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Abstract 

The job shop scheduling problem (JSP) is one of the most difficult problems 
in traditional scheduling because any job consists of a set operations and 
also any operation processes by a machine. Whereas the operation is placed 
in the machine, it is essential to be considering setup times that the times 

strongly depend on the various sequencing of jobs on the machines. This 
research is developed a two-objective model to solve JSP with sequence-
dependent setup times (SDST). Considering SDST and optimizing of the 
both objectives simultaneously (makespan and maximum tardiness) bring us 
closer to natural-world problems. The ε-constraint method is applied to 
solve the mentioned tow-objective model. A set of numerical data is 
generated and tested to validate the model’s efficiency and flexibility. The 

developed model can efficiently use for solving JSPs in the real world, 
especially for manufacturing companies with having setup and delivery 
time’s constraints. 
Keywords: Job shop scheduling, sequence-dependent setup times, 
makespan criterion, maximum tardiness criterion, mixed integer nonlinear 
programming  

1- Introduction  
Scheduling refers to the process of allocating operations to machines at certain intervals. A 

scheduling problem can be classified based on four parameters: the arrival patterns of jobs, number of 

machines in the shop, flow patterns, and scheduling criterion according to which the scheduling is 
evaluated. From a variety of scheduling problems, job shop scheduling problem (JSP) is of great 
importance. A JSP is defined as "a set of n jobs available to be processed by m machine, each one 
with specified technical limits". The aim is to find a job sequence on the machine as to meet technical 
limits and optimize the sequence according to some performance criteria (Tan and Khoshnevis 2000). 
JSPs are one of the most difficult combinatorial optimization problems, the NP-complete problems, as 
suggested by the research Garey et al. (1976). 

In many manufacturing companies such as automobile production systems, pharmaceutical 
companies, printing industries, and chemical manufacturers; setup times for operations like cleaning 
and replacing the equipment are heavily dependent on the sequencing of operations on machines. As a 
result, taking sequence-dependent setup times (SDST) into account may assist to obtain a more 
accurate scheduling plan. In real scheduling problems, however, a significant savings obtain in job 
completion and tardiness times if an optimal sequence is achieved by considering SDST.  
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In this research, the first and most important innovation element includes the considering of 
sequence-dependent setup times for modeling the scheduling problem, in addition to job completion 
times.  

The second element is the application of a two-objective approach for problem modeling and 

solution, so both criteria – makespan and maximum tardiness – are simultaneously minimized. The 
research aims to propose a model for JSPs with considering SDST, in order to simultaneously 
minimize two criteria. The model shows a high efficiency to solve real-world JSPs; especially for 
manufacturing companies with having setup times and delivery lead time constraints. 

The study is organized as the following. Section 2 provides an overview of the literature on the job 
shop scheduling and flexible job shop scheduling problems (FJSPs). Section 3 presents the 
mathematical model for a two-objective JSP with considering sequence-dependent setup times. 
Section 4 evaluates the model flexibility and performance based on a set of numerical data. Finally, 

the conclusion and some avenue for future researches are presented. 

2- Literature review 

Many studies have been widely investigated JSPs and suggested a variety of optimization and 
approximation algorithms. Optimization algorithms which are principally based on the branch and 

bound approach (e.g. Carlier and Pinson (1989); Brucker et al. (1994)) demonstrate successful 
performance for small-sized problems, while they fail to solve problems larger than 250 operations in 
a reasonable time. However, approximation algorithms provide more accurate answers for JSP, such 
as priority dispatch, shifting bottleneck approach, meta-heuristic methods. A number of meta-heuristic 
methods like genetic algorithm (GA) (Della Croce et al. 1995), simulated annealing (SA) (Laarhoven 
et al. 1992), tabu search (TS) (Taillard (1994); Nowicki and Smutnicki (1996); Zhang et al. (2007) 
and Zhang et al. (2008)) can obtain high-quality solutions in a more reasonable time, and hence they 

have been taken into account by many researchers.  
Kim and Bobrowski (1994) investigated the efficacy of sequence-dependent setup times on the 

JSP performance. They arranged and examined scheduling rules by considering whether setup time or 
due date data is employed. Lee and Pinedo (1997) studied on the parallel machines scheduling with 
sequence-dependent setup times. They assumed a number of jobs to be performed on a number of 
identical machines in parallel and also offered a three phase heuristic for minimizing the sum of the 
weighted tardiness. Pinedo and Singer (1999) presented a shifting bottleneck heuristic for the 
minimizing total weighted tardiness in the JSP. They proposed the method that decomposed the JSP 

into a number of single machine sub problems. Sun and Noble (1999) investigated the JSP with 
release dates, due dates, and SDST with the scheduling objective to minimize the weighted sum of 
squared tardiness. Ponnambalam et al. (2000) developed a Tabu search algorithm to solve classic JSP 
where each operation was performed by a predetermined machine. Based on a tree search procedure, 
Asano and Ohta (2002) provided a heuristic method for the JSP to minimize total weighted tardiness. 
In the research, JSP to minimize the maximum tardiness was limited to particular sub-set of schedules 
determined at each vertex along the search tree. Park et al. (2003) described a hybrid genetic 

algorithm for JSP. In order to provide the solution, the authors used the same method developed by 
Ponnambalam et al. (2000). Some researchers solved JSPs using genetic algorithms (Qi et al. 2000, 
Watanabe et al. 2005). Mattfeld and Bierwirth (2004) suggested a genetic algorithm for JSP with 
tardiness objectives. Release times and due dates were considered for operations and jobs, 
respectively, and the total weighted tardiness was the objective function. For these problems, 
Gonçalves et al. (2005) studied a hybrid GA with the aim of minimizing the makespan criterion. 

Fattahi et al. (2007) and Saidi-Mehrabad and Fattahi (2007) investigated a flexible job shop 

scheduling problem (FJSP). Given it was an NP-hard problem; the authors developed a Tabu search 
algorithm based on a hierarchical approach. Petrovic et al. (2008) discussed on a fuzzy JSP with lot-
sizing and developed a fuzzy rule-based system which determined the size of lots by the following 
premise variables: the static slack of the job, size of the job, and etc. Naderi et al. (2009) considered 
JSP where the setup times were sequence dependent under minimization of the maximum makespan. 
They proposed a hybridized genetic algorithm with a diversification mechanism to solve the 
complicated problem. They also reviewed different parameters of the genetic algorithm to calibrate 
the algorithm by using the Taguchi method. Naderi et al. (2009) evaluated scheduling dependent setup 
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time job shops with preventive maintenance and machine availability constraints. The authors used 
both simulated annealing and genetic algorithms to minimize the makespan criterion. Yang et al. 
(2010) offered an improved constraint satisfaction adaptive neural network for the JSP that integrated 
several heuristics within the neural network. 

To solve FJSP, Al-Hinai and ElMekkawy (2011a) suggested an algorithm for machine failure 
events where the levels of failure were not studied. In other study, the authors (Al-Hinai and 
ElMekkawy 2011b) investigated the robust FJSP with possible failure times, by using a hybrid genetic 
algorithm. Bagheri and Zandieh (2011) studied bi-critria FJSP with SDST to minimize makespan and 
mean tardiness. They proposed a variable neighborhood search (VNS) algorithm based on integrated 
approach to solve the problem. Pinedo (2012) investigated the JSP and its models in the seventh 
chapter of his book. He formulated the disjunctive programming for the JSP and applied the branch 
and bound procedure to problem. Özgüven et al. (2012) developed mixed integer goal programming 

models for the FJSP with separable and non-separable SDST. Zhang et al. (2012) introduced a 
mathematical model for FJSP to minimize makespan criterion with transportation constraints and 
bounded processing times. Ebadi and Moslehi (2013) proposed an optimum method for 
preemptive/preventative JSP, where a robust solution methodology was developed to minimize 
makespan criterion. Mousakhani (2013) studied the FJSP with setup times where the setups were 
sequence-dependent. He proposed an effective meta-heuristic algorithm based on iterated local search 

and compared with a Tabu search. González et al. (2013) investigated the JSP with SDST and 

maximum lateness minimization by means of a Tabu search algorithm and defined the new local 
search neighborhood structure. 

Li et al. (2014) presented a discrete artificial bee colony algorithm for the multi-objective FJSP 
with maintenance activities. They considered the maximum completion time– namely, makespan, the 
total workload of machines and the workload of the critical machine as the performance criteria. 
Naderi and Azab (2014) evaluated modeling and solutions for scheduling of distributed job shops and 
developed the classic single-facility JSP to multi-facility problem. Tan et al. (2015) answered to two 

fundamental questions concerning the usage of the shifting bottleneck (SB) procedure (Configuration 
and the advantages of the SB) for optimizing the total weighted tardiness criterion for the classical 
JSP. Sharma and Jain (2015) analyzed the dispatching rules in a stochastic dynamic job shop 
manufacturing system with SDST, using the simulation procedures. The authors revealed that 
stochastic dynamic JSPs with SDST are from the difficult scheduling problems.  

For the JSPs, Kurdi (2016) developed an effective new model where an evolutionary model and a 
new selective migration mechanism inspired by the nature were suggested as to improve search 
diversification and to delay premature convergence. Kuhpfahl and Bierwirth (2016) studied the local 

search neighborhoods for the JSP to minimize the total weighted tardiness. Based on disjunctive 
graphs, the authors developed an approach in order to capture the overall structure of neighborhoods. 
Fattahi and Daneshamooz (2017) considered a JSP with a parallel assembly stage and lot streaming 
for the first time in machining and assembly stages. They proposed four hybrid algorithms based on 
iterative procedures for solving the problem in medium and large dimensions. As the most recent, but 
certainly not the last developed research, Shen et al. (2017) addressed the FJSP with SDST so that the 
objective was to minimize makespan. They first introduced a mathematical model which could solve 

small examples to optimality, and then developed a Tabu search algorithm with a diversification 
structure and specific neighborhood functions. A summary of the most important reviewed studies is 
presented in table 1. 

 

 

 

 

 

 



137 
 

Table 1. Review of recent relevant studies along with the present study 

Researchers 

Presenting a 

mathematical 

model 

SDST 

Objective function  Solution approach 

makespan 
Maximum 

tardiness 

Total 

tardiness 

Total 

workload 

 
Exact Heuristic 

Meta-

heuristic 
Bagheri and 

Zandieh 

(2011) 
 * *  *  

 
  VNS 

Pinedo (2012)   *  *  

 
Branch 

and bound 

Shifting 

bottleneck 

heuristic 

 

Zhang et al. 

(2012) 
*  *    

 
  

GA and 

TS 
González et 

al. (2013) 
 *   *  

 
  TS 

Li et al. 

(2014) 
*  *   *    TS 

Sharma and 

Jain (2015) 
 * * *   

 
 

Simulation 

approach 
 

Kuhpfahl and 

Bierwirth 

(2016) 
    *  

 
 

Neighborhood 

search 
 

Fattahi and 

Daneshamooz 

(2017) 
*  *    

 
  

GA and 

SA 

Shen et al. 

(2017) 

* (Not 

Perfect) 
* *    

 
  TS 

This paper * * * *   
 ε-

Constraint 
  

 

According to the literature review on JSPs and Table 1, there is a very little research investigated 
the problems with considering sequence-dependent setup times. Furthermore, no model has been yet 
developed with considering SDST, in particular to reduce makespan criterion and minimize the 
maximum tardiness simultaneously. We will close to the real world conditions with a higher 
efficiency if the scheduling problems are investigated by using the two objectives. Therefore, the 
body of literature is very thin in this part and the current study aims to cover this research gap. 

3- Mathematical modeling of the problem 
3-1- Problem description 

The proposed model aims to find the optimal sequence of different operations on machines in a 
two-objective JSP with considering sequence-dependent setup times. In this model, the first objective 
function is to minimize the makespan criterion, which has been widely studied in the literature. The 
second objective function has to minimize the maximum tardiness time; however, appear to have been 

less investigated. Considering SDST and optimizing both objectives simultaneously make us closer to 
real-world scheduling problems. The presented model and results can be used to solve JSPs for 
manufacturing companies with different stages and operations. By solving the model, finally, the 
production management can determine the completion time, tardiness time, and two above-mentioned 
important criteria (the objectives). 

The following assumptions are considered to model the two-objective JSP with the SDST: 

 All jobs are available at the beginning of manufacturing scheduling.  

 Operation cut is not permitted. 

 Each machine can only perform a single operation of a job at a certain time. 

 Each operation is assigned to one priority of a certain machine. 

3-2- Notations 
Indexes: 

𝐼 Machines 

𝐽, 𝐽′ Jobs 

𝐾, 𝐾′ Operations 

𝐿 Priority 
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Parameters: 

𝑘𝑗  The number of operations for job j 

𝑘𝑗′
′  The number of operations for job j' 

𝑙𝑖 The number of priorities/jobs to be placed on the machine i 

𝑛 The total number of jobs 

𝑚 The total number of machines 

𝑃𝑗𝑘  Duration of the kth operation of the jth job 

𝑑𝑗 Delivery time of the jth job 

𝑆𝑖𝑗𝑘𝑗′𝑘′  Setup time of the ith machine if the operation k' of the job j' follows the operation k of the job j 

𝑆𝑖00𝑗′𝑘′  
Setup time of the ith machine if the operation k' of the job j' is placed on the first priority; i.e., 
after the 0th dummy operation of the 0th dummy job 

𝑀 Positive large value 

𝑥𝑖𝑗𝑘 
   1     If the kth operation of the jth job is operated on the ith machine 
   0     Otherwise 

 

Decision variables: 

𝐶𝑚𝑎𝑥 The completion time of the last job 

𝑇𝑚𝑎𝑥 The maximum tardiness 

𝑇𝑗 The tardiness time for the jth job 

𝑇𝐹𝑖𝑙 The completion time for the lth priority on the ith machine 

𝐶𝑗𝑘 The completion time for the kth operation of the jth job 

𝑧𝑖𝑗𝑘𝑙 
   1     If the kth operation of the jth job is placed on the lth priority in the ith machine 

   0     Otherwise 
 

3-3- Objective functions and constraints 
The number of priorities to be operated by the machine i (parameter 𝑙𝑖) is obtained by using 

equation (1). Indeed, this equation presents the sum of all operations of all jobs that should be 
performed on the machine i. 

𝑙𝑖 = ∑ ∑ 𝑥𝑖𝑗𝑘
𝑘𝑗

𝑘=0
𝑛
𝑗=0      𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  (1) 

The mathematical model for the two-objective JSP is developed as follows. 

Min 𝐶𝑚𝑎𝑥  (2) 

Min 𝑇𝑚𝑎𝑥  (3) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

𝐶𝑚𝑎𝑥 ≥ 𝑇𝐹𝑖,𝑙𝑖
     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  (4) 

𝑇𝑚𝑎𝑥 ≥ 𝑇𝑗′      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  (5) 

𝑇𝑗′ ≥ 0     𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  (6) 

𝑇𝑗′ ≥ 𝐶𝑗′,𝑘
𝑗′
′ − 𝑑𝑗′      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  (7) 

𝐶𝑗′𝑘′ = max {𝐶𝑗′,(𝑘′−1) , ∑ ∑ 𝑧𝑖𝑗′𝑘′𝑙 . 𝑇𝐹𝑖 ,(𝑙−1)
𝑙𝑖
𝑙=1

𝑚
𝑖=1 } + 𝑃𝑗′ 𝑘′ +

∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1).
𝑙𝑖
𝑙=1

𝑘𝑗

𝑘=0
𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′

𝑛
𝑗=0

𝑚
𝑖=1      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′

′  
(8) 



139 
 

∑ ∑ 𝑧𝑖𝑗𝑘𝑙
𝑘𝑗

𝑘=0
𝑛
𝑗=0 = 1     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (9) 

∑ ∑ 𝑥𝑖𝑗𝑘. 𝑧𝑖𝑗𝑘𝑙
𝑙𝑖
𝑙=1

𝑚
𝑖=1 = 1     𝑓𝑜𝑟  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗  (10) 

∑ 𝑧𝑖𝑗𝑘𝑙
𝑙𝑖
𝑙=1 = 𝑥𝑖𝑗𝑘     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗  (11) 

𝑇𝐹𝑖𝑙 = max {𝑇𝐹𝑖 ,(𝑙−1) , ∑ ∑ 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′𝑙 . 𝐶𝑗′ ,(𝑘′−1)

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1 } +

∑ ∑ 𝑃𝑗′𝑘′ . 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′ 𝑘′𝑙

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1 + ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1). 𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′

𝑘
𝑗′
′

𝑘′=1

𝑘𝑗

𝑘=0
𝑛
𝑗′=1

𝑛
𝑗=0     𝑓𝑜𝑟  𝑖 =

1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(12) 

𝑇𝐹𝑖0 = 0    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  (13) 

𝑧𝑖000 = 1    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  (14) 

𝐶00 = 0   (15) 

𝑇𝐹𝑖𝑙  , 𝐶𝑗𝑘 , 𝑇𝑗 ≥ 0     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗   𝑎𝑛𝑑  𝑙 =

1,2, … , 𝑙𝑖  
(16) 

𝑧𝑖𝑗𝑘𝑙 = {0,1}    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (17) 

Constraints (2) and (3) show the objective functions of the problem that are minimizing the 
makespan criterion and minimizing the maximum tardiness.  Constraint (4) shows that the makespan 
criterion must be greater or equal the completion times of each jobs placed on the last priority in the ith 

machine. Constraint (5) represents that the Tmax  criterion must be greater or equal the tardiness times 
for each job. However, constraint (6) ensures that tardiness of each job has a nonnegative value. 
Constraint (7) indicates that the tardiness of the jth job must be greater or equal the completion time of 
the last operations of the jth job, minus the delivery time of the jth job.  

Constraint (8) states that the amount of completion time for the operation k' of the job j' is obtained 
by the sum of three parts. The first is the maximum amount of between the completion time for the 
operation   k'–1 of the job j', and the completion time for the priority l-1 on the machine i, provided 

that the operation k' of the job j' is placed on the priority l. The second part includes the duration of the 
operation k' of the j'th job. Finally, the third part considers the setup time for the k'th operation of the j'th 
job, provided that the k'th operation of the j'th job on the ith machine is placed on the next priority of the 
kth operation of the jth job, while the setup time of the machine is assumed to be performed on work 
piece after its arrival.  

Constraint (9) indicates that only one single operation k of the job j can be placed on the lth priority 
of the ith machines, whereas constraint (10) shows that any kth operation of the jth job which can be 

processed on the ith machine needs to be placed on a single priority l. Constraint (11) shows that only 
those jobs could be placed on the lth priority that their kth operation on the ith machine is possible for 
performing. 

Constraint (12) shows that the amount of completion time for the lth priority on the ith machine may 
be obtained from the sum of three parts. The first includes the maximum amount of between the 
completion time for the l-1th priority on the ith machine, and the completion time for the k'–1th 
operation of the j'th job, provided that the k'th operation of the j'th job is placed on the lth priority. The 
second part is the duration of the k'th operation of the j'th job, provided that this operation is placed into 

the lth priority in the ith machine. Finally, the third part deals with the setup time for the k'th operation 
of the j'th job, provided that the k'th operation of the j'th job on the ith machine is placed into the next 
priority of the kth operation of the jth job, while the setup times of the machine must be performed on 
work piece after its arrival.  

Constraint (13) establishes a dummy priority with the operation duration of 0, in order to create a 
starting point for the model solution. This constraint shows that the completion times of zero priorities 
will be zero for all machines. Constraint (14) necessitates that the 0th dummy operation of the 0th 
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dummy job on the 0th dummy priority is placed on the ith machine in order to start the process. 
Constraint (15) states that the completion time of such operation must be zero, because the duration 
for the 0th dummy operation of the 0th dummy job is equal to zero. Constraints (16) and (17) represent 
the decision variables of the problem.  

In the proposed model, the setup times of the machine must be operated on work piece after its 
arrival. If the manufacturing process is performed in a fashion that the setup times of the machine can 
be operated before the arrival of work piece, then constraints (18) and (19) will replace constraints (8) 
and (12), respectively.  

𝐶𝑗′𝑘′ = max {𝐶𝑗′,(𝑘′−1) , ∑ ∑ 𝑧𝑖𝑗′𝑘′𝑙 . 𝑇𝐹𝑖 ,(𝑙−1)
𝑙𝑖
𝑙=1 +𝑚

𝑖=1

∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1).
𝑙𝑖
𝑙=1

𝑘𝑗

𝑘=0 𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′
𝑛
𝑗=0

𝑚
𝑖=1 } + 𝑃𝑗′ 𝑘′      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′  

(18) 

𝑇𝐹𝑖𝑙 = max {𝑇𝐹𝑖 ,(𝑙−1)  +

∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1). 𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′

𝑘
𝑗′
′

𝑘′=1

𝑘𝑗

𝑘=0
𝑛
𝑗′=1

𝑛
𝑗=0 , ∑ ∑ 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′𝑙 . 𝐶𝑗′ ,(𝑘′−1)

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1 } +

∑ ∑ 𝑃𝑗′𝑘′ . 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′ 𝑘′𝑙

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(19) 

Constraint (18) shows that the amount of completion time for the k'th operation of the j'th job is 
composed of two parts. The first is the maximum amount of between the completion time for the k'–

1th operation of the j'th job and the sum of completion times for the l-1th priority on the ith machine, 
provided that the k'th operation of the j'th job is placed into the lth priority and the setup times for the ith 
machine before the arrival of work piece; while the k'th operation of the j'th job is placed in next 
priority for the kth operation of the jth job. The second part includes the duration of the k'th operation of 
the j'th job. 

Constraint (19) indicates that the amount of completion time for the lth priority on the ith machine 
may be obtained from the sum of two parts. The first is the maximum amount of between the 

completion time for the k'–1th operation of the j'th job, provided that the k'th operation of the j'th job is 
placed into the lth priority on the ith machine, and that the sum of completion times for the l-1th priority 
on the ith machine and the setup time for the ith machine before the arrival of work piece; while the k'th 
operation of the j'th job is placed in next priority for the kth operation of the jth job. The second part 
includes the duration of the k'th operation of the j'th job, provided that this operation is placed into the 
lth priority. 

3-4- Linearization of non-linear programming model 
As found, constraints (8) and (12) are nonlinear equation, due to the multiplication of two 

variables for each constraint. In order to solve the problem, these constraints must be converted into 
linear equation form. 
Constraint (8) is divided into three parts as follows: 

𝐶𝑗′𝑘′ = 𝑓𝑗′𝑘′ + 𝑃𝑗′ 𝑘′ + 𝑣𝑗′ 𝑘′      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′
′  (20) 

𝑓𝑗′𝑘′ = max {𝐶𝑗′,(𝑘′−1) , ∑ ∑ 𝑧𝑖𝑗′𝑘′𝑙 . 𝑇𝐹𝑖 ,(𝑙−1)
𝑙𝑖
𝑙=1

𝑚
𝑖=1 }      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′  

(21) 

𝑣𝑗′𝑘′ = ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1).
𝑙𝑖
𝑙=1

𝑘𝑗

𝑘=0 𝑧𝑖𝑗′ 𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′
𝑛
𝑗=0

𝑚
𝑖=1      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′  

(22) 

Constraint (21) can be written as constraints (23) and (24). 

𝑓𝑗′𝑘′ ≥ 𝐶𝑗′,(𝑘′−1)     𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′
′  (23) 
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𝑓𝑗′𝑘′ ≥ ∑ ∑ 𝑧𝑖𝑗′𝑘′𝑙 . 𝑇𝐹𝑖 ,(𝑙−1)
𝑙𝑖
𝑙=1

𝑚
𝑖=1      𝑓𝑜𝑟  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′

′  (24) 

Here, equation (24) shows a non-linear equation, where a binary variable is multiplied by a 
continuous variable. If assumed 𝑂𝑖𝑗′ 𝑘′𝑙 = 𝑧𝑖𝑗′𝑘′𝑙 . 𝑇𝐹𝑖 ,(𝑙−1) then the linear form of this constraint is 

represented as Constraints (25) and (26). 

𝑂𝑖𝑗′𝑘′ 𝑙 ≥ (𝑧𝑖𝑗′ 𝑘′𝑙 − 1). 𝑀 + 𝑇𝐹𝑖 ,(𝑙−1)     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(25) 

𝑂𝑖𝑗′𝑘′ 𝑙 ≥ 𝑧𝑖𝑗′𝑘′𝑙 . (−𝑀)     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(26) 

Equation (22) is also a non-linear equation where two binary variables are multiplied. If assumed 
𝑄𝑖𝑗𝑘𝑗′𝑘′𝑙 = 𝑧𝑖𝑗𝑘 ,(𝑙−1). 𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′  then this non-linear equation is converted into a linear equation 

form by constraints (27) and (28). 

𝑄𝑖𝑗𝑘𝑗′𝑘′𝑙 ≥
1

2
× 𝑆𝑖𝑗𝑘𝑗′𝑘′ × (𝑧𝑖𝑗𝑘 ,(𝑙−1) + 𝑧𝑖𝑗′𝑘′ 𝑙) + 𝑀 × (𝑧𝑖𝑗𝑘 ,(𝑙−1) + 𝑧𝑖𝑗′𝑘′𝑙 − 2)     𝑓𝑜𝑟  𝑖 =

1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗   𝑎𝑛𝑑  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(27) 

𝑄𝑖𝑗𝑘𝑗′𝑘′𝑙 ≥ 0    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗   𝑎𝑛𝑑  𝑗′ =

1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(28) 

Now, constraint (12) is divided into three parts as follows: 

𝑇𝐹𝑖𝑙 = ℎ𝑖𝑙 + ∑ ∑ 𝑃𝑗′𝑘′ . 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′ 𝑘′𝑙

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1 + 𝑤𝑖𝑙     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (29) 

ℎ𝑖𝑙 = max {𝑇𝐹𝑖 ,(𝑙−1) , ∑ ∑ 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′ 𝑙 . 𝐶𝑗′ ,(𝑘′−1)

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1 }      𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 =

1,2, … , 𝑙𝑖  

(30) 

𝑤𝑖𝑙 = ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑘 ,(𝑙−1). 𝑧𝑖𝑗′𝑘′𝑙 . 𝑆𝑖𝑗𝑘𝑗′𝑘′

𝑘
𝑗′
′

𝑘′=1

𝑘𝑗

𝑘=0
𝑛
𝑗′=1

𝑛
𝑗=0      𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 =

1,2, … , 𝑙𝑖  
(31) 

Constraint (30) can be written as constraints (32) and (33). 

ℎ𝑖𝑙 ≥ 𝑇𝐹𝑖 ,(𝑙−1)     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (32) 

ℎ𝑖𝑙 ≥ ∑ ∑ 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′𝑙 . 𝐶𝑗′ ,(𝑘′−1)

𝑘
𝑗′
′

𝑘′=1
𝑛
𝑗′=1      𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (33) 

Here, equation (33) is a non-linear equation, where a binary variable is multiplied by a continuous 

variable. If assumed  𝑅𝑖𝑗′𝑘′𝑙 = 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′𝑙 . 𝐶𝑗′ ,(𝑘′−1) , then the linear form of this constraint is 

provided as constraints (34) and (35). 

𝑅𝑖𝑗′𝑘′𝑙 ≥ (𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′𝑘′𝑙 − 1). 𝑀 + 𝐶𝑗′ ,(𝑘′−1)     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗′ =

1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ = 1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(34) 

𝑅𝑖𝑗′𝑘′𝑙 ≥ 𝑥𝑖𝑗′𝑘′ . 𝑧𝑖𝑗′ 𝑘′𝑙 . (−𝑀)     𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(35) 
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Equation (31) is also a non-linear equation where two binary variables are multiplied. If assumed 
𝑈𝑖𝑗𝑘𝑗′ 𝑘′𝑙 = 𝑧𝑖𝑗𝑘 ,(𝑙−1). 𝑧𝑖𝑗′𝑘′ 𝑙 . 𝑆𝑖𝑗𝑘𝑗′ 𝑘′ , then this non-linear equation is converted into a linear equation 

form through constraints (36) and (37). 

𝑈𝑖𝑗𝑘𝑗′ 𝑘′𝑙 ≥
1

2
× 𝑆𝑖𝑗𝑘𝑗′𝑘′ × (𝑧𝑖𝑗𝑘 ,(𝑙−1) + 𝑧𝑖𝑗′𝑘′𝑙) + 𝑀 × (𝑧𝑖𝑗𝑘 ,(𝑙−1) + 𝑧𝑖𝑗′ 𝑘′𝑙 − 2)     𝑓𝑜𝑟  𝑖 =

1,2, … , 𝑚  𝑎𝑛𝑑  𝑗 = 0,1, … , 𝑛  𝑎𝑛𝑑  𝑘 = 0,1, … , 𝑘𝑗   𝑎𝑛𝑑  𝑗′ = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑘′ =

1,2, … , 𝑘𝑗′
′   𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  

(36) 

𝑈𝑖𝑗𝑘𝑗′ 𝑘′𝑙 ≥ 0    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑙 = 1,2, … , 𝑙𝑖  (37) 

4- Numerical examples 

In this section, a set of numerical data are examined by using mathematical optimization software, 
in order to evaluate the flexibility and efficiency of the model. In single-objective problems must be 

determined the best solution, while multi-objective problems may achieve no optimal solution for all 
objectives. Therefore, for multi-objective optimization problems, a set of Pareto solutions (non-
dominant) should be determined. There are a variety of methods to solve multi-objective optimization 
problems; in this research, the ε-constraint method is used. Some strengths of this approach are: 1) 
Changes in the ε value result in different optimum solutions; 2) Different scaling of objective 
functions shows no adverse effect; and, 3) This approach is also suitable for non-convex problems. 

In general, two numerical examples are provided where the relevant data are generated in logical 

and random fashion. In the small- and large-scales, these examples reveal the well performance of the 
developed model for JSP. The below discusses each of the numerical examples. 

4-1- Validation of the model with a small-sized numerical example 
In this example, three different operations of three jobs need to be performed by three machines. 

The aim is to determine the optimal sequence of three operations for each job, so that both makespan 
criterion and maximum tardiness are simultaneously minimized. Table 2 provides data on the duration 
of each operation of the jobs on certain machines. The delivery times are also given for the jobs. Oj,k  

shows the kth operation of the jth job. 

 

Table 2. Duration of operations on machines, and delivery times for each job, for the first example (per unit 

time) 

3M 2M 1M  jd  

- - 3 1,1O 12 Job 1 

- 4 - 1,2O   

4 - - 1,3O   

2 - - 2,1O 15 Job 2 

- - 3 2,2O   

- 4 - 2,3O   

- - 5 3,1O 18 Job 3 

5 - - 3,2O   

- 2 - 3,3O   

 

Table 3 shows the sequence-dependent setup times. For example, the amount of 1 for the element 
100 and the sub-element 11 means that the amount of setup time will be equal to 1 unit of time, if 
Operation 1 of Job 1 is placed on Machine 1, following the 0th dummy operations of the 0th dummy 
job. Since, for example, it is not feasible to place Operation 1 of Job 1 on the machines after the 
process of Operation 2 of Job 1 on each machines, no values could be assigned to the corresponding 
element. 
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Table 3. Sequence-dependent setup times on machines (per unit time) 

         j'k'    

ijk 
11 12 13 21 22 23 31 32 33 

100 1 2 1 1 0 0 1 3 4 

111 - 2 2 1 4 1 0 1 3 

112 - - 1 2 3 4 1 2 2 

113 - - - 1 3 2 0 2 1 

121 2 0 1 - 4 4 2 1 2 

122 1 2 3 - - 2 1 0 4 

123 2 4 1 - - - 1 2 0 

131 1 2 3 1 3 1 - 3 1 

132 3 1 2 4 2 1 - - 2 

133 1 3 2 2 0 1 - - - 

200 2 3 0 4 1 2 0 2 3 

211 - 1 2 5 3 1 0 1 2 

212 - - 1 2 3 2 2 1 0 

213 - - - 2 1 3 4 0 1 

221 1 0 2 - 3 1 1 2 2 

222 2 1 1 - - 2 2 3 4 

223 1 2 1 - - - 1 3 0 

231 2 1 1 2 4 2 - 0 1 

232 2 3 2 2 1 0 - - 2 

233 1 2 4 3 0 2 - - - 

300 1 4 2 2 0 1 2 1 3 

311 - 2 1 1 2 2 5 2 3 

312 - - 1 1 2 3 3 4 4 

313 - - - 2 1 3 4 0 1 

321 1 2 2 - 3 1 2 4 0 

322 1 0 1 - - 3 2 2 2 

323 1 3 4 - - - 1 3 0 

331 3 1 1 2 0 2 - 0 1 

332 3 3 2 0 1 1 - - 3 

333 0 1 2 4 5 2 - - - 

 

Using the sequence-dependent setup times and solving the two-objective JSP model with 
mathematical optimization software, figure 1 is achieved. Here, the optimal solution has just one 
single point because of the small size of the problem. As seen from figure 1, the optimal amount of 
the makespan criterion is equal to 24 units of time. Moreover, given the tardiness and completion 
times of each job, the optimal amount of the maximum tardiness will be equal to 6 units of time. In 
this example, jobs 2 and 3 show the maximum tardiness. 
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Fig 1. Results of the first numerical example solved with two objective functions 

 

4-2- Validation of the model with a relatively larger numerical example 
In this example, different operations of five jobs must be performed by three machines. The aim is 

to determine the optimal sequence for each job, so that both makespan criterion and maximum 

tardiness are minimized at the same time. Table 4 shows data related to the duration of each operation 
of the jobs on certain machines. The delivery times are also given for the jobs.  Oj,k  shows the kth 
operation of the jth job. 

 

Table 4. Duration of operations on machines, and delivery times for each job, for the second example (per unit 

time) 

3M 2M 1M  jd  

6 - - 1,1O 12 Job 1 

- - 7 2,1O 15 Job 2 

- 3 - 2,2O   

- 1 - 3,1O 18 Job 3 

2 - - 3,2O   

4 - - 3,3O   

- 5 - 4,1O 25 Job 4 

3 - - 4,2O   

- 2 - 4,3O   

- - 1 4,4O   

- - 1 5,1O 38 Job 5 

3 - - 5,2O   

- - 5 5,3O   

- 6 - 5,4O   

- - 2 5,5O   

 

Due to the high volume data related to the sequence-dependent setup times, from mentioning the 
amount these times are ignored. Considering the two-objective JSP, and solving the example by 

mathematical optimization software, a series of Pareto optimal solutions is achieved as represented by 
figure 2. The optimum solutions include all points on the curve. 
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Fig 2. A set of Pareto optimal solutions 

 

One of the Pareto solutions results in a sequence of job operations as figure 3. In an optimal 
situation, as found, the amount of the makespan criterion is equal to 37 units of time. Further, given 
the tardiness and completion times of each job, the optimal amount of the maximum tardiness will be 
equal to 12 units of time. In the present example, job 4 shows the maximum tardiness time. 

 

Fig 3. One of the Pareto solutions from the second numerical example solved with two-objective functions 

 

Now, the implementation of the problem model and the examination of each objective function 
separately give us interesting results as to compare with the two-objective scenario.  

If the production management aims only to optimize the makespan criterion, then figure 4 is 
achieved.  

 

Fig 4. Results of the second numerical example solved with only the makespan criterion 
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As seen from figure 4, the optimal amount of the makespan criterion is equal to 32 units of time. 
Further, given the tardiness and completion times of each job, the non-optimal amount of the 
maximum tardiness will be equal to 14 units of time. In here, job 3 presents the maximum tardiness. 

When the production management aims only to optimize the maximum tardiness, figure 5 is 

obtained.  

 

Fig 5. Results of the second numerical example solved with only the maximum tardiness criterion 

 

According to the tardiness and completion times of each job, figure 5 illustrates that the optimal 
amount of the maximum tardiness is equal to 8 units of time. Here, Job 5 finds the maximum 

tardiness. Also, the non-optimal amount of the makespan criterion will be equal to 46 units of time. 

4-3- Sensitivity analysis on parameters 
To investigate the effect of changes in the model parameters on the objective functions, the values 

of two parameters of 𝑃𝑗𝑘 and 𝑆𝑖𝑗𝑘𝑗′𝑘′  are simultaneously changed. Table 5 presents the results. 

Table 5. The effect of changes in parameters on objective functions 

𝑆𝑖𝑗𝑘𝑗′𝑘′  
 

-10% 0% +10% 
 

𝐶max 𝑇max 𝐶max 𝑇max 𝐶max 𝑇max 𝑃𝑗𝑘  

27.65 11.65 30.9 13.55 34.85 15.1 -5% 

28.5 12.5 32 14 35.3 15.3 0% 

29.45 16.25 33.05 18.25 36.75 19.95 +5% 

 

Figure 6 shows the results of changes in two parameters on the makespan criterion. The makespan 

criterion is obviously increased if the duration of the operation (𝑃𝑗𝑘) is fixed and the setup times 

(𝑆𝑖𝑗𝑘𝑗′𝑘′) is increased. Moreover, the fixed setup times and the reduced operation duration lead to a 

reduced makespan criterion.  
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Fig 6. Sensitivity analysis of parameters and their impact on makespan criterion under two-objective mode 

 

Figure 7 shows the results of changes in two parameters on the maximum tardiness criterion. The 
fixed duration of the operation (𝑃𝑗𝑘) and the increased setup times (𝑆𝑖𝑗𝑘𝑗′𝑘′ ) result in an increasing in 

the maximum tardiness. Also, when the setup times are fixed and the operation duration is reduced, 
then the maximum tardiness is reduced.  

 

Fig 7. Sensitivity analysis of parameters and their influence on the maximum tardiness criterion under two-

objective mode 

5- Conclusion and future researches 

This research develops a model for solving a two-objective job shop scheduling problem (JSP) 
with sequence-dependent setup times (SDST). The first objective function is to minimize the 
makespan criterion which has been widely studied by a wide range of research works. The second 
objective function is to minimize the maximum tardiness time; however, it appears to have been less 
investigated. Considering SDST and optimizing both objectives simultaneously make us closer to 
real-world scheduling problems and lead to more accurate results. The MINLP model was converted 

into a MILP model. The ε-constraint method was used to solve the mentioned model, and a set of 
Pareto optimal solutions were obtained. Further, a set of numerical data were investigated to represent 
the model efficiency and flexibility by using mathematical optimization software. The computational 
results clearly revealed the model efficiency, whereas the sensitivity analysis and the checking of 
changes in both objectives confirmed the high flexibility of the model. The expanded model and the 
results can be efficiently used to solve JSPs in the real world, especially for manufacturing companies 
with having setup times and delivery time constraints.  
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For this research, the first and most important innovation element includes the considering of 
sequence-dependent setup times for modeling the scheduling problems, in addition to job completion 
times. This makes the research works close to the real-world manufacturing systems. The second 
element is the application of a two-objective approach for problem modeling and solution, so both 

criteria – makespan and maximum tardiness – are simultaneously minimized. In order to expand the 
present model for future studies, some recommendations are suggested. First, the development of an 
efficient algorithm can be useful for solving the model with large-scale data. Second, the duration of 
the operation for each job and also the setup times can be regarded as non-deterministic values in 
order to achieve the real-world issues. Third, it will be desirable to consider different objectives such 
as minimizing the total completion time of operations or minimizing the total tardiness times. 
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