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Abstract 

This paper proposes an integrated network design model for a post-distribution 
cross-docking strategy, comprising multi product production facilities with shared 
production resources, capacitated cross docks with setup cost and customer zones 
with time windows constraints. The model is dynamic in terms of time-varying 
uncertain demands, whereas uncertainty is expressed with scenario approach and 
contains both ‘‘wait-and-see’’ and ‘‘here-and-now’’ decisions. Inventory is just 
permitted in plants and over several time periods. The objective of the model is to 
minimize the sum of the fixed location costs for establishing cross docking centers 
and inventory related costs across the supply chain while ensuring that the limited 
service rate of cross docking centers and production facilities, and also the lead 
time requirements of customers are not violated. The problem is formulated as a 
mixed-integer linear programming problem and solved to global optimality using 
CPLEX. Due to the difficulty of obtaining the optimum solution in medium and 
large-scale problems, two heuristics that generate globally feasible, near optimal 
solution, Imperialistic competitive algorithm (ICA) and simulated annealing (SA), 
are also proposed as heuristics. We find that CPLEX is not able to solve some of 
the sets to optimality and turned out to run out of memory, but it performs quite 
well for small test sets, as compared with the two heuristics. While SA is a faster 
heuristic method in terms of runtime, ICA generates better results on average, but 
in more time. 
Keywords: Facilities planning and design, cross-docking, mixed integer model, 
heuristics. 

 
1- Introduction 

Driven by the increasingly demanding customer requirement, the logistics service practitioners have 
devoted a great deal of effort to enhance the quick response ability in the distribution system. Due to its 
widely perceived performance excellence, cross-docking has been recognized and accepted as a powerful 
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tool for speeding up the flow of goods and eliminating the warehouse in the supply chain. It is a way that 
accelerates the product flow to shorten the lead time from suppliers to customers, as well as an approach 
that reduces and even eliminates the inventory at the warehouse for goods are not stored in the warehouse 
but directly conveyed from receiving dock to shipping dock. Industrial applications of cross-docking can 
be found in Home Depot where transportation costs are reduced, in Wal-Mart which essentially 
eliminates its inventory holding cost, in COSCO which saves labor costs conventionally paid for order 
picking, packing and shipping, and in FedEx Freight which achieves cost-effective transportation (Shi, 
Liu, Shang and Cui, 2013). 

The ‘‘problem’’ of cross docking network design is very broad and means different things to different 
enterprises. It generally refers to a strategic activity that will take one or more of the following decisions: 

• Where to locate new facilities (be they production, storage, logistics, etc., when one of them 
is a cross dock). 
• Significant changes to existing facilities, e.g. expansion, contraction or closure. 
• Sourcing decisions—what suppliers and supply base to use for each facility. 
• Allocation decisions—e.g., what products should be produced at each production facility; 
which markets should be served by which cross dock (Shapiro, 1999).  

Making strategic decisions, such as where to locate cross docks, and more tactical/operational 
decisions, such as creating schedules, should preferably be a single decision process. Clearly, much more 
benefit could be achieved by simultaneously considering the production aspects and other issues related to 
integration of inventory, transportation, supplier selection, and investment budgeting decisions (Melo, 
Nickel and Saldanhada Gama, 2006)  

One aspect of major importance in many decision making problems regards the need to deal with 
uncertain data. Cross docking location problems are no exception. In fact, a cross docking location 
problem is a network design problem which is often solved as part of a strategic decision making process 
and thus, the solution may have a long lasting effect and its implementation may take considerable time. 
Moreover, often, such implementation must be finished before the network starts being operated. 
Accordingly, several parameters involved in cross docking location problems may not be known precisely 
when the network design decisions are made. This is typically the case with the set-up costs for the 
facilities and with the demands to be transported between the nodes. Particularly, cross-docks have to 
operate today in an uncertain and dynamic environment, among others due to an intense competition in 
the transport and logistics sector and ever-increasing traffic. Dealing with uncertainty is important and 
flexibility becomes a major topic. Unrealistic assumptions and too rigid approaches prevent an efficient 
cross-dock operation. As the operational control of a cross-dock is a going concern, ‘one-shot 
optimization’ is not sufficient. Because of these complicated problems, it is worthwhile to consider 
approaches that proved to be useful in other domains. Most of the presented papers are not necessarily 
appropriate for a dynamic environment, as the considered (operational) problems are assumed to be static. 
Of course, this is a simplification of reality. The control of a cross-dock is a going concern and so these 
problems are inherently dynamic (Belle, Valckenaers and Cattrysse, 2012).  

The value of cross-docking can be affected by the parameters of the system. Firstly, the structure of 
the supply chain can influence the benefits of cross-docking. For example, in a system where one cross-
dock serves multiple stores, the number of stores may influence the system performance. Secondly, the 
probability distribution of marketing demand also influences the performance of cross-docking. Other 
factors, such as the variance of demand, order size, unit inventory holding and shortage cost, also affect 
the value of cross-docking (Tang, 2007). 

Compared with a traditional distribution center where goods are first stored, cross-docking 
significantly changes the modes of members in the distribution system to handle the demand uncertainty 
related to inventory overstock and shortage cost, and is expected to achieve the economies of scale and to 
satisfy the customers' requirement better (Tang, 2007). 

In this work we propose an integrated network design model for a post-distribution cross-docking 
strategy, comprising multiproduct production facilities with shared production resources, capacitated 
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cross docks with setup cost and customer zones with time windows constraints, in which demands are 
both uncertain and time varying. Inventory is just permitted in plants and over several time periods. We 
are given a set of scenarios, each of which species a realization of the demands and has a fixed probability 
of occurrence. The objective is to find the standard min-expected-cost over all scenarios, subject to the 
constraints. Customers may be assigned to different facilities in different scenarios. (If customers must be 
assigned to the same facility in every scenario, the problem reduces to a deterministic problem in which 
the uncertain parameters are replaced by their means). 

The objective of the model is to minimize the sum of the fixed location costs for establishing cross 
docking centers and inventory related costs across the supply chain while ensuring that the limited service 
rate of each cross docking center, and also the lead time requirements of customers are not violated. The 
consequent formulation is a linear mixed integer programming 

By the knowledge of the authors, the problems present in the literature of cross docking location and 
cross docking network design are different from the proposed problem of this paper in the aspects: 

 
1- All of the previous studies of cross docking location and cross docking network design are 

deterministic and this is the first work which considers uncertainty in cross docking location and network 
design problems. The model contains uncertain time varying demands which uncertainty is applied by 
considering different scenarios for different products in various periods. 

2- All of the previous studies of cross docking location and cross docking network design are single 
period and this is the first work which considers multi periods with different lengths. 

3- Network design models for cross docking should be based on not only the cost factors of traditional 
facility location models but also the operational considerations which may critically affect the 
performance of a cross docking system such as manufacturing decisions. None of the previous studies of 
cross docking location and cross docking network design problems have considered the manufacturing 
considerations in their works and have not applied the production constraints in their model.  

4- This is the first work which considers single/multiple allocation at the same time in modeling cross 
docking network problem. 

5- This is the first time in cross docking network design problems which different costs and constraints 
have considered for different products. 

6- This is the first time which we have considered different time windows for the demand of different 
customers for different products for various plants.  

 
This paper aims to fulfill the gap in cross docking network design models by proposing a multi-

product, multi echelon cross docking network design model containing uncertain, time varying demands 
for products which operational considerations such as production and lead time constraints have applied. 
Due to the difficulty of this problem and its NP-hardness, two metaheuristics, Imperialistic competitive 
algorithm (ICA) and simulated annealing (SA), are proposed for solving the medium and large-scale 
problems. 

  
2- Literature review 

Cross-docking practitioners have to deal with many decisions during the design and operational phase 
of cross-docks. These decisions can have a serious impact on the efficiency, so they have to be carefully 
taken. In the literature, several decision problems are studied. Some of these problems are more 
concerned about decisions with effects on a longer term (strategic or tactical), while others deal with 
short-term decisions (operational). This section gives a review of the literature about cross- docking 
location and cross-docking networks. 

The location of one or more cross-docks is part of the design of a distribution network or supply chain. 
An important strategic decision that has to be made concerns the position of these cross-docks. This 
problem cannot be handled isolated from the decisions that determine how the goods flow through this 
network. 
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2-1- Location of cross docks 
The problem where to locate facilities (e.g. cross docks or plants) has attracted a considerable amount 

of attention. A first study about the location of cross-docks is performed by Sung and Song (2003). In the 
considered problem, goods have to be transported from supply to demand nodes via a cross-dock (direct 
shipments are not allowed). The cross-dock can be chosen from a set of possible cross-dock locations, 
each with an associated fixed cost. The demands are assumed to be deterministic and there are two types 
of vehicles with different capacity and cost. The aim is to find which cross-docks should be used and how 
many vehicles are needed on each link in order to minimize the total cost. This total cost consists of the 
fixed costs of the used cross-docks and the transportation costs. The authors present an integer 
programming model of the problem. This model is very similar to the model presented by Reeves et 
al.(1995) and Musa et al. (2010). Compared with these two papers, however, the approach of Sung and 
Song (2003) does not consider direct shipments but does include the location decision. Because the 
problem is NP-hard, a Tabu search-based algorithm is proposed to solve the model.  

Sung and Yang (2008) extend this work and propose a small improvement to the Tabu search 
algorithm. The authors also present a set-partitioning-based formulation of the problem and propose a 
branch-and-price algorithm based on this formulation to obtain exact solutions. The computational results 
show that this algorithm gives better results in terms of the number of problem instances solved and the 
required computation time compared with the results obtained by solving the integer programming model 
using the optimization software ingredients CPLEX. 

Gumus and Bookbinder (2004) study a similar problem, but now direct shipments are allowed and 
multiple products are considered. The facility cost for each cross-dock consists of a fixed cost and an 
operational cost charged per unit load. The transportation cost also has two components: a fixed cost for 
each truck and a variable cost per unit load per unit distance. Another cost which is taken into account is 
the cost for in-transit inventory. The authors provide a mixed integer programming model of the problem. 
The Influence of several cost parameters is studied by solving several smaller problem instances 
optimally (with the optimization software packages LINGO and CPLEX).A different approach is taken by 
Jayaraman and Ross (2003). They study a multi-echelon problem in which goods (from multiple product 
families) have to be transported from a central manufacturing plant to one or more distribution centers. 
From there, the goods are moved via cross-docks to the customers. The problem is tackled in two stages. 
In the first stage, a strategic model is used to select the best set of locations for the distribution centers and 
cross-docks. The authors provide an integer programming model that aims to minimize the fixed costs 
associated with operating open distribution centers and cross-docks and the various transportation costs. 
Demand splitting is not allowed, customers have to be assigned to single cross-docks while cross-docks 
have to be assigned to single distribution centers only. In the second stage, an operational model decides 
upon the quantities of each product type that need to be transported via distribution centers and cross-
docks. The model aims to minimize the transportation costs while satisfying customer demand. 

This model is less restrictive than the first model. It relaxes for instance the demand splitting 
assumption, individual vehicles are not considered and the transportation cost is proportional to the 
quantity to ship. The authors propose a simulated annealing approach to solve larger problem instances. 
The computational experiments on generated problem instances indicate that the heuristic gives results 
with a deviation of about 4% of the optimal solution (obtained with LINGO), but 300–400 times faster. 

The same authors present two other heuristics to tackle the problem in (Ross and Jayaraman, 2008). 
Both heuristics are based on simulated annealing but use an extra mechanism to avoid local optimal 
solutions. The first heuristic makes use of a Tabu list; the second heuristic allows a sudden re-scaling of 
the ‘system temperature’. For both heuristics, the solution quality and computational performance are 
tested for different ‘cooling schemes’. The experimental results indicate that the simulated annealing 
heuristic combined with Tabu search gives better solutions in a more time. Bachlaus et al. (2008) consider 
a multi-echelon supply chain network, including suppliers, plants, distribution centers, cross-docks and 
customers. The goal is to optimize the material flow throughout the supply chain and to identify the 
optimal number and location of suppliers, plants, distribution centers and cross-docks. The problem is 
formulated as a multi-objective optimization model that aims to minimize the total cost and to maximize 
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the plant and volume flexibility. Because of the computational complexity of the problem, the authors 
propose a variant of particle swarm optimization (PSO) to solve the problem. Computational experiments 
are done and the results show that the proposed solution approach gives better results than a genetic 
algorithm and two other PSO variants. 

Mousavi et al. (2014) proposed a two-phase mixed-integer programming for the location of cross-
docking facilities and vehicle routing scheduling problems in distribution networks. For this purpose, a 
two-phase mixed-integer programming (MIP) is formulated. They also developed a simulated annealing 
for solving the problem in the large-size instances. Yu et al. (2016) proposed a multi-period cross-docking 
distribution problem included manufacturers, cross-docks and customers with multiple products, 
consolidation of customer orders and time windows. To minimize the total cost, which includes 
transportation cost, inventory cost and penalty cost, they developed a particle swarm optimization 
algorithm with multiple social learning terms. 

 
2-2- Cross-docking networks 

Some authors do not study problems concerning a single cross-dock, but consider a network that 
contains one or more cross-docks. The aim is to determine the flow of goods through a network in order 
to reduce costs, while making supply meet demand. 

The work of Lim et al. (2005) extends the traditional transshipment problem. The transshipment 
problem consists of a number of supply, transshipment and demand nodes. The links between these nodes 
have different capacity limits and costs. The objective is to find a minimum cost flow that meets all 
demands and the capacity constraints. In the extended transshipment problem, storage is allowed at the 
transshipment centers. These centers can be considered as cross-docks because the aim of the model is to 
minimize or eliminate holdover inventory. Moreover, this problem takes supplier and customer time 
windows into account and considers the capacity and holding costs of the cross-docks (Cho,2009). All 
shipments have to pass via a cross-dock, so no direct shipments are considered. Similar to the original 
problem, the objective is to minimize the total cost (transportation costs and holding costs) while 
satisfying demand, time windows and capacity constraints.  

In the special case when only one delivery or departure is allowed within a time window and the 
departure and arrival times are fixed (single shipping–single delivery with fixed schedules), a genetic 
algorithm is developed by Miao et al. (2008). This heuristic gives better results (in terms of solution 
quality and computation time) than solving the integer programming formulation of the problem with 
CPLEX (with a time limit). 

Chen et al. (2006) study a similar problem which they call the multiple cross-dock problems. The 
major differences are that supplies and demands are not-splittable and different products can be 
considered. Also, transportation time is not taken into account. An integer programming formulation of 
the problem is provided, together with a proof of its NP-completeness. The authors propose three 
heuristics (simulated annealing, Tabu search and a combination of both) to solve the problem. These 
heuristics provide better solutions than those obtained by solving the integer programming formulation 
with CPLEX, within only less than 10% the time used by CPLEX. Among the three heuristics, Tabu 
search seems to give the best results (Cho, 2009). 

The previous studies represent the shipment of goods as flows. Individual transportation units are not 
considered and the transportation cost is proportional to the quantity to ship. However, to take advantage 
of consolidation, the vehicle transportation cost should be taken into account. A first approach that 
considers the transportation vehicles explicitly (and this is why the authors regard it as cross-docking) is 
taken by Donaldson et al. (1999). In the considered problem, the objective is to determine whether to 
route freight directly from suppliers to customers or via a cross-dock and how many vehicles should be 
scheduled on each transportation link in order to minimize the transportation costs. 

Compared with the previous approaches, however, this problem is more simplified (e.g. storage at the 
cross-docks is not considered and the synchronization of inbound and outbound trucks is left out of the 
problem). The authors eliminate links with a large transportation time in an attempt to consider time 
windows. The authors present an integer programming model. Because the problem is difficult to solve 
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with branch-and-bound algorithms, an alternative approach is proposed. In this approach, an iterative 
procedure is used in which either the integrality restrictions on the links from supply nodes to the cross-
docks or on the links from the cross-docks to the destination nodes are relaxed. This relaxation heuristic 
provides near optimal solutions in an acceptable time. The authors used this approach to compare several 
scenarios (with a different number of cross-docks in different places) for the network design of a postal 
service company. 

The same problem is also studied by Musa et al. (2010). They propose an ant colony optimization 
(ACO) heuristic to solve the problem and show that this heuristic gives in a short time slightly better 
results than a branch-and-bound approach with the optimization software package LINDO, which 
requires a much longer time. 

Ma et al. (2011) takes most of the above-mentioned concerns into account. The so-called shipment 
consolidation problem (SCP) considers supplier and customer time windows and also the transportation 
times between the network nodes. Moreover, storage at the transshipment centers (cross-docks) is taken 
into account; shipments can be transported directly to their destination or via a cross-dock and the 
transportation cost accounts for the number of trucks. However, only one type of products is considered. 
The objective is to minimize the total cost (transportation and inventory cost) while satisfying the time 
windows constraints. The authors present an integer programming model of the problem and show that it 
is NP-complete in the strong sense. Therefore, the authors propose a (two-stage) heuristic algorithm to 
solve the problem. The computational experiments indicate that the proposed heuristic gives competitive 
results compared to CPLEX (with a time limit) within a much shorter time. 

Yan and Tang (2009) compare the costs of a traditional distribution center with the cost of pre-
distribution and post-distribution cross-docking. In pre-distribution cross-docking, it is assumed that the 
goods are directly loaded into outbound trucks. The suppliers are responsible for the necessary 
preparation and sorting to facilitate immediate loading at the cross-dock. This requires that the suppliers 
know the order quantities for each destination. In post-distribution cross-docking, the preparation and 
sorting happens at the cross-dock itself. This incurs higher costs at the cross-dock, but allows assigning 
the goods to destinations upon arrival at the cross-dock. In this way, the influence of the fluctuating 
demand can be reduced by pooling the risk during the transportation period from the supplier to the cross-
dock. The results indicate that pre-distribution cross-docking is preferred when the demand is stable and 
the lead time between supplier and cross-dock is short. However, when the demand is uncertain and the 
lead time is long, the benefits of reallocating goods among stores outweigh the higher operational costs 
and so post-distribution cross-docking is preferred. Post-distribution also seems to be preferable if the 
number of destinations or the unit holding cost increases. The results of numerical experiments suggest 
that a higher uncertainty of demand, a higher unit transshipment cost and a longer lead time from the 
supplier to the cross-dock make post-distribution cross- docking more preferred. Pre-distribution cross-
docking is more preferable when the unit holding cost or unit backorder cost is very high or very low. 

Belle et al. (2012) have recently done a comprehensive review of the works which have been done in 
different aspects relating to cross docks. Their work is one of the last works done in the field of cross 
docking and has classified the entire cross docking papers’ in seven groups: location of cross-docks, 
layout design, cross-docking networks, vehicle routing, dock door assignment, truck scheduling and 
temporary storage. In the last part of their paper those have investigated necessary research opportunities 
in this research area which on the subject of our work these are the most important fields which have not 
worked yet or needs more attention in future: 

- Assuming Interchangeable products in a cross docking supply chain. 
- Robustness against different kinds of deviations in supply chain. 
- Integrating several problems in one approach (strategic and operational). 
- Operating in an uncertain, dynamic environment. 
Seyedhoseini et al. (2015) presented a mixed-integer model to optimize the location and design of 

cross docks at the same time to minimize the total transportation and operating costs. Their proposed 
model combines queuing theory for design aspects in the cross-docking network design. In this paper, a 
real case also had been examined to prepare an illustration for performance of the model. Recently, Buijs 
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et al. (2014) presented a general classification scheme for cross-docking research based on the inputs and 
outputs for each problem aspect. After classifying the existing cross-docking research, they proposed 
several future research opportunities in developing decision models with practical and scientific 
relevance. They also described two real-life illustrative problems in cross-docking networks to highlight 
the importance of synchronization. 

Ladier and Alpan (2016) proposed robust models for the truck scheduling model with time windows. 
In this study, the reformulations are based on minimax and minimization of the expected regret and 
resource redundancy and time redundancy. Their numerical study on different models showed that the 
methods based on resource redundancy give good results in the cross-docking case. Cóccola et al. (2015) 
considered a realistic problem studying the convenience of direct delivery, avoiding some cross-docking 
transfers in consolidated supply chains. They proposed a methodology for finding solutions based on the 
use of column generation embedded into an incomplete branch-and-price tree.  

Enderer et al. (2017) considered an integrated cross-dock door assignment and vehicle routing 
problem arising in the operation of cross-dock terminals with the objective of minimizing the total 
material handling and transportation costs. This problem consists of assigning origins to inbound doors, 
transferring commodities between doors, and routing vehicles from outbound doors to destinations. They 
proposed two formulations of the problem as well as a column generation algorithm. Ahmadizar et al. 
(2015) developed a hybrid genetic algorithm and a model for two-level vehicle routing with cross-
docking in a three-echelon supply chain. In this study,  by considering the transportation costs and the fact 
that a given product type may be supplied by different suppliers at different prices, the routing of inbound 
vehicles between cross-docks and suppliers in the pickup process and the routing of outbound vehicles 
between cross-docks and retailers in the delivery process are determined. The goal is to assign products to 
suppliers and cross-docks, to optimize the routes and schedules of inbound and outbound vehicles, and to 
consolidate products so that the sum of the purchasing, transportation and holding costs is minimized.  

Nikolopoulou et al. (2017) considers the problem of satisfying transportation requests from a set of 
suppliers to a set of customers for moving products between a pick-up and a delivery location pair. A 
commonly adopted approach is the direct-shipping of products, without using intermediate transshipment 
points, or in-transit merge of shipments. Another alternative strategy that often appears in practice is to 
use an intermediate cross-dock facility, acting as a consolidation point for transported products. The goal 
of this paper was to evaluate these inherently different distribution options and to conduct a 
comprehensive comparative analysis regarding their cost-effectiveness. Furthermore, the authors 
developed a local-search algorithm. Cota et al.  (2016) undertake a study of truck scheduling in a cross-
docking facility. They formulated the problem as a two-stage hybrid flow-shop problem, subject to cross-
docking constraints with the objective of minimizing the makespan. For this study, the authors proposed a 
time-indexed mixed integer linear programming formulation and a polynomial time heuristic. 

 
3- Problem statement 

The problem considers the design of a multiproduct, three-echelon cross docking supply chain. Plants 
cannot produce all products included in the company’s portfolio. For each plant the production capacity 
and the availability of production resources is subject to certain constraints. Cross docks (if established) 
have specified maximum and minimum capacities. Some of the cross docks can be supplied from more 
than one production plant and some of them are single source. In the same manner, some of the customers 
can be supplied from more than one cross dock and the others are single source. 

The volume of each good arriving at the cross docking center is specified in terms of packages for 
different products and the goods are interchangeable. It is assumed that two types of vehicles are available 
in the network. As in the typical trucking transportation network, the two types of vehicles are classified 
in terms of transportation cost and transportation time, as those of trucks and vans. Moreover; it is also 
assumed that the number of available vehicles is not limited under the situations where these vehicles are 
allowed to be rented easily in the market. So, the transportation costs can be calculated generally based on 
the associated transportation distances, types of vehicles and the type of the products. 
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A potential direct service is represented between the plants and customers, which refers to the 
possibility of routing freight demands from plants to customers without any intermediate stops allowed at 
cross docks. In order to deal with direct shipments, we have imagined cross docks in every plant location 
which the cost for transporting products between that plant and cross dock is zero but the cost of 
transporting products from that cross docks to customers is the direct shipment cost. 

To ensure required customer service levels, it is often necessary to set time constraints for each 
customer demand. The lead time considered in this paper contains: time needed to transport products from 
plants to cross docks, operation time in cross docks and time needed to transport products from cross 
docks to customers. This implies that the service time feasibility for each plant destination path directing 
from an origin node through an intermediate node to the associated destination node can be decided based 
on fulfillment of transporting the associated freight demand within any required time limit. 

 
4- Mathematical formulation 

With making the following changes in Longinidis and Georgiadis (2009) our problem can be 
formulated as a MILP optimization model. 

1. Elimination of warehouses as the supply chain network. 
2. Substitution of distribution centers with cross docks. 
3. Addition of a new set namely “vehicles” 
4. Addition of transshipment time, and lead time 
5. Addition customer service constraint 

Before the model is presented, we introduce the parameters and indices employed. They are defined as 
follows. 

 
Notations 
 
Indices  

e Production resources  

i Products 

k Cross docks 

L Customer zones 

S Product demand scenarios 

T Time periods 

V Vehicles 

sets  

 ssk  Set of cross docks that should be supplied by a single plant 

 ssl  Set of customer zones that should be supplied by a single cross dock 

 

Parameters 
 

 DH
ikC  Unit handling cost for product i at cross dock k 

 D
kC  Annualized fixed cost of establishing cross dock at location k 
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 p
ijC  Unit production cost for product i at plant j 

 
TR
ijkvC  Unit transportation cost of product i transferred from plant j to cross dock k by vehicle v 

 TR
iklvC  Unit transportation cost of product i transferred from cross dock k to customer l by vehicle v 

 I
ijtC  Unit inventory cost of product i at plant j during time period t 

 max
kD  Maximum capacity of cross dock k 

 min
kD  Minimum capacity of cross dock k 

 
[ ]s
iltD  Demand for product i from customer zone l during time period t under scenario s 

 [ ],mins
ijtI  Minimum inventory of product i held in plant j at the end of time period t under scenario s 

 [ ],maxs
ijtI  Maximum inventory of product i held in plant j at the end of time period t under scenario s 

 NS  Number of product demand scenarios 

 [ ],maxs
ijtp  Maximum production capacity of plant j for product i during time period t under scenario s 

 
[ ],mins
ijtp  Minimum production capacity of plant j for product i during time period t under scenario s 

 [ ],mins
jkQ  Minimum rate of flow of products that can be transferred from plant j to cross dock k under 

scenario s 

 [ ],mins
klQ  Minimum rate of flow of products that can be transferred from cross dock k to customer l 

under scenario s 

 [ ],maxs
ijkQ  Maximum rate of flow of product i that can be transferred from plant j to cross dock k under 

scenario s 

 [ ],maxs
iklQ  Maximum rate of flow of product i that can be transferred from cross dock k to customer l 

under scenario s 

 jeR  total rate of availability of resource e, at plant j 

 tt∆  Duration of time period t 

 jkvT  Transshipment time between plant j and cross dock k by vehicle v (lead time from the plant 
j to cross dock k by vehicle v) 

 klvT  Transshipment time between cross dock k and customer l by vehicle v 

 ikT  Time spending on product i at cross dock k 

 ljiST  Service time of customer l for product i in plant j 

 kD  Capacity of cross dock k 
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Continuous variables 

 [ ]s
ijtI  Inventory level of product i being held at plant j at the end of time period t under scenario s 

 [ ]s
ijtp  Production rate of product i in plant j during time period t under scenario s 

 [ ]s
ijkvtQ  Rate of flow of product i transferred from plant j to cross dock k by vehicle v during time 

period t under scenario s 

 [ ]s
iklvtQ  

Rate of flow of product i transferred from cross dock k to customer l by vehicle v during 
time period t under scenario s 

Binary variables  

 kY  1 if cross dock k is to be established, 0 otherwise 

 [ ]s
ijkvtx  1 if product i is to be transported from plant j to cross dock k by vehicle v during time 

period t under scenario s ,0 otherwise 

 [ ]s
iklvtx  1 if product i is to be transported from cross dock k to customer l by vehicle v during time 

period t under scenario s ,0 otherwise 

Greek symbols  

 ikγ  Coefficient relating capacity of cross dock k for holding product i 

 ijeρ  Coefficient of rate of utilization resource e in plant j to produce product i 

 sψ  Probability of product demand scenario s occurring during the life time of the network 

ikω  Coefficient relating capacity of distribution center k to inventory of product i held 

The model has time-varying uncertain demands in which uncertainty is modeled through a scenario 
approach. In this model, the expected value of the cost of the network taken over all the scenarios and 
during the operation of the network must be minimized. Now the problem can now be reformulated as: 

[ ] [ ] [ ]

1 , , , , , , , , ,

[ ] [ ]
, 1

1

min ( ) ( ( ( )))

( ( ))
2

NS
D p s TR s TR s DH s

t k k s t ij ijt ijkv ijkvt iklv iklvt ik ijkvt
t k s t i j i j k v i k l v i k j v

s sNS
ijt ij tI

s t ijt
s t

t C Y t C p C Q C Q C Q

I I
t C

ψ

ψ

=

−

=

∆ + ∆ + + +

+
+ ∆

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

 

(1) 

[ ]. . :          , , , , 1,...,s ss
ijkvt kS t x Y k k i j v t s NS≤ ∀ ∉ =  (2) 

[ ]   , , , 1,...,s ss
ijkvt k

j

x Y k k i v t s NS= ∀ ∈ =∑  (3) 

[ ]    , , , , 1,...,s ss
iklvt kx Y l l i l v t s NS≤ ∀ ∉ =  (4) 

[ ] 1   , , , 1,...,s ss
iklvt

k

x l l i v t s NS= ∀ ∈ =∑  (5) 

[ ] [ ],max [ ]    , , , , , 1,...,s s s
ijkvt ijk ijkvtQ Q x i j v k t s NS≤ ∀ =  (6) 

[ ] [ ],max [ ]    , , , , , 1,...,s s s
iklvt ikl iklvtQ Q x i l v k t s NS≤ ∀ =  (7) 
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[ ] [ ],min [ ]

,

   , , , 1,...,    s s s
ijkvt jk ijkvt

i v

Q Q x j k t s NS≥ ∀ =∑  (8) 

[ ] [ ],min [ ]

,

   , , , 1,...,    s s s
iklvt kl iklvt

i v

Q Q x k l t s NS≥ ∀ =∑
 

(9) 

[ ] [ ]

, ,

   , , , 1,...,s s
ijkvt iklvt

j v l v

Q Q i k t s NS= ∀ =∑ ∑
 

(10) 

[ ] [ ]
, , 1

,

   , , , 1,...,s s s
ijkvt ijt t i j t

k v

Q p t I i j t s NS−≤ ∆ + ∀ =∑
 

(11) 

[ ] [ ] [ ] [ ]
, , 1

,

( )    , , , , , 1,...,s s s s
ijt i j t ijt ijkvt t

k v

I I p Q t i j k v t s NS−= + − ∆ ∀ =∑
 

(12) 

[ ] [ ]

,

   , , , 1,...,s s
iklvt ilt

k v

Q D i l t s NS= ∀ =∑
 

(13) 

[ ],min [ ] [ ],max    , , , 1,...,s s sp p p i j t s NSijt ijt ijt≤ ≤ ∀ =
 

(14) 

   , , , 1,...,s
ije ijt je

i

p R j e t s Nρ ≤ ∀ =∑
 

(15) 

min max    k k k k kD Y D D Y k≤ ≤ ∀
 

(16) 

[ ]

,

   , , , 1,...,s
k ik ik ijkvt

j v

D Q i k t s NSγ ω≥ ∀ =∑  
(17) 

[ ] [ ],min    , , , 1,...,s s
ijt ijtI I i j t s NS≥ ∀ =  

(18) 

[ ] [ ],max    , , , 1,...,s s
ijt ijtI I i j t s NS≤ ∀ =  

(19) 

[ ] [ ]
, ,

s s
jkv ijkvt klv iklvt ik k l j iT x T x T Y ST+ + ≤  

(20) 

[ ] 0   , , , 1,...,s
ijtp i j t s NS≥ ∀ =  

(21) 

[ ] 0   , , , 1,...,s
ijtI i j t s NS≥ ∀ =  

(22) 

[ ] 0   , , , , , 1,...,s
ijkvtQ i j k v t s NS≥ ∀ =  

(23) 

[ ] 0   , , , , , 1,...,s
iklvtQ i k l v t s NS≥ ∀ =  

(24) 

The objective (1) is to minimize the overall expected cost of the cross-docking network and it includes 
the following five terms, i.e.,(i) fixed infrastructure cost ,D

k kk
C Y∑ (ii) production cost [ ]

,

p s
ij ijti j

C p∑ , 

(iii)material handling cost at cross docks [ ]

,
,

( )DH s
ik ijkvti k

j v

C Q∑ ∑ , (iv) inventory holding cost in 

plants [ ] [ ]
, 1,

( ) / 2I s s
ijt ijt ij ti j

C I I −+∑ , as inventories vary linearly over each time period, and (v) transportation 

cost [ ] [ ]

, , , ,
, , , ,

.TR s TR s
ijkv ijkvt iklv iklvti j k v t

i k l v t

C Q C Q+∑ ∑ It is important to notice that to have a meaningful objective 
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function, it is assume the probability of scenarios occurring in practice is known and is denoted bysψ and 

so we have
1

1.
NS

ss
ψ

=
=∑

 Constraint (2) state that the link between a plant j and cross dock k can exist only if cross dock k is 
also established. Constraint (3) shows the certain cross docks can be served by a single plant, if needed. 
Constraint (2) ensures that a cross dock k and a customer L will link, if the cross dock also exists. 
Requirement (5) guarantees that some customer zones may be subject to a single sourcing constraint 
requiring that they be served by exactly one cross dock. Constraint (6) shows that if plant j to cross dock k 
connection exists, corresponding flow of material i can take place. Constraint (7) shows that if cross dock 
k to customer zone l connection exists, corresponding flow of material i can take place. Note that, the 
upper bound appearing on the right hand side of (7) can be calculated similar to the upper bound 
introduced in Tsiakis et al [22].Constraint sets (8) and (9) determine a minimum total flow rate of material 
in a transportation link between two locations in the network. Constraint (10) ensures that the amount of 
product i which is sent to cross dock k from different plants, must be equal with the amount of that 
product which is sent from that cross dock to the customers. Constraint (11) ensures that, for that product 
at the end of the previous period, the amount of each product that can be sent from each plant to different 
cross docks at each period must be less than the production rate of that product in that plant plus 
inventory. We suppose that inventory can be kept at plants. If no inventories were held at the plants, the 
actual rate of production of product i by plant j would equal the total flow of this product from plant j to 
all cross docks k. In this regard, Constraint (12) shows that the available inventory of product i held in 
plant j at the end of period t is equal to the inventory held at the end of period t-1 plus any product 
accumulated in the plant due to the production during the period, minus any product transported from the 
plant to cross docks during the same period. Constraint (13) states the total flow of each product i 
received by each customer zone l from the distribution centers is equal to the corresponding market 
demand. Constraint (14) ensures that the orders received from the cross docks show the ability of the 
manufacturing plants to cover the customers’ demands. The production’s rate of each product at any plant 
cannot exceed certain bounds. This constraint also shows always there is a minimum production capacity 
for any of the products. Moreover, this equality ensures that there is often a minimum production rate that 
must be maintained while the plant is operating. Since in our model, it is assumed some resources can be 
used by several production lines and at different stages of the production of each product, Constraint (15) 
states such share usage limits the availability of the resource. In this constraint, coefficient ijeρ and jeR are 

the amount of resource that used by plant j to produce a unit amount of product i and the total rate of 
availability of resource at plant j, respectively. Regarding the capacities of cross docks and the quantity of 
products which can be stored temporarily before their conveyance at the market, Constraint (16) 
established the lower and upper bounds for the capacity of a cross dock k between given min

kD and max
kD , 

respectively. Constraint (17) states the capacity of a cross dock for each kind of products cannot be less 
than the sum of the currents from different plants to that cross dock for that kind of product at any time 
period under each scenario. Constraints (18-19) establish the needing bounds for safety stock. Each 
customer has a special service time for different products manufactured in different plants that must be 
satisfied. The constraint below states this limitation for different customers. The sum of the time to 
transship the products from plant j to customer l must be less or equal the customer service time (20). All 
continuous variables must be non-negative (21-24). 

 
5- Heuristic algorithms 

Solving combinatorial optimization problems amounts to finding the ‘best’ or ‘optimal’ solution 
among a finite or denumerable number of alternative solutions (Davis,1993). Over the past 40 years, a 
wide variety of combinatorial problems has appeared from computer science, engineering, and business 
logistics (such as the cross-docking problem studied here), and procurement. It has been shown that these 
combinatorial problems belong to the class of NP-complete problems (Papadimitriou and Steiglitz, 1998). 
Therefore, solving these problems to optimality cannot be obtained in reasonable amounts of 
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computational time, and the solution approaches include enumeration or heuristic approaches. In both 
approaches, it is desirable to have algorithms that yield high quality solutions in little computation time 
that are also applicable to a wide variety of combinatorial optimization problems (Ross and Jayaraman, 
2008). 

The simulated annealing algorithm, which is one of the selected approaches employed in the current 
study, is one such high quality general algorithm that is both a randomized (search) algorithm and 
asymptotically an optimization algorithm (Garey and Johnson, 1979). As a meta-heuristic, simulated 
annealing has become one of the most popular because of its ease of use and the asymptotic results of 
convergence to optimal solutions (Ross and Jayaraman, 2008). 

Imperialist competitive algorithm is proposed by Atashpaz and Lucas. (2007). They showed the 
algorithm’s capability in dealing with different types of optimization problems (2008). This algorithm is 
also used by Shokrollahpour et al. (2011) they have calibrated the parameters of this algorithm using the 
Taguchi method. In comparison with the best algorithm proposed previously, the ICA indicates an 
improvement and their results have been confirmed statistically. Our aim is to compare their ICA 
algorithm, as an effective population based algorithm with SA, one of the most popular algorithms 
because of its ease of use and the asymptotic results of convergence to optimal solutions. 

 
5-1- Simulated annealing 

We have used the CROSS-SA algorithm of Jayaraman and Ross (2003) and have made a change in the 
algorithm which helps the algorithm to avoid local optimal solutions and helps to find new best solutions 
not in the neighboring of the just best solution. For this point, after each perturbation of the configured 
system if for example, 20 consecutive evaluations yield no improvement, we start to generate a 
population of random solutions over all the solution area, and then we compute the cost of the generated 
population and get the best solution. Here we must compare the new solution with the last best solution of 
the algorithm and continue the algorithm. 

The search for least cost solutions is guided by a control parameter known as temperature, T, and the 
rate at which we systematically lower it, called alpha. Both alpha and the temperature determine the 
acceptance of inferior solutions. 

 
5-1-1- CROSS-SA heuristic step 

 CROSS_SA heuristic algorithm of Jayaraman and Ross (2003) has 7 steps which we have added a 
new step (step 6) to the algorithm which helps the algorithm to avoid local optimal solutions by finding 
new best solutions not in the neighboring of the just best solution. 

Step 1: Initialization. Initial and final values of the control parameter temperature, known as 0T and 

fT respectively, are specified. Alpha, the cooling rate is specified along with the maximum number of 

iterations at each temperature value. An initial cross-dock solution is randomly generated by assigning 
customers-demand flows between cross-docks, and finally to the manufacturers. Status indicators on the 
facilities and product family assignments are set. This results in an initial feasible solution providing 
product flows. The objective function value of this solution becomes the objective function value for the 
best configuration found, incumbent configuration, bC and the newest configuration'b

C . All counters are 

set to 1. 
Step 2: Check feasibilities. The algorithm now evaluates product flow assignments for cross docks and 

manufacturers to ensure no capacity violations exist. We also check the other constraints to be satisfied. If 
the configuration is not feasible, we return to step 1. 

Step 3: Generate a feasible neighboring solution. Once the problem has been initialized, an objective 
function value is computed, and feasibility ensured, the current feasible cross-dock system configuration 
is then perturbed (modified) by selecting several customer zones and reassigning their demands between 
cross-docks. This is accomplished by randomly selecting some customer zones to perturb. Their flow is 
randomly assigned to another cross-dock combination. All feasibilities are checked once again. 



14 

 

Step 4: Evaluate incumbent solution with neighboring solution. If the objective function value of the 
neighboring solution is greater than that of the incumbent ( ' bb

C C> ), proceed to step 5. Otherwise, if the 

objective function’s value of the newest configuration improves over the incumbent ( ' bb
C C< ), the 

neighboring solution becomes the incumbent. We then compare this solution to the best solution found 
thus far. If the objective function value of the newest configuration is less than that of the best one found 
so far, then replace the best solution with that of the neighboring solution. Proceed to step 7. 

Step 5: Examine Metropolis condition. Determine the difference between the neighboring solution and 
the incumbent solution as: ' bb

C C C∆ = − . The Metropolis criterion is then used to determine the 

probability at which the relatively inferior neighboring solution should be accepted. This probability is 
computed as:  

( ) c

C

TPROB A e
∆−

=  
Where is the current temperature. A random number is then generated from the interval (0,1), If this 
random number is less than ( )PROB A . Then the neighboring solution replaces the incumbent. Proceed to 
step 7. 

Step 6: jumping in the solution area: after each perturbation of the configured system if for example, 
20 consecutive evaluations yield no improvement, we start to generate a population of random solutions 
over all the solution area, and then we compute the cost of the generated population and get the best 
solution. Here we go to step 4 and check this new solution in the algorithm. 

Step 7: Increment counters. Update memory and status variables. Increase the counters by one. If the 
iteration counter value is less than or equal to the maximum iterations for the temperature level, then 
return to step 3. Otherwise, go to step 7. 

Step 8: Adjust temperature. Adjust temperature by the cooling rate. Mathematically this 
is 1   [0.2,0.99]c cT T α α+ = × ∈ ; where cT  is the temperature used to compute acceptance probability at 

iteration i and  is the cooling rate in (0, 1). If the new value of cT  is greater than or equal to the stopping 

value fT , then reset iteration counters to one and return to step 3. Otherwise, stop. 

5-2- Imperialist competitive algorithm 
Imperialist competitive algorithm is proposed by Atashpaz and Lucas (2007). They showed the 

algorithm’s capability in dealing with different types of optimization problems (2008). 
Similar to other evolutionary algorithms, this algorithm starts with an initial population of solution 

which is named country. Some of the best countries in the population are chosen to be the ‘imperialists’ 
and the rest are the ‘colonies’ of these imperialists. All the colonies of initial population are distributed 
among the imperialists based on their power. A set of one imperialist and its colonies is called an ‘empire’ 
(Shokrollahpour, Zandieh and Dorri, 2011). 

The power of an empire which is equivalent to the fitness value in a genetic algorithm (GA) is 
inversely proportional to its cost. After distribution of all colonies among imperialists, these colonies start 
moving towards their relevant imperialist country. The total power of an empire relates to both the power 
of the imperialist country and the power of its colonies. This fact will be modeled by defining the total 
power of an empire by adding the percentage of the mean power of colonies to their imperialists. Then the 
imperialistic competition begins among all the empires. Any empire which is not strong enough to 
compete and cannot increase its power (or at least prevent decreasing it) will be eliminated. The 
imperialistic competition will lead slightly to an increase in the power of powerful empires and a decrease 
in the power of weaker ones. Weak empires will lose their power and finally they will collapse. The 
movement of colonies towards their relevant imperialists through the competition among empires and 
also the collapse mechanism will hopefully cause all the countries to converge to a state in which there is 
just one empire in the world and all the other countries are colonies of that empire. In this ideal new 
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world, colonies have the same position and power as the imperialist (Shokrollahpour, Zandieh and Dorri, 
2011).The implementation of this algorithm in assembly flow shop is as follows: 

 
Begin ICA 

1. Initialize the empires. 
2. Move the colonies toward their relevant imperialist (assimilating). 
3. If there is a colony in an empire which has a lower cost than that of imperialist, exchange 

the positions of that colony and the imperialist. 
4. Compute the total cost of all empires (related to the power of both imperialist and its 

colonies). 
5. Pick the weakest colony from the weakest empire and give it to the empire that has the 

most likelihood to possess it (imperialistic competition). 
6. Change some weakest colonies with new ones randomly (revolution). 
7. Eliminate the powerless empires. 
8. If stopping criteria met, stop, if not, go to step 2. 

End ICA (Shokrollahpour et al., 2011). 
 

6- Numerical experiment 
To evaluate simulated annealing and imperialistic competitive algorithm performance on the cross-

docking problem, several problems were developed. The setup for each problem is described by the 
number of cross-docks, number of customer zones, number of plants and number of product families.  

 
Table 1. Computational design of the problem 

Problem 
Product families 

(I) 

Plants 

(J) 

Cross docks 

(K) 

Customer zones 

(L) 

1 14 3 15 18 

2 21 4 20 27 

3 21 4 30 36 

4 28 6 30 36 

5 42 9 45 54 

 
The heuristic algorithms are coded in Matlab and executed on a of Intel(R) core(TM) i5 CPU 2.4 GHz 

PCs with 4GB memory. For comparison, we also test the MIP model given in CPLEX, a popular off-the-
shelf optimization software package. The purpose of the experiments is to check the validity and 
effectiveness of the developed model and the effectiveness of the proposed heuristic methods by 
comparing the results with what CPLEX is able to provide with no time limit.  

For our Cross-SA, max-rejection for the new solutions is set on 250, max run for the model is set on 
500, max acceptance of new solutions is set on 500, the initial search for the heuristic is set on 500 and 
we have considered five amounts for alpha. The initial temperature for the heuristic is set on 1and the 
minimum temperature to end the heuristic is set on a very close amount to zero. 

For our Cross-ICA, the initial population contains 100 countries, number of initial imperialist is set on 
20, number of decades is set on 50, the revolution rate for the heuristic is set on 0.3 and Zeta is set on 
0.02. 

The computational results are summarized in table 2. For each cell, one problem was solved ten times 
by the SA , ICA and CPLEX and the best performance of each problem is reported. Performance analysis 
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of approximation algorithms such as simulated annealing concentrates on solution quality and running 
time. Therefore, algorithm performance was measured by solution quality and computation time. 

 
Table 2. Computational results 

Test set CPLEX SA ICA 

I-J-K-L Cost 
Time 
(s) 

Gap 
(%) 

α  Min cost 
Time 
(s) 

Gap 
(%) 

Min cost 
Time 
(s) 

Gap (%) 

14.3.15.18 5498211 

 

27 

 

0.0037 

0.2 5722587 283 0.0408 

5637149 572 0.0253 

0.45 5718229 311 0.0400 

0.65 5707326 330 0.0380 

0.85 5700204 356 0.0367 

0.95 5665128 413 0.0304 

21.4.20.27 20532488 124 0.0057 

0.2 21142202 1553 0.0297 

20964535 3823 0.0210 

0.45 21041445 2056 0.0248 

0.65 21040406 2256 0.0247 

0.85 20992447 2690 0.0224 

0.95 20982446 2922 0.0219 

21.4.30.36 
23418827 

 

633 

 

0.0063 

 

0.2 24130092 2738 0.0304 

23810115 4859 0.0167 

0.45 24090165 3214 0.0287 

0.65 23938160 3552 0.0222 

0.85 23945081 3968 0.0225 

0.95 23932395 4205 0.0219 

28.6.30.36 --------- ------ -------- 

0.2 29499917 3410 ----- 

29197685 5302 ----- 

0.45 29494202 3742 ----- 

0.65 29296712 4028 ----- 

0.85 29334494 4501 ----- 

0.95 29204339 4885 ----- 

42.9.45.54 --------- ------ -------- 

0.2 66945453 4950 ----- 

66820331 6655 ----- 

0.45 66967829 5211 ----- 

0.65 66952094 5752 ----- 

0.85 66950094 6175 ----- 

0.95 66909158 6476 ----- 

 
As can be seen for the two big sizes of problem CPLEX turned out to run out of memory, which made 

it quite difficult to summarize or to take the average of the computational results. From Table 2, we find 
that CPLEX is not able to solve some of the sets to optimality, but it performs quite well for small test 
sets, as compared with the two heuristics. As the size of test sets increases, performance of ICA is close to 



17 

 

CPLEX and performance of SA is worse than ICA. While SA is a faster heuristic method in terms of 
runtime, ICA generates better results on average. 

 
7- Conclusion and future works  

In this work we propose an integrated network design model for a post-distribution cross-docking 
strategy, comprising multi product production facilities with shared production resources, capacitated 
cross docks with setup cost and customer zones with time windows constraints. The model is dynamic in 
terms of time-varying uncertain demands, whereas uncertainty is expressed with scenario approach and 
contains both ‘‘wait-and-see’’ and ‘‘here-and-now’’ decisions. Inventory is just permitted in plants and 
over several time periods. 

The objective of the model is to minimize the sum of the fixed location costs for establishing cross 
docking centers and inventory related costs across the supply chain while ensuring that the limited service 
rate of cross docking centers and production facilities, and also the lead time requirements of customers 
are not violated.  

The problem is formulated as a mixed-integer linear programming problem and solved to global 
optimality using CPLEX/GAMS. Two heuristics that generate globally feasible, near optimal solution, 
Imperialistic competitive algorithm and simulated annealing, are also proposed as heuristics for solving 
the problem. 

The proposed MILP model aims to assist senior operations management to take decisions about 
production allocation, production capacity per site, purchase of raw materials and network configuration 
taking into account transient demand conditions. The purpose of the model is to be used not as frequent as 
an advanced planning scheduling (APS) system (daily, weekly or monthly) but for longer periods (such as 
quarterly, six months or yearly) to address strategic and tactical supply design aspects. Its allocation 
decisions are set as production targets for the APS systems to optimize production sequences. 

 From table 2, we find that CPLEX is not able to solve some of the sets to optimality, but it performs 
quite well for small test sets, as compared with the two heuristics. As the size of test sets increases, 
performance of ICA is close to CPLEX and performance of SA is worse than ICA. While SA is a faster 
heuristic method in terms of runtime, ICA generates better results on average. 

For improving the applicability, the approaches should be more robust and dynamic. Discussions with 
cross-docking practitioners reveal that there are (serious) deviations between the predicted and actual 
information. Particularly, cross-docks have to operate today in an uncertain and dynamic environment. 
Dealing with uncertainty is important and flexibility becomes a major topic. Unrealistic assumptions and 
too rigid approaches prevent an efficient cross-dock operation. Most papers are concerned with just one 
problem. Furthermore, as these problems are interdependent, improvements are expected when they can 
be solved together. So, future research is required that integrates several problems in one approach. 
Another subject which should be considered is lateral transshipment between plants or customers which 
will reduce the effect of uncertainty in cross docking supply chains. 
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