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Abstract 

This paper addresses a multi-objective mixed-model two-sided assembly line 

balancing and worker assignment with bottleneck analysis when the task times 

are dependent on the worker’s skill. This problem is known as NP-hard class, 

thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The 

algorithm is based on Particle Swarm Optimization (PSO) and Theory of 

Constraints (TOC) and consists of two stages. In stage one, simultaneous 

balancing and worker assignment are studied. In stage two, bottleneck analysis 

and product-mix determination are carried out. In addition, a bi-level 

mathematical model is presented to describe the problem. The following 

objective functions are verified in this paper: (1) minimizing the number of 

mated-stations (2), minimizing the number of stations (3) minimizing the 

human costs (4) minimizing the weighted smoothness index and (5) maximizing 

the total profit. In addition to the proposed algorithm, another algorithm, which 

is based on the simulated annealing and the theory of constraints, is developed 

to compare the performance of the proposed algorithm in terms of the running 

time and the solution quality over the different benchmarked test problems. 

Moreover, several lower bounds are developed for the number of the stations 

and the number of the mated-stations. The results show and support the 

efficiency of the proposed approaches. 

Keywords: Two-sided assembly line balancing problem (TSALBP), worker 

assignment, mixed-model, particle swarm optimization algorithm (PSO), 

simulated annealing algorithm (SA), theory of constraints. 

 
 

1-Introduction 
   An assembly line is a production process that usually has several stations connected with a material 

handling device such as a conveyor belt. In this line, the unfinished products are launched down 

through the stations and a set of tasks with certain operation times and ordered relationships between 

them are carried out by robots or humans. 

   Salveson (1955) is the first author that introduced assembly line balancing problem (ALBP).Since 

then; many others have studied it with different constraints, objectives and solving methods in order 

to make better decisions in real-world situations. Several good surveys and taxonomies were 

published on ALBP in Scholl and Becker (2006), Boysen et al. (2007, 2008), Hu et al. (2011) and 

Battaïa and Dolgui (2013). 
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   There are several classifications for ALBP. Based on the number of the product models that are 

assembled in a line, this problem is divided into single, mixed and multi-models. In the single-model, 

one type of product is assembled. In the mixed-model several models of one type of product and in 

the multi-model, different product types in batches are assembled. Through these lines, the mixed-

model assembly lines can reduce inventories, eliminate transfer costs among the models and meet 

ever-changing customer demands more efficiently (Hu et al. (2011)). Therefore, many factories use 

these assembly lines for their productions. 

   According to the properties of the products, the technical or operational requirements, layouts of the 

assembly lines can be one-sided, two-sided or U-shaped. In one-sided assembly lines, only one side of 

the line (right or left) is used; whereas, in the two-sided assembly line, both sides of the line are 

utilized. Since a two-sided line often has a shorter length, low-cost tools, fixtures and fewer material 

handling systems, this layout is used for large-sized products. 

   There are two famous objective functions for solving a two-sided assembly line balancing problems 

(TSALBP). Minimization of the number of the mated-stations (i.e., the line length) for a given time 

cycle is the Type-I and minimization of the cycle time for a given number of the mated-stations is the 

Type-II (Özcan and Toklu (2009)). Since the number of the stations for the same number of the 

mated-stations in Type-I can be different, the number of the mated-stations as well as the number of 

the stations may be verified in TSALBP. 

   According to the number of the objective function(s), TSALBP can be categorized based on one 

objective or multi-objective. For example, Xiaofeng et al. (2010) used one objective function and 

Simaria and Vilarinho (2009) had more than one objective in his research. 

Similar to the one-sided ALBP, TSALBP is an NP-hard problem (Bartholdi (1993)). Therefore, 

metaheuristic algorithms, such as simulated annealing )Özcan et al. (2010)), Genetic Algorithm 

(Purnomo et al. (2013)), Ant Colony Optimization (ACO) (Simaria and Vilarinho (2009)) and Particle 

Swarm Optimization (Chutima and Chimklai (2012)) are used to solve the TSALBP in reasonable      

time to obtain optimal or near-optimal solutions. 

   Most of the research in ALBP assume that the operation times are deterministic (Hamta et al. 

(2013)), and do not depend on the worker’s skill. However, in many real-world situations, the task 

times depend on the worker’s skill. It is clear that when a worker is high-skilled, he (she) can do the 

specified task faster than a low-skilled worker. Thus, the worker’s skill can affect the line balancing. 

In addition, distinguishing between the levels of skills permits a manager to decide which tasks should 

be done by a worker. Therefore, verifying the worker assignment in ALBP is necessary and several 

researchers have investigated this problem in their papers. For example, Miralles et al. (2008) defined 

a mathematical model for the assembly line worker assignment and balancing problem and presented 

a basic branch and bound (B&B) approach with three possible search strategies and different 

parameters to solve it. Costa and Miralles (2009) verified the effect of the job rotation in this problem 

and proposed a metric along with a mixed integer linear model and a heuristic algorithm. 

Furthermore, Blum and Miralles (2011) solved this problem with beam search. Their model's 

objective was cycle time minimization for the fixed number of stations and workers. 

   Mutlu et al. (2013) considered the workers’ assignment and ALBP when task times depended on the 

skills of the operators and developed an iterative genetic algorithm to minimize the cycle time. 

Zhang et al. (2008) addressed a Multi-Objective Genetic Algorithm (MOGA) for ALBP with worker 

allocation to, simultaneously, minimize (1) the cycle time (2) the variation of workload, and (3) the 

total cost. Moreover, Zaman et al. (2012) used a heuristic and an MOGA for assigning the operators 

to the predefined stations of an assembly line to get the sustainable result of fitness function of cycle 

time, the total idle time and the output.  

   A mixed integer programming model, a heuristic algorithm based on beam search, a task-oriented 

branch and a bound procedure, which used new reduction rules and lower bounds for solving worker 

assignment and balancing problems, are presented in Borba and Ritt (2014). Moreover, this problem 

led to the development of an exact enumeration algorithm for solving the problem (Vilà and Pereira 

(2014)).  

   Kellegöz (2017) presented a new mathematical formulation and Gantt based heuristic method for 

assembly line balancing problems with multi-manned stations. Also, Giglio et al. (2017) presented a 

new mathematical formulation for multi-manned assembly line balancing problem with skilled 

workers which allowed the workers in each multi-manned workstation to perform the different 

http://www.sciencedirect.com/science/article/pii/S0305054812001554


153 

assembly tasks of same product simultaneously to minimize the total operating cost of the assembly 

line. Furthermore, Roshani and Giglio used simulated annealing algorithms for the multi-manned 

assembly line balancing problem to minimize cycle time. Recently, Cannas et al. (2018) verified 

complexity reduction and kaizen events to balance manual assembly lines. Moreover, Dolgui et al. 

(2018) studied optimal workforce assignment to operations of a paced assembly line where workers 

can move among stations to adapt workstation capacities to workloads.  

 
 

Table 1. Papers with assembly line balancing and worker assignment 
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Miralles et al.(2008) *  *   * *   * A B&B based heuristic 

Costa & Miralles (2009) *  *    *   * A heuristic algorithm 

Sirovetnukul & Chutima 

(2010) 

* *   *   * *  Multi-objective evolutionary algorithm 

Zaman et al. (2012) *  *     *  * Genetic Algorithm (GA) 

Moreira et al. (2012) *  *    * *  * Hybrid GA 

Zhang et al. (2008) *  *     *  * MOGA 

Song et al. (2006) *  *    *    Two recursive algorithms 

Araujo et al. (2012) *  *    *  *  A heuristic algorithm 

Blum & Miralles (2011) *  *     *  * Beam Search 

Mutlu et al. (2013) *  *     *  * Iterative GA 

Vilà & Pereira (2014) *  *   *   *  B&B 

Miralles et al. (2007) *  *   *    * Using CPLEX 9.0 software 

Borba & Ritt (2014) *  *   * * *  * A heuristic based on beam search, task-

oriented B&B 
  

  

   As well as a suitable worker assignment and line balancing, considering the bottlenecks and 

eliminating them can increase the system’s efficiency and permit the production managers to have a 

better decision-making ability and determine how many products are needed to be produced for each 

model (product-mix). In this area, Pastor (2011) presented the lexicographic bottleneck ALBP (LB-

ALBP). This approach hierarchically minimized the workload of the most heavily loaded stations, 

followed by the workload of the second most heavily loaded stations, and so on. Pastor et al. (2012) 

proposed an algorithm to improve the results of the previous heuristic procedures to solve the LB-

ALBP.  

   Table1 shows that there is no paper that has addressed the worker assignment and two-sided 

assembly line balancing problems for single or mixed-model products. Furthermore, there is a little 

attention paid to the bottlenecks in ALBP. Thus, in this paper, not only a worker assignment and 

mixed-model TSALBP are considered, but also bottleneck analyses are carried out as well. 

The innovations of the current paper are as follows: 

1) Verifying the mixed-model products in the assembly line balancing and worker assignment.  

2) Verifying the two-sided layout for the ALBP and worker assignment.  

3) The analysis of the bottlenecks for TSALBP and worker assignment. 

4) Proposing a new hierarchical-cyclic algorithm for solving the integrated problem. 

5) Presenting a bi-level mathematical model for the current problem. 

6) Product-mix determination in TSALBP. 

7) Developing several lower bounds for the problem. 

8) Comparison between two methods to solve the problem.  

The rest of this paper is structured as follows: Section 2 considers the definition of the problem, the 

related assumptions, and the mathematical model. Section 3 presents the details of the proposed 

algorithm and its flowchart. The algorithm is illustrated by an example with details in section 4. 

Section 5 provides numerical experiments for analysis of the proposed algorithm. Finally, the last 

section is devoted to including a summary, conclusions and future research directions of this paper. 
 

2-Problem definition 
   Mixed-model two-sided assembly lines are often applied in a range of industries that assemble 

large-sized products and/or produce different models of one product.  

http://www.tandfonline.com/author/Roshani%2C+Abdolreza
http://www.tandfonline.com/author/Giglio%2C+Davide
http://www.sciencedirect.com/science/article/pii/S0305054812001554
http://www.sciencedirect.com/science/article/pii/S0305054813003110
http://www.sciencedirect.com/science/article/pii/S0305054813003110
http://www.sciencedirect.com/science/article/pii/S0925527312001090#s0095
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In the real-world situations, human workers and their abilities and skills have important roles in the 

assembly lines. Furthermore, considering the bottlenecks can increase the system efficiency.  

In this section, the problem assumptions, the notations and the mathematical model for the mixed-

model TSALBP and workers’ assignment with considering the bottlenecks are presented. 

 

2-1-Problem assumptions 
   The assumptions of the problem are as follows: 

1. Different models of one product with certain precedence diagrams are produced on a two-

sided assembly line. 

2. Each task must be assigned once and only to one station.  

3. Each worker can do only one task at a time. 

4. Workers with different levels of skill are available (low-skilled, medium-skilled, high-skilled) 

and the operation times depend on these levels. 

5. Each worker is assigned to one station with each station having only one worker. 

6. In each station, the demand and the contribution margin of each model and the capacity are 

known. 

7. The number of stations, the number of mated-stations and the cycle time are not known. 

 

2-2- Mathematical model 
   Given the above assumptions, the mathematical model based on the formulation of mixed-model 

two-sided ALBP presented in Özcan and Toklu (2009) is developed for the mentioned problem.  The 

following indices, parameters, and variables are used. 

 

Indices: 

i,h,p,r Task 

j,g Mated-station 

l Skill 

m Product model 

k,k’ Side of the line; (1: indicates a left -side station) and (2: indicates a right-side station) 

 

Parameters and variables: 

I Set of tasks in the combined precedence diagram 

J Set of mated-stations 

L Set of skills (low, high, …) 

AL Set of tasks which should be performed at a left-side station; AL I 

AR Set of tasks which should be performed at a right-side station; AR I 

AE Set of tasks which may be performed at either side of a station; AE I 

P(i) Set of immediate predecessors of task i 

Pa(i) Set of all predecessors of task i 

Sa(i) Set of all successors of task i 

P0 Set of tasks that have no immediate predecessors 

ψ A very large positive number 

N(i) Set of tasks whose operation directions are opposite to operation direction of task i;  

𝑁(𝑖) = {

𝐴𝐿        𝑖𝑓    𝑖𝜖A𝑅

𝐴𝑅        𝑖𝑓    𝑖𝜖A𝐿

∅       𝑖𝑓    𝑖𝜖A𝐸

 

K(i) Set of indicating the preferred operation directions of task i; 

𝐾(𝑖) = {

{1}       𝑖𝑓    𝑖𝜖A𝑅

{2}       𝑖𝑓    𝑖𝜖A𝐿

{1,2}    𝑖𝑓    𝑖𝜖A𝐸

 

C Cycle time 

M Number of models 

𝑃𝑟𝑚 Profit of model m 

𝑄𝑚 Decision variable representing the quantity of model m 
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𝐷𝑚 Bound of Qm (market demand for model m) 

timl Operation time of task i for model m with skill l 

𝑐𝑎𝑝𝑗𝑘𝑙 Capacity of mated-station j and side k when a worker with skill l works 

HCl Human cost of a worker with skill l  

DP Production planning horizon 

 𝑚𝐿𝑆𝑗
𝑘

 
 Load station of mated-station j and side k including unavoidable idle times for model m 

when a worker with skill l works there. 

𝐿𝑆𝑚𝑎𝑥 Maximum of Load stations 

NM Total number of Mated-stations  

NS Total number of stations 

THC Total human cost 

WSI Total weighted smoothness index 

TP Total Profit 

𝐺𝑗𝑘𝑙 1, if a worker with skill l is assigned to mated-station j and side k; 0, otherwise. 

𝑥𝑖𝑗𝑘𝑙 1, if task i is assigned to mated-station j and side k with skill level l; 0, otherwise. 

t
f
iml Finish time of task i for model m with skill l 

Fj 1, if mated-station j is utilized; 0, otherwise. 

zip 1, if task i is assigned before task p in the same station; 0, if task p is assigned before task 

i in the same station 

In this paper, a multi-objective mathematical model for mixed-model TSALBP and workers 

assignment with different levels of skills is proposed. This mathematical model is as follows: 

 
𝑀𝑎𝑥  𝑇𝑃 = ∑ 𝑃𝑟𝑚𝑄𝑚

 
𝑚𝜖𝑀                           (1) 

S.to: 

𝑄𝑚 ≤ 𝐷𝑚     ∀      𝑚𝜖𝑀                     (2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑘𝜖𝐾(𝑖)𝑖𝜖𝐼 . 𝑡𝑖𝑚𝑙 ≤ cap𝑗𝑘′𝑙                                        ∀   𝑚𝜖𝑀, 𝑙𝜖𝐿, 𝑘′𝜖𝐾(𝑖), 𝑗𝜖𝐽                               (3) 

𝑄𝑚 ≥ 0  &  𝑖𝑛𝑡𝑒𝑔𝑒𝑟      ∀      𝑚𝜖𝑀                     (4) 

𝑀𝑖𝑛  𝑁𝑀 = ∑ 𝐹𝑗𝑗𝜖𝐽                           (5) 

𝑀𝑖𝑛  𝑁𝑆 = ∑ ∑ ∑ 𝐺𝑗𝑘𝑙
 
𝑙𝜖𝐿

2
𝑘=1𝑗𝜖𝐽                                       (6) 

𝑀𝑖𝑛  𝑇𝐻𝐶 = ∑ ∑ ∑ 𝐻𝐶𝑙 . 𝐺𝑗𝑘𝑙
 
  𝑙𝜖𝐿

2
𝑘=1𝑗𝜖𝐽                                      (7) 

𝑀𝑖𝑛 𝑊𝑆𝐼 = √∑
𝑄𝑚(∑ ∑ ( 𝑚𝐿𝑆𝑗

𝑘

 
−𝐿𝑆𝑚𝑎𝑥) 2)𝑘=1,2𝑗𝜖𝐽

∑ 𝑄 
𝑚𝜖𝑀 𝑚

.𝑁𝑆

 
𝑚𝜖𝑀                         (8) 

S.to: 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙
 
𝑙𝜖𝐿𝑘𝜖𝐾(𝑖)𝑗𝜖𝐽 = 1                                               ∀𝑖𝜖𝐼                                    (9) 

∑ ∑ 𝑔. 𝑥ℎ𝑔𝑘𝑙𝑘𝜖𝐾(ℎ)𝑔𝜖𝐽 − ∑ ∑ 𝑗. 𝑥𝑖𝑗𝑘𝑙𝑘𝜖𝐾(𝑖)𝑗𝜖𝐽  ≤ 0       ∀ 𝑖𝜖𝐼 − 𝑃0    , ℎ𝜖𝑃(𝑖),    𝑙𝜖𝐿                                (10)  

𝐶 ≥ 𝑡𝑖𝑚𝑙                                                                                 ∀𝑖𝜖𝐼 , 𝑚𝜖𝑀, 𝑙𝜖𝐿                   (11) 

𝐶 . ∑ 𝑄𝑚
 
𝑚𝜖𝑀 ≥ 𝐷𝑃                         (12) 

𝑡𝑖𝑚𝑙
𝑓

≤ 𝐶                                                                                 ∀𝑖𝜖𝐼 , 𝑚𝜖𝑀, 𝑙𝜖𝐿                  (13) 

𝑡𝑖𝑚𝑙
𝑓

≥ 𝑡𝑖𝑚𝑙                                                                              ∀𝑖𝜖𝐼 , 𝑚𝜖𝑀, 𝑙𝜖𝐿                  (14)  

𝑡𝑖𝑚𝑙
𝑓

− 𝑡ℎ𝑚𝑙
𝑓

+ 𝜓(1 − ∑ 𝑥ℎ𝑗𝑘𝑙𝑘𝜖𝐾(ℎ) ) + 𝜓(1 − ∑ 𝑥𝑖𝑗𝑘𝑙𝑘𝜖𝐾(ℎ) ) ≥ 𝑡𝑖𝑚𝑙 , ∀𝑖𝜖𝐼 − 𝑃0  , ℎ𝜖𝑃(𝑖), 𝑗𝜖𝐽, 𝑚𝜖𝑀, 𝑙𝜖𝐿          

          (15) 

𝑡𝑖𝑚𝑙
𝑓

− 𝑡𝑝𝑚𝑙
𝑓

+ 𝜓. (1 − 𝑥𝑝𝑗𝑘𝑙) + 𝜓. (1 − 𝑥𝑖𝑗𝑘𝑙) + 𝜓. 𝑧𝑖𝑝 ≥

𝑡𝑖𝑚𝑙 ∀𝑖𝜖𝐼 , 𝑚𝜖𝑀, 𝑝𝜖{𝑟|𝑟𝜖𝐼 − (𝑃𝑎(𝑖) ∪ 𝑆𝑎(𝑖) ∪ N(i)) and  i < 𝑟}, 𝑗𝜖𝐽 , 𝑘𝜖𝐾(𝑖) ∩ 𝑘(𝑝), 𝑙𝜖𝐿                (16) 

𝑡𝑝𝑚𝑙
𝑓

− 𝑡𝑖𝑚𝑙
𝑓

+ 𝜓. (1 − 𝑥𝑝𝑗𝑘𝑙) + 𝜓. (1 − 𝑥𝑖𝑗𝑘𝑙) + 𝜓. (1 − 𝑧𝑖𝑝) ≥

𝑡𝑝𝑚𝑙  ∀𝑖𝜖𝐼 , 𝑚𝜖𝑀, 𝑝𝜖{𝑟|𝑟𝜖𝐼 − (𝑃𝑎(𝑖) ∪ 𝑆𝑎(𝑖) ∪ N(i)) and  i < 𝑟}, 𝑗𝜖𝐽 , 𝑘𝜖𝐾(𝑖) ∩ 𝐾(𝑝), 𝑙𝜖𝐿                (17) 

 𝑚𝐿𝑆𝑗
𝑘

 
− ∑ ∑ ∑ 𝑥 

𝑙𝜖𝐿 𝑖𝑗𝑘𝑙𝑘𝜖𝐾(𝑖)𝑗𝜖𝐽 . 𝑡𝑖𝑚𝑙
𝑓

= 0                       ∀  𝑚𝜖𝑀                                   (18) 

𝐿𝑆𝑚𝑎𝑥 ≥  𝑚𝐿𝑆𝑗
𝑘

 
                  ∀ 𝑗𝜖𝐽, 𝑘𝜖𝐾(𝑖), 𝑚𝜖𝑀, 𝑙𝜖𝐿                              (19) 

∑ ∑ ∑ 𝑦𝑗𝑘𝑙𝑙𝜖𝐿𝑘=1,2𝑗𝜖𝐽 ≤ 2 ∑ 𝐹𝑗𝑗𝜖𝐽                           (20) 

∑ 𝑦𝑗𝑘𝑙
 
𝑙𝜖𝐿 ≤ 1                                                                          ∀ 𝑗𝜖𝐽,   𝑘𝜖𝐾(𝑖)                      (21) 

𝑥𝑖𝑗𝑘𝑙𝜖{0,1}                                                                              ∀ 𝑖𝜖𝐼, 𝑗𝜖𝐽, 𝑘𝜖𝐾(𝑖), 𝑙𝜖𝐿                               (22) 

𝑧𝑖𝑝𝜖{0,1}                                           ∀ 𝑖𝜖𝐼 , 𝑝𝜖{𝑟|𝑟𝜖𝐼 − (𝑃𝑎(𝑖) ∪ 𝑆𝑎(𝑖) ∪ N(i))& i < 𝑟}                                   (23) 

𝐹𝑗𝜖{0,1}                                                                                   ∀ 𝑗𝜖𝐽                                                                           (24) 
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𝑦𝑗𝑘𝑙𝜖{0,1}                                                                                ∀ 𝑗𝜖𝐽, 𝑙𝜖𝐿, 𝑘 = 1,2                                 (25) 

   Objective function 1 maximizes the total profit. Constraint 2 shows that the maximum number of 

production of each model is equal to the number of demands. Constraint 3 demonstrates that it is 

impossible to assign a task which is more than the capacity of each station. Constraint 4 shows that 

the quantity of the demand of each model is an integer and more than zero. 

   Objective functions (5)-(7) minimize the number of the mated-stations, the number of stations and 

the total human cost. Objective function (8) minimizes the weighted smoothness index. By using this 

index, the idle time between the stations will be as equal as possible. Constraint (9) shows that each 

task should be assigned to one station. Constraint (10) represents the precedence relations between 

tasks. Constraints (11) and (12) estimate the cycle time. Constraints (13) and (14) determine the finish 

time of each task i for model m that is done with a worker with skill l. It is less than the cycle time and 

equal or greater than its operation time. Constraints (15) -(17) simultaneously control the sequence-

dependent finishing time of the tasks for each model and skill. Constraints (18) and (19) show the 

workload of each station and how to calculate WSI. Constraint (20) represents the relations between 

the number of the stations and the mated stations. Constraint (21) demonstrates that the maximum 

number of operators for each station is 1. Constraints (22)-(25) points out that the variables are binary. 

 
 

3-The solving method 
   In this section, before introducing the proposed algorithm for solving mixed-model TSALBP and 

worker assignment with considering to the bottleneck, the standard PSO algorithm is presented. 

 

3-1- The Standard PSO Algorithm 
   One of the population-based metaheuristic algorithms is particle swarm optimization that was 

introduced by Kennedy and Eberhart (1995). In PSO algorithm, a swarm of particles seeks a D-

dimensional space to find the best solution.  

   Each particle has a certain velocity, position, and fitness value (objective function) at each iteration. 

These values are updated through the running algorithm based on the current and the previous 

information available from each particle and population. 

The standard PSO structure is as follows: 

Step 1. Generate the initial position (𝑋𝑖,0
𝑗

) and the velocity (𝑉𝑖,0
𝑗

) of each particle in the swarm by 

using the following relations: 

𝑋𝑖,0
𝑗

= 𝑋𝑀𝑖𝑛 + 𝑅𝑎𝑛𝑑𝑜𝑚(𝑋𝑀𝑎𝑥 − 𝑋𝑀𝑖𝑛)                                            (26) 

𝑉𝑖,0
𝑗

= 𝑉𝑀𝑖𝑛 + 𝑅𝑎𝑛𝑑𝑜𝑚(𝑉𝑀𝑎𝑥 − 𝑉𝑀𝑖𝑛)                                (27) 

Step 2. Compute the new positions and velocities of the particles by using equations (28) and (29). 

𝑉𝑖,𝑘+1 = 𝑐1𝑟1(𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

− 𝑋𝑖,𝑘) + 𝑐2𝑟2(𝑋𝑘
𝑔𝑏𝑒𝑠𝑡

− 𝑋𝑖,𝑘) + 𝑊𝑘𝑉𝑖,𝑘                                         (28) 

𝑋𝑖,𝑘+1 = 𝑋𝑖,𝑘 + 𝑉𝑖,𝑘+1                                   (29) 

Step 3. Compute the best objective function of each particle (Pbest) and the best objective function of 

the total swarm (gbest).  

Step 4. Update the best position of each particle (𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

) and the best position of the total swarm 

(𝑋𝑘
𝑔𝑏𝑒𝑠𝑡

).  

Step 5. If the stopping criterion (for example, a given maximum number of iterations or a certain 

running time) is not met, go to step 2; otherwise, stop. 

Several parameters of the PSO algorithm are shown in equation (28). Two positive constants (c1 and 

c2) that are called cognitive and social coefficients respectively, two uniform random values (r1 and 

r2) between 0 and 1, the inertia weight (W), the maximum and the minimum position (Xmax and Xmin), 

and the maximum and the minimum velocity (Vmax and Vmin). All of these values are constant in the 

standard PSO algorithm. 

 

3-2- The proposed hybrid algorithm 
   In this paper, a cyclic-hierarchical two-stage algorithm is proposed for solving worker assignment 

and mixed-model two-sided assembly line balancing with bottleneck analysis. 
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   Stage1 of the proposed algorithm is used to solve the simultaneous line balancing and the worker 

assignment using a multi-objective PSO algorithm. Stage 2 analyzes the bottlenecks and determines 

the product-mix of the problem using the theory of constraints. If the stopping rules (no existing 

bottleneck and no change in the previous cycle time) are satisfied, the running algorithm will be 

finished; otherwise, the outputs of stage 2 will be the inputs of stage 1, and the algorithm should be 

run from stage 1. The structure of the proposed algorithm is presented in figure 1. 
 

 
 

Fig 1. The structure of the proposed algorithm  
 

   After creating a station, it is necessary to assign a worker to it. It leads to determining which 

operator is assigned to the station and how long the task times are. The tasks should be assigned to the 

station until the initial cycle time is satisfied. The initial cycle time (C) can be computed as follows: 

𝐶 = max{max {𝑡𝑖𝑚1},
𝐷𝑃

∑ 𝐷𝑖𝑖
}  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑖                    (30) 

   Where DP is the production planning horizon, Di is the quantity demand of model i that is desired to 

be produced, and 𝑡𝑖𝑚1 is the processing time of task i for model m when a high-skilled worker is 

performing the task. 

   After determining the cycle time, worker assignment and line balancing are verified simultaneously. 

According to the necessary side of the tasks, precedence relationships, the initial cycle time and the 

station worker, assigned randomly, the tasks should be assigned to the station. Then, the bottleneck 

should be analyzed and eliminated by changing the operators of the current line or product-mix 

determination to maximize the total profit. 
 

3-2-1- Stage 1 

   In the PSO algorithm that is used in this stage, the inertia weight (W) and the social coefficient (C2) 

are not constant and vary through the running algorithm. These parameters are computed by using the 

following equations: 

𝑊 = 𝑊𝑚𝑎𝑥 −
𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛

𝐼𝑡𝑟𝑚𝑎𝑥
× 𝐼𝑡𝑟                                  (31)  

𝐶2 = 𝐶2𝑚𝑖𝑛 +
𝑐2𝑚𝑎𝑥−𝑐2𝑚𝑖𝑛

𝐼𝑡𝑟𝑚𝑎𝑥
× 𝐼𝑡𝑟                     (32) 

Where WMax, WMin, 𝐶2𝑚𝑖𝑛, 𝐶2𝑚𝑎𝑥, IterMax, and Itr are the initial inertia weight, the final inertia weight, 

the first social coefficient, the last social coefficient, the maximum number of iterations and the 

current iteration, respectively. Table 2 shows the other parameters of the hybrid PSO-TOC algorithm. 

 
Table 2. Several parameters of the proposed hybrid PSO-TOC algorithm 

Parameter Value 

cognitive coefficients (c1) A constant value 

Xmax n 

Xmin -n 

Vmax  n 

Vmin -n 

Maximum iteration A constant value 

Swarm size A constant value 
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a) Initial solution generation  

   First, a random worker should be assigned to each station in stage 1. The initial solution for 

assigning the tasks to the stations is shown on a list of priorities (LP). It is generated randomly and 

consists of the tasks that have no preceding tasks or their precedence tasks are satisfied. The value and 

the position of each element show the name of the task and its priority, respectively. For example, 

LP={2,1,4,5,3} shows five tasks should be assigned to the stations, and task 2 and task 3 have the 

highest and the lowest priority. 
 

b) A feasible solution for stage 1 

   For creating a feasible solution, the approach of Özcan and Toklu (2009) for solving a mixed-model 

two-sided ALBP is used. However, it was changed and adapted for the problem being studied in this 

paper. 

In this process, if a mated-station is opened, according to the direction and the priority of the task that 

should be assigned, a worker with a random skill will be assigned to it to have a simultaneous worker 

assignment and line balancing. 

If both sides of the mated-station are loaded to the max, then the current mated-station is closed and 

another mated-station is created so that the other tasks could be assigned to it.  
 

c) Objective functions of stage 1 

Based on the weighted sum method (Deb (2001)), the objective function of stage 1, which consists of 

NM, NS, THC, and WSI, is shown by the Equation (33):  

Minimize 𝑍 = 𝑊1(
𝑁𝑀

𝑁𝑀0
) + 𝑊2(

𝑁𝑆

𝑁𝑆0
)+ 𝑊3 (

𝑇𝐻𝐶

𝑇𝐻𝐶0
) + 𝑊4(

𝑊𝑆𝐼

𝑊𝑆𝐼0
)                              (33) 

Where, NM0, NS0, THC0 and WSI0 are the initial objective function values and W1, W2, W3 and W4 are 

the weights of the objective functions.  

Note: In the first step, Qm in WSI denotes the highest demand over the planning horizon for model m 

that is desired to be produced. However, in the next steps, it shows the quantity of model m that can 

be produced. 
 

3-2-2- Stage 2 

   Stage 2 of the proposed algorithm pertains to the bottleneck analysis and the product-mix 

determination. Several input data used in this stage are from stage 1, and in some cases, the outputs of 

this stage can be the input of stage 1. 

   Since in stage 1 the worker assignment is random, a high-skilled worker may not work in the 

bottleneck station. Whereas, in the non-bottleneck station, a high-skilled operator works. Therefore, 

first, it is tried to change the position of two operators to eliminate the bottleneck. But if it is 

impossible to change them, the quantity of each model that should be produced to maximize the 

efficiency system should be determined. 

   In this stage, the theory of constraints is used for bottleneck analysis and product-mix determination. 

Since the objective function of this theory is maximization of the total profit, it is calculated by the 

equation (1). 

 

3-3-Stopping rules 
   If there is no bottleneck in the system and no change in the previous cycle time, the stopping rules 

of the algorithm will be satisfied.  

Note: if whole on demand cannot be produced, the cycle time will change, and it will lead to change 

in line balancing. In this condition, the output of stage 2 will be the input of stage 1. 

The flowchart of the proposed algorithm is shown in Figure 2 and the notations used are given as 

follows: 

NL Number of left-side station 

NR Number of right-side station 

AT Set of assignable tasks 

mLSNM
1
 The load of station including unavoidable idle times on the left-side station of the 

current mated-station for all m=1,…,M 

mLSNM
2
 The load of station including unavoidable idle times on the right-side station of the 

current mated-station for all m=1,…,M 
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STNM
1
 The set of tasks which are assigned to the left side station of the current mated-station 

STNM
2
 The set of tasks which are assigned to the right-side station of the current mated-station 

Skill 1 Number of high-skilled worker 

Skill 2 Number of medium-skilled worker 

Skill 3 Number of low-skilled worker 

LP The list of priority 

tim1 Operation time of task i for model m with high-skilled worker 

Rand A random value between 0 and 1 

THC Total human cost 
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Fig 2. Flowchart of the proposed algorithm 
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3-4- Lower Bound 

   In this section, several lower bounds for the number of the stations and the number of the mated-

stations of two-sided assembly lines are developed. 

 

a) Lower Bound1 

   A lower bound for the number of the stations of the mixed-model two-sided assembly lines based is 

developed in Özcan and Toklu (2009). In this paper, their lower bound is adapted for mixed model 

TSALBP and the worker assignment with different levels of skill. In these equations, tim1 shows the 

operation time of task i for model m when a high-skilled worker is performing it. It means that 

without considering the human costs, the number of the stations will be minimized if all the stations 

have high-skilled workers. In this lower bound, the precedence relations are relaxed. 

𝐴 = 𝑚𝑎𝑥 {[
∑ ∑ 𝑞𝑚𝑡𝑖𝑚1𝑖𝜖𝐴𝐿𝑚𝜖𝑀

𝐶
] , [

∑ ∑ 𝑞𝑚𝑡𝑖𝑚1𝑖𝜖𝐴𝑅𝑚𝜖𝑀

𝐶
]}                   (34) 

𝐿𝐵1𝑁𝑆 = 2. 𝐴 + 𝑚𝑎𝑥 {0, [
∑ ∑ 𝑞𝑚𝑡𝑖𝑚1𝑖𝜖𝐴𝐸𝑚𝜖𝑀 −(𝑀𝑎𝑥.𝐶−∑ ∑ 𝑞𝑚𝑡𝑖𝑚1𝑖𝜖𝐴𝐿𝑚𝜖𝑀 )−(𝑀𝑎𝑥.𝐶−∑ ∑ 𝑞𝑚𝑡𝑖𝑚1𝑖𝜖𝐴𝑅𝑚𝜖𝑀 )

𝐶
]} (35) 

𝐿𝐵1𝑁𝑀 =
𝐿𝐵1𝑁𝑆

2
                          (36) 

Where qm is computed by 𝑞𝑚 =
𝐷𝑚

∑ 𝐷𝑚𝑚𝜖𝑀
.  

 

b) Lower Bound2 

   Scholl (1999) demonstrated a lower bound for the single-model one-sided assembly lines. This 

lower bound was based on the number of the tasks that their operation times exceeded t C/2. This 

value was a lower bound on the number of the stations because all of these tasks had to be assigned to 

different stations. The lower bound is strengthened by adding half of the number of tasks with task 

time C/2. 

   This lower bound is developed based on the task time of the low-skilled workers and the maximum 

time of each task for all models. Half of this lower bound can be a lower bound of the number of the 

mated-stations. 

 
 

c). Lower Bound3 

   This lower bound is presented in Scholl (1999) and is the generalized form of the lower bound 2 

with respect to the thirds of the cycle time. Similar to lower the bound 2, the lower bound 3 is 

developed based on the task time of the low-skilled workers and the maximum time of each task for 

all models. Half of this lower bound can be the lower bound for the number of the mated-stations. 

 
 

d) Lower Bound4 

This lower bound can be computed as the maximum LB1, LB2, and LB3. It presents a better result. 

LB4=Max {LB1, LB2, LB3}                                  (37) 
 

 

4- Parameters setting and a numerical example 
In this section, the method of parameters setting is reported and a numerical example is solved with 

details.  

4-1- Parameters setting 
   Since setting the parameters has an influence on the performance of the algorithms; in this paper, 

the Taguchi (1986) method, one of the most famous methods for the parameter selections, with five 

levels for each parameter is used. Table 3 shows these factors and their levels. 

 
Table 3. Factors and their levels 

Factor Swarm size C1 C2min 

Level 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Value 2n* 4n 6n 8n 10n 0.5 1 1.5 2 2.2 0.5 1 1.2 1.5 1.7 

Factor C2max WMax WMin 

Level 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 

Value 1.8 2.2 2.7 3 1.8 2.2 2.7 3 1.8 2.2 2.7 3 1.8 2.2 2.7 

* The number of tasks 
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   In the Taguchi method, orthogonal arrays are used to decrease the number of experiments. These 

arrays are presented in table 4. It shows that 25 tests are necessary to select the best parameters.  

 
Table 4. The orthogonal arrays for the proposed approach 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Swarm size 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 

C1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C2min 1 2 3 4 5 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 

C2max 1 2 3 4 5 3 4 5 1 2 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3 

Wmax 1 2 3 4 5 4 5 1 2 3 2 3 4 5 1 5 1 2 3 4 3 4 5 1 2 

Wmin 1 2 3 4 5 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 

 

Each test is run five times and the average of the objective function is obtained to calculate the (S/N) 

ratio. These values help to make a better decision. This ratio is given as follows:  

𝑆𝑁 = −10 log(
1

𝑛
∑ (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)2𝑛

𝑖=1 )                                (38) 

 

 

 
Fig 3. The mean SN ratio plot for the selected levels of each factor 

 
 

   According to figure 3, the maximum SN ratio shows the best level for each factor. The obtained 

results for parameter selections are presented in table 5. 

 
Table 5. The parameters of PSO algorithm and their selected levels 

Factor 
Swarm  

size 

Cognitive 

coefficient (C1) 

Minimum Social 

coefficient (C2min) 

Maximum Social 

coefficient (C2max) 

Maximum inertia 

weight (WMax) 

Minimum inertia 

weight (WMin) 

Level 5 4 5 4 2 1 

value 10n 2 1.7 3 1 0.3 
 

 

4-2- Numerical example 
In this section, the proposed approach is illustrated by using a problem with nine tasks, two models 

and three levels of skills. The production planning horizon and the capacity of each station are 480 

units of time. The required data for this example are shown in table 6. 

 

 
Fig 4. The precedence diagram between the tasks 
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Table 6. Data of the example 

Task Side 
Model A Model B 

Skill 1 Skill 2 Skill 3 Skill 1 Skill 2 Skill 3 

1 L 1 2 3 0 0 0 

2 R 2 3 4 1 2 3 

3 E 0 0 0 1 2 4 

4 L 2 3 5 0 0 0 

5 R 1 3 4 1 3 4 

6 E 1 2 3 1 2 3 

7 E 1 3 4 2 3 4 

8 L 0 0 0 3 4 6 

9 E 1 3 5 1 2 3 

Human cost 900 600 400 900 600 400 

Profit  50   90  

Demand  100   40  

   According to the task times, production planning horizon and the demand of each model, the first 

cycle is 6. An initial worker assignment and line balancing are presented in table 7. It shows the 

assembly line has two mated-stations and four stations.  
 

Table 7. Initial tasks and worker assignments to the mated-stations 
 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Task 1, 4 2, 3 6, 7, 8 5, 9 

Skill 1 2 1 2 
 

 

The required time for each station according to table 7 is presented in table 8. 

 
Table 8. Initial required time for each station and model 

 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Skill 1 2 1 2 

Required time1(A) 3 3 2 6 

Required time1(B) 0 4 6 5 
 

 

   The required capacity for each station is shown in table 9. This table shows that if there are these 

workers in the stations and line balancing; the right side of the mated-station 2 will be a bottleneck.  

 
Table 9. The initial required capacity for each station 

 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Skill 1 2 1 2 

Required capacity1(A) 300 300 200 600 

Required capacity1(B) 0 160 240 200 

Total required capacity1 300 460 440 800 
 

 

   In this situation, it is tried to eliminate the bottleneck by interchanging the positions of the two 

operators on this line. Clearly, the bottleneck has a medium-skilled worker. However, the left-side of 

the mated-station 1 that is not a bottleneck has a high-skilled worker. Therefore, it is necessary to 

verify that if this change occurs, will the station time be lower than the cycle time or not? Table 10 

and table 11 shows these results. 
 

Table 10. The required time for each station and model after changing the positions of two operators 
 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Skill 2 2 1 1 

Required time2(A) 5 3 2 2 

Required time2(B) 0 4 6 2 
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Table 11. The required capacity for each station after changing the positions of two operators 
 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Skill 2 2 1 1 

Required capacity2(A) 500 300 200 200 

Required capacity2(B) 0 160 240 80 

Total required capacity2 500 460 440 280 

   Table 11 shows that changing the position of the operators led to the reduction of the work overload 

of the line; however, the bottleneck was not eliminated. Thus, determining the 'R' index for product-

mix is necessary: 

𝑅𝐴 =
50

5
= 10,               𝑅𝐵 =

90

0
= ∞ 

Since RB>RA, the first priority of the production is of model B. The product-mixes are QB=40 and 

QA= [
480

5
] = 96. 

 
Table 12. The required capacity for each station after product-mix determination 
 Mated-station 1 Mated-station 2 

Left-side Right-side Left-side Right-side 

Skill 2 2 1 1 

Required capacity3(A) 480 288 192 192 

Required capacity3(B) 0 160 240 80 

Total required capacity 480 448 432 278 

 

   In this condition, the cycle time may change. As the result, it will be necessary to recalculate it. 

C=max{6, 
480

96+40
}=6 

Since the cycle time does not change and there is no bottleneck, the algorithm should be stopped, and 

the objective functions can be calculated. 

 
 

5- Computational results and discussion 
   In this section, alongside the proposed algorithm, another algorithm is developed based on the 

structure of the proposed algorithm. Simulated annealing and theory of constraints were used and it 

was called hybrid SA-TOC. The efficiencies of both algorithms are examined over a set of 

benchmarked test problems in terms of running time and solution quality.  

   In these problems, there are two product models and three skill levels (low, medium, and high) with 

$400, $600 and $900 human cost for each operator. The weights of the objective functions are 

W1=W2=W3=0.3 and W4=0.1. Furthermore, for better analysis, three demand levels are used for each 

model. More details of the problems are shown in table 13. 

 
Table 13. The number of tasks, demands and the profit of each model 
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   The algorithm is coded in MATLAB software and run on a personal computer with Intel (R) Core 

(TM) i3-2120 CPU @ 3.30 GHz and 4 GB of RAM memory. Each problem is solved four times. 
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Table 14 shows the results of using the proposed algorithms for the minimum, average and maximum 

WSI, THC and Z. 
 

 

Table 14. Obtained results for WSI, THC and Z by hybrid PSO-TOC and hybrid SA-TOC algorithms 

Problem 

WSI 

(hybrid SA-TOC) 

WSI 

(hybrid PSO-TOC) 

0.01×THC 

(hybrid SA-TOC)  

0.01×THC 

(hybrid PSO-TOC) 

100×Z 

(hybrid SA-TOC) 

100×Z 

(hybrid PSO-

TOC) 

M*** A** M* M A m M A m M A M M A m M A M 

P9D1 0.71 0.18 0.00 2.00 0.50 0.00 18 15.75 15 15 15 15 48 41 38 28 27 25 

P9D2 0.38 0.38 0.38 1.54 0.90 0.38 18 17.25 15 15 15 15 53 40 30 24 23 21 

P9D3 3.76 1.32 0.50 1.50 1.30 0.71 21 18.75 18 18 15.75 15 66 56 50 26 25 23 

P12D1 1.60 1.06 0.71 2.17 1.47 0.92 30 28.50 28 27 24.25 22 66 53 42 29 29 28 

P12D2 1.73 1.27 0.86 2.43 1.89 1.61 33 29.25 26 22 72.75 22 89 59 45 29 29 27 

P12D3 1.94 1.38 0.73 1.73 1.41 1.05 31 30.25 30 27 25.75 22 53 50 47 30 29 29 

P14D1 5.50 3.41 2.02 2.83 2.39 1.58 46 43.25 39 41 38.75 37 60 58 56 46 46 44 

P14D2 5.32 3.98 2.69 6.56 5.23 3.54 47 45.75 44 43 40.50 37 75 72 57 45 44 43 

P14D3 4.60 3.23 2.02 4.96 3.02 1.37 49 45.00 42 42 39.25 37 74 66 56 47 46 45 

P20D1 6.98 5.93 4.38 4.42 3.13 2.27 59 56.50 54 51 49.50 48 79 72 61 52 50 47 

P20D2 5.23 4.57 3.98 8.25 6.69 6.12 61 58.00 53 55 53.25 52 79 74 72 51 50 49 

P20D3 5.75 4.81 3.45 6.32 4.92 3.82 62 58.25 56 54 53.00 52 85 76 68 51 50 48 

P25D1 10.53 10.23 10.05 19.3 18.5 17.6 93 89.75 87 81 79.25 77 91 85 76 63 62 62 

P25D2 14.83 12.27 10.68 10.8 10.64 10.56 92 83.75 80 84 79.50 75 85 80 77 60 59 57 

P25D3 14.32 11.73 10.50 14.88 14.85 14.80 90 83.00 79 79 77.25 75 79 76 72 63 61 60 

P30D1 6.01 5.52 4.57 5.05 4.56 4.05 82 80.75 78 75 71.50 64 87 82 74 57 55 55 

P30D2 6.90 5.28 4.33 4.72 4.23 3.78 83 79.50 77 82 77.50 72 82 77 74 57 56 56 

P30D3 6.10 5.64 5.11 5.76 5.36 4.96 88 83.25 79 76 73.25 72 91 80 64 57 56 56 

P39D1 8.27 7.76 7.54 9.98 8.68 6.48 93 90.50 87 91 85.00 79 92 80 70 55 54 52 

P39D2 7.29 6.62 5.50 10.64 9.55 8.62 97 90.25 80 93 84.50 78 95 82 76 57 55 54 

P39D3 7.36 7.29 7.22 10.67 10.17 9.24 93 87.75 81 85 81.50 77 85 78 74 56 55 54 

P47D1 16.56 15.22 14.20 28.16 26.20 24.82 120 109 102 101 98.3 96 97 86 78 61 60 59 

P47D2 18.22 16.59 14.93 30.87 28.69 26.56 109 104 99 108 101.8 95 86 81 76 61 61 60 

P47D3 19.82 17.67 15.69 29.87 28.19 27.26 114 102 96 107 98.75 88 89 85 73 62 62 61 

P65D1 124.90 106.07 78.20 127.1 106.8 83.62 84 79.75 78 71 69.50 67 79 74 67 53 52 52 

P65D2 123.76 108.48 102.68 161.3 134.8 115.0 87 83 79 79 67.25 57 93 81 73 53 53 51 

P65D3 124.01 116.97 108.53 140.1 120.7 101.1 90 83.25 77 72 70. 68 91 84 75 54 53 53 

m*: minimum; A**: average; M***: maximum 
 

Table 15 presents the obtained product-mix and the total profit of the both algorithms.  
 

 

Table 15. The obtained results for the product-mix and the total profit 

Problem 
Product-mix(hybrid SA-TOC) Product-mix(hybrid PSO-TOC) TP(hybrid SA-TOC) TP(hybrid PSO-TOC) 

A(m,Ave,M) B(m,Ave,M) A(m,Ave,M) B(m,Ave,M) M*** Ave** M* M Ave M 

P9D1 (80, 84, 96) (0, 0, 0) (80, 80, 80) (0, 0, 0) 8640 7560 7200 7200 7200 7200 

P9D2 (40, 40, 40) (40, 52, 56) (40, 40, 40) (40, 40, 40) 7200 6200 5600 5600 5600 5600 

P9D3 (70, 70, 70) (12, 22.5, 26) (70, 70, 70) (10, 12.75, 21) 7600 7425 6900 7350 6937.5 6800 

P12D1 (90, 90, 90) (10, 23, 36) (90, 90, 90) (10, 15.25, 31) 9900 9250 8600 9650 8862.5 8600 

P12D2 (45, 45, 45) (61, 68.25, 80) (45, 45, 45) (55, 57.75, 66) 8850 7462.5 7100 7350 6937.5 6800 

P12D3 (65, 65, 65) (37, 47.5, 65) (65, 65, 65) (35, 45.5, 54) 9100 8225 7700 8550 8125 7600 

P14D1 (50,51.5, 53) (0, 0, 0) (50, 50, 50) (0, 0, 0) 3710 3605 3500 3500 3500 3500 

P14D2 (30, 30, 30) (20, 26.5, 30) (30, 30, 30) (20, 22.5, 24) 3600 3425 3100 3300 3225 3100 

P14D3 (50, 50, 50) (0, 2.25, 6) (50, 50, 50) (0, 0.75, 3) 3800 3612.5 3500 3650 3537.5 3500 

P20D1 (68, 69, 70) (0, 1.75, 4) (68, 68, 68) (0, 0, 0) 6500 6297.5 6120 6120 6120 6120 

P20D2 (30, 30, 30) (40, 46.5, 60) (30, 30, 30) (38, 39.5, 40) 6500 5025 4700 4700 4675 4600 

P20D3 (50, 50, 50) (23, 31.25, 36) (50, 50, 50)s (22, 22, 22) 6300 6062.5 5650 5600 5600 5600 

P25D1 (35,36.75,38) (2, 6.25, 10) (34,36.25,38) (4, 7.25, 10) 2950 2885 2760 2950 2900 2860 

P25D2 (10, 10, 10) (31, 35.25, 38) (10, 10, 10) (31, 32.5, 34) 2950 2462.5 2250 2400 2325 2250 

P25D3 (24, 24, 24) (16, 22, 24) (24, 24, 24) (16, 19, 21) 2880 2735 2400 2730 2630 2480 

P30D1 (68,69.5,70) (1, 3.75, 5) (68, 68, 68) (0, 0, 0) 5125 4988.75 4805 4760 4760 4760 

P30D2 (30, 30, 30) (40, 43.25, 46) (30, 30, 30) (38, 39.5, 41) 5125 4046.25 3900 3945 3877.5 3810 

P30D3 (50, 50, 50) (18, 21.75, 25) (50, 50, 50) (18, 18.5, 20) 4625 4433.8 4130 4400 4332.5 4310 

P39D1 (60, 60, 60) (4, 7, 12) (60, 60, 60) (4, 5, 8) 4800 4550 4400 4600 4450 4400 

P39D2 (30, 30, 30) (34, 37.5, 40) (30, 30, 30) (34, 37.5, 40) 4400 3975 3800 4100 3975 3800 

P39D3 (45, 45, 45) (19, 21.5, 23) (45, 45, 45) (19, 19, 19) 4300 4225 4100 4100 4100 4100 

P47D1 (20, 20, 20) (3, 3.75, 4) (20, 20, 20) (3, 4.5, 5) 2000 1962.5 1950 2050 2025 1950 

P47D2 (8, 8, 8) (17, 17.5, 19) (8, 8, 8) (15, 15.5, 16) 1950 1595 1570 1520 1495 1470 

P47D3 (14, 14, 14) (9, 10.25, 11) (14, 14, 14) (10, 10.75, 11) 1810 1772.5 1710 1810 1797.5 1760 

P65D1 (70, 70, 70) (18, 23, 25) (70, 70, 70) (22, 23.25, 25) 74250 73350 71100 74250 73462.5 72900 

P65D2 (30, 30, 30) (60, 65.25, 70) (30, 30, 30) (59, 63, 66) 73800 56362.5 54000 56700 55350 53550 

P65D3 (50, 50, 50) (41, 45.25, 50) (50, 50, 50) (43, 44.5, 46) 67500 65362.5 63450 65701 65025.25 64350 

m*: minimum; Ave**: average; M***: maximum; A: model A; B: Model B 

Table 16 displays the lower bounds, the average and the best numbers of the stations and the mated-

stations which are obtained using the hybrid PSO-TOC and the hybrid SA-TOC. 
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Table 16. The lower bounds and the number of stations and the number of mated-stations by the both 

algorithms 
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P9D1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

P9D2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

P9D3 2.25 2 2 2 1 1 1 1 1.25 1 1 1 1 1 1 1 

P12D1 4 3 4 3 2 0 0 2 2 2 2 2 1 0 0 1 

P12D2 4 3 4 3 2 0 0 2 2 2 2 2 1 0 0 1 

P12D3 4 3 4 3 2 0 0 2 2 2 2 2 1 0 0 1 

P14D1 6.25 5.25 6 5 4 3 2 4 3.5 3 3 3 2 2 1 2 

P14D2 7 5.25 6 5 3 3 2 3 3.75 3 3 3 2 2 1 2 

P14D3 6.75 5.75 6 5 3 3 2 3 3.75 3 3 3 2 2 1 2 

P20D1 9.25 6.5 7 6 5 5 3 5 4.75 3.25 4 3 3 3 2 3 

P20D2 9 7.25 8 7 4 5 3 5 4.5 4 4 4 2 3 2 3 

P20D3 9.75 7.5 9 7 4 5 3 5 5 4 5 4 2 3 2 3 

P25D1 14 13 14 12 8 8 12 12 7 7 7 7 4 4 6 6 

P25D2 14 13 14 13 7 8 12 12 7.75 7 7 7 4 4 6 6 

P25D3 14 13 14 13 7 8 12 12 7.25 7 7 7 4 4 6 6 

P30D1 13.25 12 13 12 8 6 6 8 7 6 7 6 4 3 3 4 

P30D2 14 11.75 14 11 8 6 6 8 7.25 6 7 6 4 3 3 4 

P30D3 13.25 12 13 12 8 6 6 8 7 6 7 6 4 3 3 4 

P39D1 14 12 13 11 7 6 5 7 7.75 6.25 7 6 4 3 3 4 

P39D2 14.5 12.25 14 11 8 6 5 8 7.75 6.5 7 6 4 3 3 4 

P39D3 14.75 12 14 12 7 6 5 7 8 6.25 8 6 4 3 3 4 

P47D1 17.75 16.25 17 16 9 5 7 9 9 8.5 9 8 4 3 4 4 

P47D2 17.25 15.25 16 15 9 5 7 9 9.75 8 9 8 4 3 4 4 

P47D3 17.5 16 17 16 9 5 7 9 9.5 8.5 9 8 4 3 4 4 

P65D1 13.25 12 12 12 8 2 4 8 6.75 6 6 6 4 1 2 4 

P65D2 13.75 12 13 12 8 2 4 8 7 6 7 6 4 1 2 4 

P65D3 13.5 12 13 12 8 2 4 8 7 6 7 6 4 1 2 4 

  

    Figure 5 and figure 6 show the differences between the obtained results from the number of the 

stations, the number of the mated-stations and the best lower bound. They demonstrate that the hybrid 

PSO-TOC has better results for the number of the mated-stations and the number of the stations. It 

means that by using this algorithm a shorter line is obtained. In addition, these figures show that the 

differences between both algorithms and the lower bound for small-sized problems are negligible. 

Moreover, the difference between the obtained results utilizing the hybrid PSO-TOC and the lower 

bound is small. 

 
Fig 5. Comparison between the obtained results for the number of mated-stations by hybrid PSO-TOC, hybrid 

SA-TOC and lower bound 
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Fig 6. Comparison between the obtained results for the number of stations by hybrid PSO-TOC, hybrid SA-

TOC and best lower bound 
 

 

   One of the most significant decisions in stage 1 of the proposed algorithm is the value of each skill 

worker’s determination. The obtained results for the minimum, the average and the maximum number 

of each skilled worker are illustrated in table 17. 

 
Table 17. Minimum (m), average (Ave) and maximum (M) numbers of each skill for both algorithms 

Problem 

Skill1 

(hybrid SA-TOC) 

Skill1 

(hybrid PSO-TOC) 

Skill2 

(hybrid SA-TOC) 

Skill2 

(hybrid PSO-TOC) 

Skill3 

(hybrid SA-TOC) 

Skill3 

(hybrid PSO-TOC) 

m Ave M M Ave M m Ave M m Ave M m Ave M m Ave M 

P9D1 1 1.25 2 0 0 0 0 0.75 1 0 0 0 0 0 0 0 0 0 

P9D2 1 1.75 2 1 1 1 0 0.25 1 1 1 1 0 0 0 0 0 0 

P9D3 1 1.75 2 1 1.25 2 0 0.5 2 0 0.75 1 0 0 0 0 0 0 

P12D1 2 2 2 2 2.75 3 1 1.25 2 0 0.5 1 0 0.75 1 0 0.25 1 

P12D2 2 2.25 3 2 2.75 3 0 1 2 0 0 0 0 0.75 2 0 0.75 1 

P12D3 2 2.25 3 2 2.75 3 1 1.5 2 0 0 0 0 0.25 1 0 0.25 1 

P14D1 1 2.75 4 3 3.75 4 1 2.25 3 0 0.75 1 0 1.25 3 1 1.25 2 

P14D2 0 2.25 3 3 3.5 4 2 4.25 6 0 1 2 0 1.5 2 0 0.75 1 

P14D3 3 4.5 6 2 2.75 3 0 1 2 1 2.5 4 0 0.75 1 0 1 2 

P20D1 1 2.5 5 2 4 5 1 3.25 6 1 1.75 3 1 3 7 0 0.75 3 

P20D2 1 2.5 3 3 3.5 5 3 4.75 8 0 1.5 3 0 1.75 4 1 1.5 2 

P20D3 2 4.25 5 3 3.5 4 3 6.25 11 2 2.75 3 1 3.5 6 0 1.25 2 

P25D1 2 4.25 5 2 3.25 5 3 6.25 11 2 5.5 7 1 3.5 6 3 4.25 5 

P25D2 2 2.75 4 3 3.5 4 5 7 8 5 6 7 2 4.25 6 3 3.5 5 

P25D3 1 2.5 4 1 2.25 3 5 7.25 9 6 7 9 3 4.25 6 3 3.75 4 

P30D1 2 3.25 4 2 2.5 3 5 5.75 7 3 5.5 7 3 4.25 6 3 4 7 

P30D2 1 2 3 2 3.5 6 6 6.75 8 1 5.75 9 5 5.25 6 0 2.5 4 

P30D3 2 4 6 3 3.5 4 3 4.75 7 2 4.25 6 4 4.75 6 3 4.25 6 

P39D1 3 4.5 7 5 5.5 7 1 6 8 4 4.75 5 1 3.5 6 1 1.75 3 

P39D2 2 3.75 6 3 5 7 5 6.75 9 2 5.25 8 3 4 5 0 2 4 

P39D3 1 3.75 4 3 4 5 5 7.5 11 6 6.75 8 3 4.5 6 0 1.25 2 

P47D1 4 5 6 2 3.25 5 5 6.5 9 6 8.5 11 3 6.25 9 3 4.5 7 

P47D2 3 3 3 3 5.25 6 8 10 11 5 7.25 9 3 4.25 7 0 2.75 5 

P47D3 1 2 4 2 3.75 5 9 11 14 6 8 10 2 4.5 7 2 4.25 7 

P65D1 0 2.25 4 1 2.5 3 6 7.75 11 3 4.5 7 1 3.25 6 4 5 6 

P65D2 2 3.75 5 1 1.75 3 3 5.25 9 2 5.25 8 3 5 7 1 4 9 

P65D3 1 2.25 4 2 2 2 7 9 10 5 6 7 1 2.25 3 3 4 5 
 

 

   Figure 7 shows the obtained results of the best human costs of the hybrid PSO-TOC and the hybrid 

SA-TOC. This figure indicates that the results of the hybrid PSO-TOC are better than the results of 

the hybrid SA-TOC. It means that in addition to impacting the number of stations and the number of 

the mated-stations, the hybrid PSO-TOC algorithm produces better results for human costs. 
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Fig 7. Comparison between the obtained results for total human cost by hybrid PSO-TOC and hybrid SA-TOC 

 

 

   Figure 8 compares the obtained weighted smoothness indexes of both algorithms. It shows that in 

most of the cases the result of WSI of the hybrid SA-TOC is better than the WSI of the hybrid PSO-

TOC. 

 
Fig 8. Comparison between the best obtained results for WSI by hybrid PSO-TOC and hybrid SA-TOC 

 

 

   Figure 9 presents the obtained 'Z' for both algorithms and indicates that the results of the hybrid 

PSO-TOC are better than the hybrid SA-TOC. 
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Fig 9. Comparison between the best obtained results for 'Z' by hybrid PSO-TOC and hybrid SA-TOC 

 

 

   The only objective function of stage 2 is total profit maximization and product-mix determination 

using the theory of constraints. Figure 10 shows that hybrid SA-TOC has better total profit than the 

hybrid PSO-TOC algorithm. 

 
 

Fig 10. Comparison between the total profit by hybrid PSO-TOC and hybrid SA-TOC 
 

 

   In addition to the above figures, two comparisons between both algorithms are presented for the 

average number of iterations and the elapsed time to obtain the Z-best in figure 11 and figure 12. 

 



170 

 
 

Fig 11. Comparison between the average number of iterations to obtain the best results of 'Z' by hybrid PSO-

TOC and hybrid SA-TOC 
 

 

   Figure 11 shows that there is no discipline for the number of iterations to achieve the best results 

from worker assignment and line balancing.  

 

 
Fig 12. Comparison between the elapsed time to obtain the best results of 'Z' by hybrid PSO-TOC and hybrid 

SA-TOC 
 

   Figure 12 demonstrates that the hybrid SA-TOC is faster than the hybrid PSO-TOC. However, the 

differences between the elapsed times for the small-sized problems are negligible. 

   Figure 13 presents the percentage of the stations which were bottlenecks (Bottleneck %) in the last 

part of stage 1. It shows that the values of the small-sized problems for the hybrid PSO-TOC are more 

than the results of the hybrid SA-TOC and large-sized problems. 
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Fig 13. The average of Bottleneck% for the both algorithms 

 

6- Conclusion  
   This paper dealt with a multi-objective mixed-model TSALBP with worker assignment and 

bottleneck analysis when the task times are dependent on the worker’s skill. The considered objective 

functions were Minimizing the number of mated-stations, the number of stations, the human costs, the 

weighted smoothness index and maximizing the total profit. 

   To solve the mentioned problem, a cyclic-hierarchical algorithm (hybrid PSO-TOC) was presented 

and another algorithm based on the structure of the proposed algorithm was developed (hybrid SA-

TOC). In addition, several problems with different conditions were tested using the proposed 

approach.  

   These algorithms had two stages. In stage one, worker assignment and line balancing were done 

simultaneously. In stage two, eliminating the bottlenecks and product-mix determination were 

considered. Additionally, several lower bounds were developed for the number of stations and the 

number of mated-stations. The obtained results indicated that the hybrid PSO-TOC has fewer 

numbers of mated-stations, stations and human costs than the hybrid SA-TOC. However, the hybrid 

SA-TOC showed better results for the total profit, the product-mix determination and the elapsed 

time. Alongside using the other methods to solve the problem, this research can be enriched with 

other assumptions, such as the learning effect, the U-shaped lines and the parallel stations for future 

research. 
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