−𝑦3
1 + 𝛼)

(∑𝜃3𝑖𝑁𝑖𝑋𝑖
1−𝛾𝑖

𝑛

𝑖=1

𝑇𝑖) + 1 ≤ 0 (38) 

 𝑥 = (𝑆𝑖 . 𝑇𝑖 . 𝐺𝑖 .𝑀𝑖 . 𝑃𝑖 . 𝑋𝑖 . 𝑁𝑖) ˃ 0 (39) 

 𝑀𝑖𝑃𝑖
−1𝑇𝑖

−1 ≤ 1        (40) 

 
According to the hybrid numbers theory as explained by Panda et al. (2008)  the problem (33)-(40) 

reduces to: 

𝑀𝑖𝑛  𝐸𝑉𝑍1(𝑥) = 𝐸𝑍̂01(𝑥)(+)
′(0. 𝑉1(𝑥)) (41) 

s.t. Constraints (34)-(40)  

 

Where 𝐸𝑍̂01(𝑥) = (𝐸𝑍11(𝑥). 𝐸𝑍21(𝑥). 𝐸𝑍31(𝑥)) with  

 

𝐸𝑍𝑘1(𝑥) =∑(−𝑁𝑖𝑋𝑖𝑆𝑖

𝑛

𝑖=1

+ 𝑁𝑖𝑋𝑖𝐺𝑖 + 0.5 (ℎ𝑖𝑘 + 𝜇ℎ𝑖 + 𝜃1𝑖(𝜋𝑖𝑘 + 𝜇𝜋𝑖))𝑋𝑖𝑃𝑖
2𝑇𝑖  (42) 

 
−𝜃1𝑖(𝜋𝑖𝑘 + 𝜇𝜋𝑖)𝑋𝑖𝑃𝑖𝑇𝑖 + 0.5𝜃1𝑖(𝜋𝑖𝑘 + 𝜇𝜋𝑖)𝑋𝑖𝑇𝑖+𝜃2𝑖(𝑔𝑖𝑘 + 𝜇𝑔𝑖)𝑋𝑖 − 𝜃2𝑖(𝑔𝑖𝑘 + 𝜇𝑔𝑖)𝑋𝑖𝑃𝑖 

 
+𝜃3𝑖𝑁𝑖𝑋𝑖

1−𝛾𝑖 + 𝜃4𝑖𝑋𝑖
1−𝛾𝑖𝑃𝑖

2𝑇𝑖 + 𝜃4𝑖𝑋𝑖
1−𝛾𝑖𝑀𝑖

2𝑇𝑖
−1 − 2𝜃4𝑖𝑋𝑖

1−𝛾𝑖𝑃𝑖𝑀𝑖 − 𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖 

 
+𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖𝑃𝑖 − 𝜃6𝑖𝑋𝑖𝑆𝑖𝑀𝑖

2𝑇𝑖
−1 + 𝐴̃𝑖𝑇𝑖

−1) 𝑘 = 1.2.3. 

𝑉1(𝑥) =∑(0.25(𝜎ℎ𝑖
2 + 𝜃1𝑖

2 𝜎𝜋𝑖
2 )𝑋𝑖

2𝑃𝑖
4𝑇𝑖
2 + 𝜃1𝑖

2 𝜎𝜋𝑖
2 𝑋𝑖

2𝑃𝑖
2𝑇𝑖
2 + 0.25𝜃1𝑖

2 𝜎𝜋𝑖
2 𝑋𝑖

2𝑇𝑖
2 + 𝜃2𝑖

2 𝜎𝑔𝑖
2𝑋𝑖

2

𝑛

𝑖=1

 (43) 

 
+𝜃2𝑖

2 𝜎𝑔𝑖
2𝑋𝑖

2𝑃𝑖
2 + 𝜎𝐴𝑖

2𝑇𝑖
−2) 
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and = 1.2.3… . 𝑛 ,  ℎ̃𝑖 = (ℎ𝑖1. ℎ𝑖2. ℎ𝑖3)(+)
′(𝜇ℎ𝑖 + 𝜎ℎ𝑖

2 ) ,  𝜋̃𝑖 = (𝜋𝑖1. 𝜋𝑖2. 𝜋𝑖3)(+)
′(𝜇𝜋𝑖 + 𝜎𝜋𝑖

2 ),   

𝑔̃𝑖 = (𝑔𝑖1. 𝑔𝑖2 . 𝑔𝑖3)(+)
′(𝜇𝑔𝑖 + 𝜎𝑔𝑖

2 ) , and  𝐴̃𝑖 = (𝐴𝑖1. 𝐴𝑖2. 𝐴𝑖3)(+)
′(𝜇𝐴𝑖 + 𝜎𝐴𝑖

2 ) . 

Referring to Kauffman and Gupta (1991), the approximated value of triangular fuzzy number  𝑏̃ =

(𝑏1. 𝑏2. 𝑏3) is calculated as 𝑏̂ =
𝑏1+2𝑏1+𝑏3

4
. Therefore, an approximated value of 𝐸𝑍̂0(𝑥) is as follows: 

 

𝐴𝐸𝑍01(𝑥) =
𝐸𝑍11(𝑥) + 2𝐸𝑍21(𝑥) + 𝐸𝑍31(𝑥)

4
 (44) 

 
=∑(−𝑁𝑖𝑋𝑖𝑆𝑖

𝑛

𝑖=1

+𝑁𝑖𝑋𝑖𝐺𝑖 + 0.5 (ℎ̂𝑖 + 𝜇ℎ𝑖 + 𝜃1𝑖(𝜋̂𝑖 + 𝜇𝜋𝑖))𝑋𝑖𝑃𝑖
2𝑇𝑖 − 𝜃1𝑖(𝜋̂𝑖 + 𝜇𝜋𝑖)𝑋𝑖𝑃𝑖𝑇𝑖 

 
+0.5𝜃1𝑖(𝜋̂𝑖 + 𝜇𝜋𝑖)𝑋𝑖𝑇𝑖+𝜃2𝑖(𝑔̂𝑖𝑘 + 𝜇𝑔𝑖)𝑋𝑖 − 𝜃2𝑖(𝑔̂𝑖𝑘 + 𝜇𝑔𝑖)𝑋𝑖𝑃𝑖 + 𝜃3𝑖𝑁𝑖𝑋𝑖

1−𝛾𝑖 

 
+𝜃4𝑖𝑋𝑖

1−𝛾𝑖𝑃𝑖
2𝑇𝑖 + 𝜃4𝑖𝑋𝑖

1−𝛾𝑖𝑀𝑖
2𝑇𝑖
−1 − 2𝜃4𝑖𝑋𝑖

1−𝛾𝑖𝑃𝑖𝑀𝑖 − 𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖 + 𝜃5𝑖𝑋𝑖𝑆𝑖𝑀𝑖𝑃𝑖 

 
−𝜃6𝑖𝑋𝑖𝑆𝑖𝑀𝑖

2𝑇𝑖
−1 + 𝐴̃𝑖𝑇𝑖

−1)  

So, problem (33) -(40) is reduced to the following multi-objective nonlinear programming problem, of 

which each objective has signomial terms: 

𝑀𝑖𝑛  𝐸𝑉𝑍(𝑥) = [𝐴𝐸𝑍01(𝑥). 𝑉1(𝑥)] (45) 

s.t. Constraints (34)-(40)  

   In what following, we solve the multi-objective nonlinear programming problem (34) -(40) and (45) by 

first converting it into a single objective problem by the following steps and then using global 
optimization approach discovered by Xu (2014) for solving SGP problems. 

Step 1: Solve the problem (34) -(40) and (45) with considering only objective function 𝐴𝐸𝑍01(𝑥) and 

solve it using the SGP algorithm of  Xu (2014). Let 𝑥(1) = (𝑆𝑖
(1)
. 𝑇𝑖
(1)
. 𝐺𝑖
(1)
.𝑀𝑖

(1)
. 𝑃𝑖
(1)
. 𝑋𝑖
(1)
. 𝑁𝑖
(1))be the 

optimal solutions for decision variables and so the optimal amount of objective function is  𝐴𝐸𝑍01(𝑥
(1)).  

Next calculate the amount of the second objective function 𝑉1(𝑥) in 𝑥(1), say 𝑉1(𝑥
(1)). 

Step 2: Consider just the second objective function 𝑉1(𝑥) and solve it using SGP approach said in Step 1 

and obtain the optimal solutions for decision variables and objective function as 𝑥(2) =

(𝑆𝑖
(2). 𝑇𝑖

(2). 𝐺𝑖
(2).𝑀𝑖

(2). 𝑃𝑖
(2). 𝑋𝑖

(2). 𝑁𝑖
(2)) and 𝑉1(𝑥

(2)), respectively. Next compute the amount of the first 

objective function  𝐴𝐸𝑍01(𝑥) in 𝑥
(2), say  𝐴𝐸𝑍01(𝑥

(2)). 

Step 3: There are the following relation among objective functions:  𝐴𝐸𝑍01(𝑥
(1)) <  𝐴𝐸𝑍01(𝑥) <

 𝐴𝐸𝑍01(𝑥
(2)) and 𝑉1(𝑥

(2)) < 𝑉1(𝑥) < 𝑉1(𝑥
(1)). 

Step 4:  Formulate the membership functions for the objective functions of (45) as follows: 

𝜇 𝐴𝐸𝑍0(𝑥) = {

1                                              
 𝐴𝐸𝑍01(𝑥

(2)) −  𝐴𝐸𝑍01(𝑥)

 𝐴𝐸𝑍01(𝑥
(2)) −  𝐴𝐸𝑍01(𝑥

(1))

0                                             

 

 𝐴𝐸𝑍01(𝑥) (𝑥) ≤  𝐴𝐸𝑍01(𝑥
(1))                      

 𝐴𝐸𝑍01(𝑥
(1)) ≤  𝐴𝐸𝑍01(𝑥) ≤  𝐴𝐸𝑍01(𝑥

(2))

 𝐴𝐸𝑍01(𝑥
(2)) ≤  𝐴𝐸𝑍01(𝑥)                             

 
(46) 

 



218 
 

𝜇𝑉1(𝑥) = {

1                                              
𝑉1(𝑥

(1)) − 𝑉1(𝑥)

𝑉1(𝑥
(1)) − 𝑉1(𝑥

(2))
            

0                                             

 

𝑉1(𝑥)  ≤ 𝑉1(𝑥
(2))                   

𝑉1(𝑥
(2)) ≤ 𝑉1(𝑥) ≤ 𝑉1(𝑥

(1))

𝑉1(𝑥
(1)) ≤ 𝑉1(𝑥)                     

 
(47) 

 

Step 5:  According to Tiwari et al. (1987), the membership functions are maximizing by max-convex 
combination operator through following equations : 

𝑀𝑎𝑥  𝑀𝑍1(𝑥) = 𝑓1𝜇 𝐴𝐸𝑍01(𝑥) + 𝑓2𝜇𝑉1(𝑥) (48) 

s.t. Constraints (34)-(40)  

Where the weights 𝑓1 and 𝑓2 are corresponding to the member functions 𝜇 𝐴𝐸𝑍01(𝑥) and 𝜇𝑉1(𝑥), 

respectively. So, the problem (34) -(40) and (48) can be rewritten as the following constrained SGP 

problem: 

𝑀𝑖𝑛  𝑍′1(𝑥) =
𝑓1

 𝐴𝐸𝑍01(𝑥
(2)) −  𝐴𝐸𝑍01(𝑥

(1))
𝐴𝐸𝑍01(𝑥) +

𝑓2

𝑉1(𝑥
(1)) − 𝑉1(𝑥

(2))
𝑉1(𝑥) (49) 

s.t. Constraints (34) -(40)  

   Now problem (34) -(40) and (49) can be solved using global optimization of SGP problem discussed in 

Appendix.  

Case 2- 𝑷𝒊𝑻𝒊 ≤  𝑴𝒊  ≤  𝑴𝟎  

The mathematical model for case 2 is: 

𝑀𝑎𝑥  𝐴𝑇𝑃2  (50) 

s.t. Constraints (20)-(23) and (25)  

All procedure to solve the above problem is similar to the procedure used to solve case 1.  Following the 

same procedure used for case 1, the constrained SGP problem for case 2 is: 

𝑀𝑖𝑛  𝑍′2
(𝑥)
=

𝑓1

 𝐴𝐸𝑍02(𝑥
(2)) −  𝐴𝐸𝑍02(𝑥

(1))
𝐴𝐸𝑍02(𝑥) +

𝑓2

𝑉2(𝑥
(1)) − 𝑉2(𝑥

(2))
𝑉2(𝑥) (51) 

s.t.  𝑃𝑖𝑇𝑖𝑀𝑖
−1 ≤ 1   (52) 

  𝑀0
−1𝑀𝑖 ≤ 1  (53) 

  And constraints (34) -(39)  

5-   Numerical example 
   In this Section, an example is designed to demonstrate the application of the model and solution 

procedure proposed above for a particular retailer that orders three types of products from the 

supplier (𝑛 = 3). The retailer has a limitation on the total budget for purchasing units which is fuzzy 
stochastic. The budget amount here lies within $(232, 280) with probability 0.5; within $(245, 320) with 

probability 0.35; within $(255, 310) with probability 0.4. According to the past reorders, the annual 

demand rate of three items are calculated as 106𝑆1
−3.5𝐺1

0.007 + 𝜉1, 1.5 × 10
6𝑆2
−3.8𝐺2

0.005 + 𝜉2, and 

1.8 × 106𝑆3
−3.1𝐺3

0.01 + 𝜉3. The crisp parameters for all items are  𝐼𝑒 = 0.05, 𝐼𝑝 = 0.1 , 𝛽1 = 0.6 , 𝛽2 =

0.65 , 𝛽3 = 0.7 , 𝛼 = 0.85 , 𝛾1 = 1.6 , 𝛾2 = 1.5 , 𝛾3 = 1.7 , 𝜉1 ∼ 𝑁 (2.1) , 𝜉2 ∼ 𝑁 (3.1), 𝜉3 ∼ 𝑁 (1.1), 
and the hybrid parameters are listed in table 2. 
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Table 2.  Hybrid parameters for each item 

𝑖 ℎ̃𝑖 𝜋̃𝑖  𝐴̃𝑖 𝑔̃𝑖 

1 (0.8, 0.9,0.95) (+)'  (0.85,0.06) (2, 2.5, 3) (+)' (2.5, 1) (100, 112, 115) (+)' (100, 25) (1, 1.5, 2) (+)' (2.5, 1) 

2 (0.85, 0.93, 1) (+)' (0.9, 0.065) (2.5, 3, 3.5) (+)' (3, 1) (105, 112, 117) (+)' (100, 25) (1.5, 2, 2.5) (+)' (3, 1.5) 

3

  

(1, 1.2,1.5) (+)' (1,0.07) (3, 3.2, 3.5) (+)' (3,1) (109, 115, 120) (+)' (100, 25) (2, 2.2, 2.5) (+)' (3,1) 

The payoff matrix of problem (19) -(24), which is needed to transform problem (19) -(24), into 

problem (34) -(40) and (49), is as following: 

[
 𝐴𝐸𝑍01(𝑥

(1)) 𝑉1(𝑥
(1))

 𝐴𝐸𝑍01(𝑥
(2)) 𝑉1(𝑥

(2))
] = [

−18.5899 8.099
221.1500 5

] 

 

Similarly, the payoff matrix of case 2 is: 

[
 𝐴𝐸𝑍02(𝑥

(1)) 𝑉2(𝑥
(1))

 𝐴𝐸𝑍02(𝑥
(2)) 𝑉2(𝑥

(2))
] = [

−16.5562 8.1201
235.2 5.1

] 

 

   Calculating these pay off matrixes and considering the weights 0.9 and 0.1 plus the provided data, it is 

possible to solve the problem (34) -(40) and (49) for case 1 and the problem (34) -(39) and (51) -(53) 
using global optimization method. The proposed algorithm is coded in MATLAB R2014b software and 

implemented on an Intel Core i5 PC with CPU of 1.4 GHz and 4.00 GB RAM  using GGPLAB solver 

(Mutapcic et al. 2006). The optimal values of decision variables along with the optimal values of mean 

profit function(𝐸𝐴𝑇𝑃) and the optimal values of variance profit function (𝑉𝐴𝑇𝑃) for the both cases and 

all items are reported in tables 3-5. 

Table 3. Optimal solutions of item 1 for the both cases 

Case 𝑆1
∗ 𝐺1

∗ 𝑀1
∗ 𝑇1

∗ 𝑃1
∗ 𝑄1

∗ 𝐵1
∗ 𝐸𝐴𝑇𝑃 𝑉𝐴𝑇𝑃 

1 6.0912 0.0061 0.1489 1.2345 0.6085 147.2328 68.3499 500.3933 9.1737 

2 5.7640 0.0069 0.5785 0.5868 0.3688 147.9103 124.8986 500.2987 9.2155 

 

 
Table 4. Optimal solutions of item 2 for the both cases 

Case 𝑆2
∗ 𝐺2

∗ 𝑀2
∗ 𝑇2

∗ 𝑃2
∗ 𝑄2

∗ 𝐵2
∗ 𝐸𝐴𝑇𝑃 𝑉𝐴𝑇𝑃 

1 5.6891 0.0062 0.1529 1.1641 0.6082 148.3110 68.8989 500.3933 9.1737 

2 5.6137 0.0074 0.5799 0.5871 0.3677 145.1583 122.8687 500.2987 9.2155 

 
Table 5. Optimal solutions of item 3 for the both cases 

Case 𝑆2
∗ 𝐺2

∗ 𝑀2
∗ 𝑇2

∗ 𝑃2
∗ 𝑄2

∗ 𝐵2
∗ 𝐸𝐴𝑇𝑃 𝑉𝐴𝑇𝑃 

1 6.7985 0.0062 0.1513 1.1500 0.6085 149.0210 68.3419 500.3933 9.1737 

2 6.6237 0.0081 0.5787 0.5761 0.3667 148.8599 123.6844 500.2987 9.2155 
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6-   Sensitivity analysis 
   Sensitivity analyses for the proposed problem are done to analyze the impacts of changes in the key 

parameter values on the optimal solutions. For simplicity, we assume there is an item (item 1) 

with 𝑃1𝑇1 ≤ 𝑀1. We first consider the effect of changes in values of 𝛼1 and 𝜒1on the selling price, 

marketing expenditure, order quantity, and mean profit function. The calculated results are shown in Figs 

3 -6.  We observe from figures 3 and 4 that when the amount of 𝛼1 increase, selling price, marketing 

expenditure, order quantity, and mean profit function decrease. Moreover, when the amount of 𝜒1 
increases, other parameters like the selling price, marketing expenditure, order quantity and mean profit 

function also increase (see figures 5 and 6). This is because when the price elasticy to demand increase, 

demand rate and order quantity decrease; thus, the mean profit function decreases. In contrast, when the 

amount of 𝜒1 increase, demand rate and order quantity increase; thus, the mean profit function increases, 

which agrees with reality.  

 

 
 

 

 

 

 
Fig 3.  The effect of change of 𝛼1 on  the selling price and marketing expenditure 
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Fig 4. The effect of change of 𝛼1 on the order quantity and mean profit function 

 

 

                          

Fig 5.  The effect of change of 𝜒1 on  the selling price and marketing expenditure 
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Fig 6. The effect of change of 𝜒1 on  the order quantity and mean profit function 

   We also investigate the sensitivity analyses on the optimal solutions due to the parameters 𝐼𝑝 , 𝐼𝑒  , and  

𝛽1. The impact of the changes is reported in Table 6 and the following results can be viewed: 

 When the parameter Ip increases, the amount of 𝑆1
∗ and 𝐺1

∗ will increase, whereas the amounts of 𝑀1
∗ , 

𝑇1
∗, 𝑃1

∗, 𝑄1
∗ , and 𝐸𝐴𝑇𝑃1will decrease. 

 When the parameter Ie increases, the amount of 𝐺1
∗  and 𝐸𝐴𝑇𝑃1 will increase, whereas the amounts of 

𝑀1
∗ , 𝑇1

∗, 𝑃1
∗, 𝑄1

∗ , and 𝑆1
∗ will decrease. 

 When the parameter β1.  increases, the amount of 𝑀1
∗ , 𝑃1

∗, 𝑄1
∗ , and 𝐸𝐴𝑇𝑃1 will increase, whereas the  

amounts of 𝑇1
∗, 𝐺1

∗ , and 𝑆1
∗ will 
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Table 6. Sensitivity analysis on the parameters 𝐼𝑝 , 𝐼𝑒 , and  𝛽1 

Parameters  𝑆1
∗ 𝐺1

∗ 𝑀1
∗ 𝑇1

∗ 𝑃1
∗ 𝑄1

∗ 𝐸𝐴𝑇𝑃1 

𝐼𝑝 = 0.1 6.0912 0.0061 0.1489 1.2345 0.6085 147.2328 500.3933 

𝐼𝑝 = 0.15 6.1012 0.007 0.1471 1.2320 0.6062 147.2216 495.8620 

𝐼𝑝 = 0.2 6.1152 0.0081 0.1452 1.2215 0.6047 147.2056 498.8752 

𝐼𝑝 = 0.25 6.1301 0.009 0.1419 1.2117 0.6010 147.1388 491.4250 

𝐼𝑝 = 0.3 6.1430 0.0095 0.1383 1.2101 0.6000 147.1015 485.8457 

        

𝐼𝑒 = 0.05 6.0912 0.0061 0.1489 1.2345 0.6085 147.2328 500.3933 

𝐼𝑒 = 0.09 5.8321 0.0068 0.1462 1.2118 0.6055 145.3523 505.7652 

𝐼𝑒 = 0.12 5.0100 0.0072 0.1441 1.2069 0.6032 143. 1668 512.4562 

𝐼𝑒 = 0.16 4.1458 0.0081 0.1417 1.19975 0.6011 140.1700 515.3441 

𝐼𝑒 = 0.2 3.4452 0.0089 0.1383 1.1942 0.6005 138.3556 518.2546 

        

𝛽1 = 0.5 6.0910 0.0061 0.1387 1.2371 0.6826 149.6412 496.1354 

𝛽1 = 0.6 6.0902 0.0061 0.1489 1.2345 0.7085 150.2328 500.3933 

𝛽1 = 0.7 6.0902 0.0060 0.1502 1.2310 0.7675 153.3245 502.2198 

𝛽1 = 0.8 6.0896 0.0055 0.1563 1.2294 0.8132 158.9431 504.0085 

𝛽1 = 0.9 6.0865 0.0053 0.1589 1.2256 0.8875 160.6825 506.1244 

   Finally, the changes in mean and variance profit function with respect to weight parameter  

𝑓1(= 1 − 𝑓2) are illustrated in figure (7). From this figure, when 𝑓1 increases, the mean profit function 

will decrease, while, the variance profit function will increase. This is because if 𝑓1 increases,  𝑓2 
decreases, therefore, the variance profit function and the mean profit function contradicts each other. That 

is, if one decreases, next the other increases. 

  

 
Fig 7. The effect of weight parameter 𝑓1on the mean and variance profit function 

7-   Conclusion 
   In this study, for the first time a multi-item EOQ model has been developed with price and marketing 

cost dependent stochastic demand under permissible delay in payment. We considered some cost 

parameters as hybrid number. Moreover, a limitation on the total budget to purchase inventory was 

considered with fuzzy-stochastic quantity. Shortages are permitted and partially backordered. We solved 
our problem with using the methods of converting fuzzy- random parameters to crisp one and obtaining 

the global optimum of SGP problems. Finally, several numerical examples and a sensitivity analysis of 

the main parameters were provided to demonstrate the formulated model. Our study can be extended for 
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deteriorating items. Moreover, a multi- item EOQ model with variable lead time and considering the 
issues of sustainability can be developed.  
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Appendix. Transforming SGP problems into a series of standard GP problems 
As mention earlier, a global optimization method is applied for solving SGP problem proposed in 

Steps 1, 2, and 5. So in this section, we first present a SGP problem, and then explain this approach in 

detail for transforming the SGP problem to a series of standard GP problem according to type of our 

problem. 

1. SGP program  

 A SGP problem is equal to an optimization problem as follows: 

𝑀𝑖𝑛 𝜓0(𝑦) = ∑𝜃0𝑘𝑐0𝑘∏𝑦𝑖
𝑎0𝑖𝑘

𝑚

𝑖=1

𝑛0

𝑘=1

 𝑐0𝑘 > 0, 𝜃0𝑘 = ±1 (1) 

s.t 𝜓𝑗(𝑦) = ∑𝜃𝑗𝑘𝑐𝑗𝑘∏𝑦
𝑖

𝑎𝑗𝑖𝑘
≤ 1

𝑚

𝑖=1

𝑛𝑗

𝑘=1

 𝑐𝑗𝑘 > 0, 𝜃𝑗𝑘 = ±1, 𝑎𝑗𝑖𝑘 ∊ 𝑅,  𝑗 = 1.2. … . 𝑡 (2) 

 𝑦𝑖 > 0, , 𝑖 = 1.2. … .𝑚  (3) 

𝑛𝑗(𝑗 = 0.1.2. … . 𝑡) show the number of elements of the objective function and constraints. 𝜓𝑗(𝑗 =

0.1.2. … . 𝑡) is a signomial function. 

2. Global optimization approach  

This method defines all functions 𝜓𝑗(𝑗 = 0.1.2. … . 𝑡)as: 

𝜓𝑗(𝑦) = 𝜓𝑗
+(𝑦) − 𝜓𝑗

−(𝑦) 𝑗 = 0.1.2. … . 𝑡 (4) 

Where 𝜓𝑗
+(𝑦) and 𝜓𝑗

−(𝑦) are formulated as: 

𝜓𝑗
+(𝑦) = ∑𝜃𝑗𝑘𝑐𝑗𝑘∏𝑦

𝑖

𝑎𝑗𝑖𝑘

𝑚

𝑖=1

𝑛𝑗

𝑘=1

 𝜃𝑗𝑘 = +1,  𝑗 = 0.1.2. … . 𝑡 (5) 

𝜓𝑗
−(𝑦) = ∑𝜃𝑗𝑘𝑐𝑗𝑘∏𝑦

𝑖

𝑎𝑗𝑖𝑘

𝑚

𝑖=1

𝑛𝑗

𝑘=1

 𝜃𝑗𝑘 = −1,  𝑗 = 0.1.2. … . 𝑡 (6) 

Next it defines a large number, > 0 , so that 𝜓𝑗
+(𝑦) − 𝜓𝑗

−(𝑦) + 𝐿 > 0 and rewrites the model (1)-(3) as 

the following problem: 

𝑀𝑖𝑛 𝜓0(𝑦) =  𝜓0
+(𝑦) − 𝜓0

−(𝑦) + 𝐿  (7) 

s.t  𝜓𝑗
+(𝑦) − 𝜓𝑗

−(𝑦) + 𝐿 ≤ 1   𝑗 = 1.2. … . 𝑡 (8) 

 𝑦𝑖 > 0, 𝑖 = 1.2. … .𝑚  (9) 

 

 

The model (7)-(9) converts to the following optimization problem, by introducing an extra variable 𝑦0 in 
order to express constraints and objective function as quotient and linear form, respectively. 

𝑀𝑖𝑛   𝑦0  (10) 

s.t 
 𝜓0
+(𝑦) + 𝐿

𝜓0
−(𝑦) − 𝑦0

≤ 1    (11) 

 
 𝜓𝑗
+(𝑦)

𝜓𝑗
−(𝑦) + 1

≤ 1 𝑗 ∈ 𝑗1, 𝑗 = 1.2. … . 𝑡 (12) 

 
 𝜓𝑗
+(𝑦)

𝜓𝑗
−(𝑦) + 1

≤ 1 𝑗 ∈ 𝑗2, 𝑗 = 1.2. … . 𝑡 (13) 

 𝑦𝑖 > 0, 𝑖 = 1.2. … .𝑚  (14) 

 

 

Where, 𝑗1 = {𝑗|𝜓𝑗
−(𝑦) + 1 are monomials} and 𝑗2 = {𝑗|𝑗 ∉ 𝑗1}. In the above model, the objective 

function (10) is a posynomial function, constraint (12) is a posynomial inequality, and constraint (14) is a 
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monomial inequality that all three equations are allowable in standard GP problem, but constraints (11) 
and (13) are not permitted in a standard GP problem. So this method used from arithmetic–geometric 

mean approximation to approximate every denominator of constraints (11) and (13) with monomial 

functions as follows:  

𝑓(𝑦) ≥ 𝑓(𝑦) =∏(
𝑣𝑢(𝑦)

𝑤𝑢(𝑥)
)

𝑤𝑢(𝑥)

𝑢

 (15) 

Where the parameters 𝑤𝑢(𝑥) can be computed as: 

𝑤𝑢(𝑥) =
𝑣𝑢(𝑥)

𝑓(𝑥)
 ∀ 𝑢 (16) 

And 𝑓(𝑦) = ∑ 𝑣𝑢(𝑦)𝑢  is a posynomial function, 𝑣𝑢(𝑦) are monomial terms, and 𝑥 > 0  is a fixed point. 

Using the proposed monomial approximation approach to every denominator of constraints (11) and (13), 

finally we have: 

𝑀𝑖𝑛   𝑦0  (17) 

s.t 
 𝜓0
+(𝑦) + 𝐿

𝜓0
−(𝑦. 𝑦0)

≤ 1    (18) 

 
 𝜓𝑗
+(𝑦)

𝜓𝑗
−(𝑦) + 1

≤ 1 𝑗 ∈ 𝑗1, 𝑗 = 1.2. … . 𝑡 (19) 

 
 𝜓𝑗
+(𝑦)

𝜓2𝑗
− (𝑦)

≤ 1 𝑗 ∈ 𝑗2, 𝑗 = 1.2. … . 𝑡 (20) 

 𝑦𝑖 > 0, 𝑖 = 1.2. … .𝑚  (21) 

 

Where 𝜓0
−(𝑦. 𝑦0) and 𝜓2𝑗

− (𝑦)are the corresponding monomial functions approximated using Equation 

(15). Now, the problem (17)-(21) is a standard geometric programming that can be optimized efficiently 

using GGPLAB solver in MATLAB (Mutapcic et al. 2006). So, the proposed algorithm can be 

summarized as an iterative algorithm as follows: 

 

Algorithm  

Step 0: Select an initial solution for decision variables 𝑦0 and 𝑦, 𝑦0
(0)

and 𝑦(0)  respectively. Consider a  

solution accuracy 𝜀 > 0 and put iteration counter  𝑟 = 0. 

Step1: In iteration 𝑟, calculate the monomial components in the denominator posynomials of Equations 

(11) and (13) by the determined 𝑦0
(𝑟−1)

and 𝑦(𝑟−1). Calculate their corresponding parameters 

𝑤𝑢 (𝑦0
(𝑟−1)

. 𝑦(𝑟−1)) using  equation (16). 

Step2: Do the condensation on the denominator posynomials of equations(11) and (13)  using  

Equation (15) by parameters 𝑤𝑢 (𝑦0
(𝑟−1)

. 𝑦(𝑟−1)). 

Step3: Solve the standard GP (17)-(21) to obtain (𝑦0
(𝑟)
. 𝑦(𝑟)). 

Step4: If ‖𝑦(𝑟) −𝑦(𝑟−1)‖ ≤ 𝜀 ,  so stop. Else 𝑟 = 𝑟 + 1  and return to Step1. 

 

 

 


