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Abstract 

Earned value management (EVM) is a well-known approach in a project control 

system which uses some indices to track schedule and cost performance of a 
project. In this paper, a new statistical framework based on self-starting 

monitoring and change point estimation is proposed to monitor correlated EVM 

indices which are usually auto-correlated over time and non-normally distributed. 
Also, a new change point estimator is developed to find the real time of change in 

the indices mean. Furthermore, a new diagnosing method is presented to 

recognize the deviated mean index. The performance of the proposed methods is 
evaluated through simulation studies and an illustrative example.   

Keywords: Correlated EVM indices, self-starting monitoring, auto-correlated 
non-normal indices, change point, diagnosing method, projects 

 

1- Introduction 
The earned value management (EVM) methodology leads the engineers to monitor time and cost 

during projects progress. In reality, the EVM indices are regarded as important tools to appraise 
project performance in terms of cost and schedule deviations along project lifecycle. Usually, 

schedule performance index (SPI) and cost performance index (CPI) are measured as project 

performance indices to conduct project on planned time and cost. The EVM indices can be calculated 
using dividing earned value (EV) on planned value (PV) and actual cost (AC), respectively. The 

project performance is suitable when both EVM indices are equal or larger than 1. That is projects 

will be finished on the planned time and budget or with less needed time and cost. On the other hand, 
when SPI and CPI are smaller than 1, required time or cost is more than the planned values, and the 

project progress is not desirable. In these conditions, corrective actions should be performed to 

achieve project goals effectively.  

There are many works on the application of EVM indices. One of the earliest works goes back to 
Lipke (1999). Afterwards, Burke (2003) claimed that applying the EVM indices can considerably 

affect the improvement of project performance. Henderson (2004) and Lipke (2003) showed that 

earned schedule has become a dimension to integrate technical performance with the EVM indices. 
Also, Fleming and Coppelman (2005) demonstrated that the EVM indices are as the main tools for 

evaluating performance of the software projects. In addition, Cioffi (2006) developed an improved 

formalism by considering scientific notations for the CPI and SPI indices.  
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Besides, Moslemi Naeni et al. (2011) proposed a fuzzy-based EV model in which the EV index 

was developed. Then, Moslemi Naeni and Salehipour (2011) presented an approach to deal with fuzzy 
EV index by applying alpha cuts. Pajares and Paredes (2011) developed the analysis of the EVM to 

monitor project considering cost and time criteria. Moreover, Zheng and Bi (2013) optimized 

schedule performance indices through describing schedule performance and the weight value. Chen 

(2014) proposed an approach to improve the forecasting EV and AC value accuracy. Recently, 
Acebes et al. (2016) developed an approach for monitoring projects under uncertainty using EVM. 

Also, Wei et al. (2016) incorporated EVM into engineering project management practices. 

    Although EVM indices can appraise project performance, they cannot show accepted levels of time 
and cost deviations. Therefore, applying control mechanism of earned value metrics to monitor 

continual projects progress state during the time is necessary. In this regard, statistical process control 

(SPC) tools are used as the important tools to appraise project performance persistently so that 

deviations are detected in trends of the project more quickly. On the other side, control charts are one 
of the most important SPC techniques in process monitoring. So far, there are many researches in 

which control charts are effectually used in process monitoring. For example, Ahmad et al. (2014) 

proposed Shewhart  chart under the repetitive sampling scheme to monitor process mean. 
Similarly, in monitoring the status of a project, applying control charts for the EVM indices provides 

useful information. Notably, each variance between earned value and planned value is considered as a 

signal. In these situations, control charts trigger the out-of-control signal when mean of the EVM 
indices deviates from expected values to perform prevention or correction actions. Hence, it provides 

fast feedback on any corrective actions due to effect of boundaries of variances on the project success. 

In other words, although engineers know state of project from duration and cost point of view by 

comparison the indices with planned values, they do not understand magnitude of deviations from 
planned value. In this regard, project managers are more interested in knowing whether the deviations 

from expected values are or not in agreement with the deviations expected from activities variability.  

   Several researches have been done about SPC techniques in analysis of the SPI and CPI indices. For 
instance, Lipke and Vaughn (2000) utilized individuals and moving range (I/MR) control charts and 

calculated the corresponding control limits. Bauch and Chung (2001) applied the control charts for the 

EVM indices and assessed single observations related to historical data from twenty similar projects. 
Afterwards, Anbari (2003) proposed a control chart called target performance chart to appraise the 

SPI and CPI indices. Wang et al. (2006) also used the control charts with these indices for thirty 

software projects with non-normality assumption of the indices. Besides,Leu et al. (2006) suggested a 

new method to control project performance indices. Lombard (2007) controlled the project scheduling 
and cost baseline. Afterwards, Leu and Lin (2008) enhanced the EVM indices performance by 

applying individual control charts, in which control limits are obtained from 120 projects gathered in 

a consulting institution. In addition, Noori et al. (2008) utilized fuzzy control chart to analyze EVM 
indices. Moreover, MoslemiNaeni et al. (2011) developed fuzzy control charts for controlling the 

EVM indices. Lipke et al. (2009) improved the capability of engineers to make a better decision using 

proposing a valid estimating technique of the completion cost and duration. Recently, Aliverdi et al. 

(2013) used I/MR control charts to evaluate EV indices. Colin and Vanhoucke (2014) presented SPC 
procedure based on tolerance limits to improve distinguishing power between progresses that occur 

under the project baseline schedule. After that Colin and Vanhoucke (2015) developed a general 

framework for SPC approaches in project management. Recently, Bancescu (2016) utilized both 
EVM methodology and SPC to better control a project schedule progress. 

   With considering SPC applications for the analysis of EVM indices in the literature, the mentioned 

works are summarized in table 1 in terms of their main contributions. Moreover, the proposed 
monitoring scheme is compared with the other studies in this table. As shown in table 1, firstly, 

related works usually analyze the EVM indices independently, while in some situations this 

assumption is violated and the SPI and CPI indices are correlated with each other. In other words, 

increasing or decreasing one of these indices leads to increasing or decreasing the other index, 
respectively. Therefore, there is a correlation structure between these indices and ignoring this 

correlation leads to misleading results. Secondly, the most researchers assumed that the EVM indices 

are normally distributed while this assumption may be violated in real world.  

 

http://onlinelibrary.wiley.com/doi/10.1002/pmj.20049/abstract
http://onlinelibrary.wiley.com/doi/10.1002/pmj.20049/abstract
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Table 1. The main contributions of researches about integrating SPC tools and monitoring project performance 

       Contribution 

The work 

Indices 

monitoring 

Non-

normality 

assumption 

Correlation 

between 

indices 

Auto 

correlation 

for any 

index 

Non-

certainty 

Self-starting 

monitoring 

Diagnosing 

deviated 

indices 

Change 

point 

estimation 

Lipke and Vaughn 

(2000) 
    

 
   

Bauch and Chung 

(2001) 
    

 
   

Wang et al. (2006) 
        

Leu et al. (2006) 
    

 
   

Leu and Lin (2008) 
        

Noori et al. (2008) 
        

MoslemiNaeni et 

al.(2011) 
        

Aliverdi et al. (2013) 
        

Colin and Vanhoucke 

(2014) 
        

Marrero et al. (2014) 
        

Colin and Vanhoucke 

(2015) 
        

Acebes et al. (2015) 
        

Acebes et al. (2016) 
        

Băncescu  (2016) 
        

Wei et al. (2016) 
        

Proposed new 

statistical approach 
        

 

   Consequently, in this paper independency and normality assumptions are removed. Unlike previous 

works, an auto-correlation structure is considered for both indices. So far, some researches such as 

Acebes et al. (2013), Acebes et al (2014, 2015), and Colin and Vanhoucke (2014) used simulation to 

overcome the problem of lack of data. However, in this study a self-starting control chart is developed 
to monitor the EVM indices. After getting signal from the proposed control chart, a maximum 

likelihood estimation approach is used to estimate the real time of a step change in indices. 

Furthermore, a diagnosing method is applied to demonstrate deviated index from expected 
performance.  

   The structure of the paper is organized as follows: next section explains procedure in removing 

assumptions. Section 3, at first, proposes an approach for self-starting monitoring the EVM indices, 

and then, a maximum likelihood estimation approach is provided to estimate a step change in EVM 
indices. Also, a signal diagnostic method in monitoring EVM indices is presented. Section 4 shows a 

performance evaluation for proposed procedure, and section 5 provides an illustrate example in detail. 
Finally, conclusions are given in section 6. 

2- Developed framework 
The EVM indices are used to measure project progress state. Analysis of these indices is a critical 

issue for the success of the project. Integrating the control charts with the EVM indices allows 
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engineers to monitor continually the performance indices because the EVM indices provide a 

snapshot of performance during the time. Hence, using control charts in the EVM leads to reduction 
in project cost and time and decrease the problem of project team judgments. 

Usually, based on underlying assumptions in applying control charts, observations should be 

normally and identically distributed. Moreover, they should be statistically independent of each other 

i.e., an observation should not effect on the other observations. Hence, firstly, it is necessary that 
assumptions of applying SPC are established with considering projects real aspects. In this regard, 

Lipke (2002) declared that the analysis of control charts may be affected when the normality 

assumption is not satisfied. For this aim, Lipke (2011) utilized logarithm transformation of the EVM 
indices in eight projects to obtain normal distributed indices in which the EVM indices are computed 

for labor. As Wang and Romagnoli (2005) stated "process data are conventionally characterized by 

normal distribution and techniques based on this assumption could suffer performance and efficiency 

losses when the assumption is violated". Hence, the data with non-normal distribution need to be 
transformed to the normal distribution using some transformation methods. For example, Aslam et al. 

(2015) presented a new control chart by transforming quality characteristics. In this paper, the 

Johnson transformation technique is used to transform EVM indices to normal distribution. It should 
be noted that cost performance is strongly correlated with the time performance. Hence, monitoring of 

the EVM indices simultaneously provides very useful result for project progress state analysis. 

Therefore, in this paper correlation between the EVM indices is also investigated. On the other hand, 
it is clear that the SPI and CPI indices have auto-correlated nature during project lifecycle. In fact, 

these indices are affected by previous indices in the project progress. On the other hand, Martin and 

Morris (1996) claimed that a basic requirement of SPC techniques is that the data are independent. 

However, process control typically generates auto-correlated data, and this tends to increasing false 
alarm rate. In this regard, some approaches are utilized to consider auto-correlated structure. One of 

the main approaches for describing structure of the auto-correlated EVM indices is using time series 

models. It should be noted that control chart is applied in the residuals to reduce the autocorrelation 
structure from the EVM indices. Often, it is assumed that the auto-correlated indices come from a 

multivariate first-order autoregressive (MAR (1)) as the following equation: 

 

, t t-1 tx x  a  (1)                                                                                                                                                                                   

in which ( , )t tSPI CPItx and  is a constant matrix equal to
 

 

SPI SPI CPI

SPI CPI CPI

 

 

 
 
 

and ta is defined as 

random shock with mean vector 0 and covariance-variance matrix of 

2

2

SPI SPI CPI

SPI CPI CPI

a a a

a a a

  

  

 
 
  

0Σ  = where 

is correlation between indices ( 1 1   ). On another hand, the (MAR(1)) is defined as equation 

(2). 

) ,t t-1 tx x  - a                                                                                                                        

(2) 

in which   is mean vector of the observation. We assume that the mean vector and covariance-

variance matrix and  in Equation (2) are known based on a historical dataset. It should be noted that 

, ,( , )SPI t CPI te ete vectors are observation residuals achieved by using difference between tx and its 

forecasted values in tth period. To summarize proposed methodology, first a scheme of the schedule 

and cost performance indices monitoring is given in figure 1. Then, the steps are discussed in the next 

section in details. 
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Fig. 1 Flowchart of the proposed statistical approach for monitoring of EVM indices 

3- Proposed procedure of the monitoring framework 
   Based on the aforementioned explanations, the SPC-based EVM gives effective information to 
engineers about the trend of the performance indices during the project progress. In this section, a 

statistical procedure is discussed to appraise project performance indices in details. Note that, in real 

applications, usually the project performance is auto-correlated and non-normally distributed. In 

addition, there is correlation structure between indices. Also, the number of data is not enough to 
estimate the parameters. Hence, in this paper, a multivariate self-starting residual based control chart 

is utilized for monitoring purpose. Moreover, an estimator is proposed to find the real time of a step 

change in the mean of project performance indices. Thereafter, a diagnostic method is applied to find 
deviated index from expected performance. The proposed procedures of the framework for 

monitoring the EVM indices monitoring are described in steps following subsections. 

 

3-1- Self-starting control chart for EVM indices monitoring 

Usually traditional control charts are used assuming that process parameters are determined or may 
be estimated using large historical dataset. In addition, large samples lead to the estimates close to the 

true value. However, there are not enough historical data to estimate the process parameters because 

projects are not repetitive. Also, large sample cannot be collected owing to lack of data during the 
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time or costly sampling. Therefore, the self-starting control charts are more suitable than the classic 

control charts in this situation. In fact, they use consecutive samples to update the EVM indices 
estimates during project progress (for more details see Quesenberry (1991)). Not that in this situation, 

there is little data, so statistic can be updated from previous samples is method. So, we initiate using a 

self-starting control chart to monitor the EVM indices among different phases of the project. In this 

respect, a self-starting statistic proposed by Quesenberry (1991) called as Q statistic is applied 
according to equation (3).  

1

2
1

=3, 4, ..
1

( ) ,  .r
r

r



  
                

r r-1
r r r-2

r-1

x x
Q x G

s

                                                                                         (3) 

In which r is the sample number, rx  and rs  are the EVM indices mean vector and their standard 

deviation, respectively. Also, r-2G  is the Student’s t distribution function with r-2 degrees of freedom 

and 
1 denotes the inverse of the standard normal distribution function. Also, the residuals obtained 

from the time series model (MAR (1)) are used in the Q statistic instead of the vector rx . The self-

starting control chart monitors the EVM indices without using an historical dataset. It utilizes the 

deviation of each project performance index vector from the average of all previous indices and 

allows starting effectual monitoring of the EVM indices as soon as possible. In addition, the Q 
statistics follow standardized normal distribution. Afterwards, this statistic is plotted on a multivariate 

control chart named as T2 control chart according to equation (4) (See Twigg and Thomson (1995) for 

more information). 
2

0( ) ( ),  =3, 4, ...rT r   
-1

r 0 r 0Q Q Q Q                                                                                               (4) 

where
0Q  and  0Σ denote mean vector and covariance-variance matrix of  the Q statistic. So, they are 

equal to vector 0


and
1    

    1





 
 
 

, respectively. The correlation coefficient of  in Q statistics is estimated 

by 10000 simulation runs. After that, the upper control limit (UCL) of the 
2

rT  control chart is set in 

such a way that a probability of Type I error is obtained by simulation. For this purpose, first an initial 
value is set for UCL and the probability of Type I error is computed as the portion of out-of-control 

signals to the total number of iterations through simulation runs. Then, through a trial-and-error 

process, the UCL is set such that a predetermined probability of Type I error is obtained. The 
2

rT

statistic exceeds the UCL when the mean vector of the EVM indices changes. When a negative shift 

in the mean vector of EVM indices occurs, project team should be considered corrective actions. In 
contrast, if the mean vectors of the EVM indices are faced to positive shift, project team should be 
considered an opportunity to modify planning of the current project schedule and cost. 

3-2- Change point estimation in EVM indices monitoring  
Control charts have been proven to be effective in detecting abnormal conditions in project 

performance indices. They are effectual tools to reduce variation of project performance by 
monitoring EVM indices during the time. In other words, the control charts demonstrate project cost 

and schedule performance indices over time against project control limits. The control limits usually 

define the area of three standard deviations on both sides of the centerline. After that, the statistics 
plotted on a control chart until a signal is observed. Often, time the control chart alarms is not exactly 

the real time of a shift in the EVM indices. Figure 2 demonstrates a schematic example from a control 

chart. As seen in this figure, there are some delays from signal point to real change point in project 
performance indices.  
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Fig 2. A schematic example from a delay between signal point and change point 

 

   Hence, identification of exact time that EVM indices have changed would simplify explorations, 

removing of the assignable cause, and improving project progress. Consequently, having an 

estimation of the change point of the EVM indices mean would be very useful. Since using this 
estimation leads to elimination the sources of control chart signals as soon as possible. The change 

point estimation in monitoring project performance indices mean vector is worth especially in mega 

projects due to saving considerable cost and time. 
   According to previous section, to apply control chart, project performance indices should be 

independent and normally distributed. For this purpose, the residuals distributions of performance 

indices are transformed to Normal distribution. So, let 
1 2( , )' ' ' T

i i ie ee as the bivariate Normal 

distribution residual vector in the ith period after transformation.  Assume further that when the project 

is under ordinary condition, the '

ie ’s are independent and identically distributed and follow a  

bivariate Normal distribution with mean vector of '

0e  and covariance-variance matrix of '


where it 

can be estimated in 10000 simulation runs. Since, we consider a step shift in the EVM indices, the 

parameters of residual vector remain at the new level until the source of the assignable cause is 
identified and omitted. Hence, the parameters of residual vector are equal to the corresponding in-

control state for 1,  2, ..., i   and they become equal to unknown parameters of 1e  for periods

1,  2, ..., i T    . Moreover, T is the last EVM indices vector sampled. There are two unknown 

values   and 1e which represent the last period in the in-control process and the out-of-control residual 

mean vector of EVM indices, respectively. To estimate this unknown mean vector along with the 

change point, we use the MLE approach. MLE of )(  is estimate mean vector such that maximizes 

the likelihood function of observations (See Nedumaran et al.(2000) in details). The proposed change 

point estimator using the MLE approach is computed as follows:  

ˆ arg max ,  0,1,..., 1.
t

t TM                                                                                                            (5) 

 The value of tM  in Equation (5) is calculated based on the following equation: 

1
( )( ) ( ),'

' T '

tM T t


   
' '

t,T t,Te
e e e e                                                                                                     (6) 
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1 .

T

i t

T t

 



 i

'

'

t,T

e
e                                                                                                                                    (7) 

 

3-3- Signal diagnostic in monitoring EVM indices 
   The SPC-based EVM integrates variations into budget and schedule within the project scope to 

provide variation of current performance indices for project manager. Common cause of variation is 
defined as the permissible variation present in the project progress because of its own nature. In 

contrast, special cause of variation is caused by unrespectable events on the project.  The control chart 

is used to show whether a project is affected by either common cause of variation or special cause of 

variation. On the other hand, it should be noted that one of the problems with any multivariate control 
charts is determining the quality characteristic responsible for out-of-control signal. 

   So far, the EVM indices have been monitored by using the proposed methodology. Also, the real 

change point is estimated by the maximum likelihood method to save the time and cost for corrective 
actions. It is worth mention that diagnosing deviated performance index increases effectiveness 

corrective actions. In other words, if mean of schedule performance index is changed, engineers 

should be concentrated on corrective action recommendations related to modification of schedule 

plan, and vice versa. Moreover, the corrective actions on time and cost should be balanced when the 
EVM indices mean have been shifted simultaneously because the performance indices have a 

reciprocal effect on project progress. Overly, accurate corrective actions lead to save project 

resources. 
   Hence, we apply an approach to diagnose responsible index from Hotelling’s T2 control chart. This 

method decomposes the T2 statistic into elements that reflect the contribution of each individual index. 

Assume the current statistic and T2
(SPI) is the statistic when the index SPI is omitted from the 

calculation. Also, T2
(CPI) is T2 statistic when the index CPI is omitted. Runger et al. (1996) showed that 

d(SPI) and d(CPI)statistics are relative contribution of the SPI and CPI indices to the overall T2 statistic, 

respectively and declared that the d(SPI) and d(CPI) statistics are computed as follows, respectively: 
2 2 ,SPI SPId T T                                                                                                                                     (8) 

2 2 ,SPI SPId T T                                                                                                                                     (9)                                                                  

   Then, the UCL of the d(SPI) and d(CPI)statistics is set in such a way that a probability of type I error is 
obtained by simulation. Similarly, first an initial value is set for UCL and the probability of type I 

error is computed as the portion of out-of-control signals to the total number of iterations through 

simulation runs. Then, through a trial-and-error process, the UCL is set such that a desirable 
probability type I error is obtained. Finally, if each of the d(SPI) and d(CPI) statistics exceed 
corresponding control limits, it shows that index is responsible for out-of-control project performance. 

4- Performance evaluation 
   In this section, a Monte Carlo simulation is conducted to evaluate performance of the proposed 

methodology using well known criteria with 10000 replications. For this aim, it is assumed that the 

random shocks corresponding to the schedule and cost performance indices are generated from a 

uniform distribution with mean vector 0 , and their covariance-variance matrix is equal to

1 0.375

0.375 1

 
 
 

. Also, the SPI and CPI indices are generated according to time series model (MAR(1)) 

in equation (1) in which  

 

0

0

0.5

0.5

SPI SPI CPI

SPI CPI CPI

 

 

   
   
  

 and   is considered equal to [1 1]. As 

aforesaid, the residuals of the time series model are monitored instead of recessive project 
performance indices to make the statistic independent over time.  So, residuals of the time series 

model are calculated by using difference between the actual EVM indices, tx and the value ˆ
tx that 

would be obtained from a least squares fit of the underlying analysis of variance model to the 

observations.  Now, residuals of time series model (MAR (1)) also, follow a uniform distribution. 

Here, the Johnson transformation technique is utilized to transform distribution of the residuals to 
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normal. In this regard, the best transformation function for residuals of the time series model of the 

SPI and CPI are obtained by 10000 simulations as follow, respectively. 

    
    

'

, , ,

'

, , ,

0.014 1.231 0.018 / 0.019

0.032 1.268 0.019 / 0.01

,

8 .

SPI t SPI t SPI t

CPI t CPI t CPI t

e e e

e

log

lo e eg

    

     
 

    

   Recall from the previous section, the Qr control chart begins monitoring the process without the 
need for preliminary data for the EVM indices and updates the parameter estimates with each new 

sample and simultaneously monitors the project performance indices. Hence, we use corresponding 

residuals to in Qr (r=3,4, …) statistic according to equation (2) to monitor project performance 

indices. The initial mean vector of Q statistic is equal to [0 0] and the correlation coefficient of 

between residuals is estimated equal to 0.368 by 10000 simulation runs, so the 0Σ  is equal to

1    0.368

0.368    1

 
 
 

. On the other hand, HotellingT2 control chart accounts for the correlation structure of 

EVM indices. Hence, this chart can show an evidently perspective of the project performance indices. 

Hence, we apply the Qr statistic in the HotellingT2 statistic to monitor the residuals corresponding to 

project performance indices. 
   In this respect, a well-known criterion named as Average Run Length (ARL) is utilized to evaluate 

the performance of the control chart. The ARL is the average of the number of periods which should 

pass before a statistic falls out of control limits. When the project is out-of-control or subject to risk, 

ARL1 is the average numbers of periods passes until a control chart alarms. Note that the lower ARL1 
leads to better performance control charts in detecting shifts. In this respect, the UCL is set equal to 

7.58 using simulation runs. Then, we impose the shifts magnitude in the EVM indices mean in  

100th period, and then obtain ARL1 under different step shifts in EVM indices separately or 
simultaneously to evaluate proposed method.  

Afterwards, a change point estimator is proposed because control charts usually tardily alarm when 

mean values of the EVM indices shift. Hence, a change point estimator is suggested using equations 

(5-7) in which 
1

 e and e in equation (6) are obtained with averaging 10000 simulation runs as 

follows: 

'

' 1.0350    0.3676
0.002   0.003

0.3676    1.0720
[ ],  .

 
 
 

-1

e
e = Σ  

   The performance of the proposed method in shift detecting is evaluated in terms of ARL1 in the 

mean values of the EVM indices. Moreover, the mean value and standard deviation of the change 
point estimator referred to accuracy and precision, respectively, determine the performance of the 

proposed estimator under different step mean shifts in the EVM indices. The mean value and standard 

deviation of the estimator are shown in tables 2 to 4 and denoted by τ̂ and Std( τ̂ ), respectively. Also, 

precisions of change point estimator are given in terms of the probability that ̂  lies in the specified 

tolerance from . This criterion is defined with ˆ(| | )p i   and denoted by Pri where i is considered 

equal to 0, 1, 2, 3, 4 and 5. Results coming from Mont Carlo simulation are shown in tables 2 to 4 for 

negative shift in indices mean vector of the EVM indices. In addition, performance evaluation of the 

proposed approach is appraised under positive shifts in tables 5 to 7. 
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Table 2. The ARL1 and performance of change point estimator under negative shifts in the SPI index 

Shift -0.001 -0.005 -0.01 -0.02 -0.05 -0.1 -0.5 

 ARL1 165.19 161.69 153.33 140.56 137.85 124.82 104.12 

A
cc

u
ra

cy
 

τ̂  97.87 97.9 98.57 98.85 99.11 99.97 99.99 

        

Std( τ̂ ) 1.12 1.1 1.15 1.1 1.04 0.91 0.95 

E
st

im
at

o
r 

P
re

ci
si

o
n

 

Pr0 0.05 0.07 0.13 0.15 0.19 0.24 0.28 

Pr1 0.11 0.16 0.18 0.19 0.21 0.26 0.33 

Pr2 0.19 0.22 0.29 0.28 0.3 0.35 0.39 

Pr3 0.24 0.36 0.39 0.38 0.41 0.49 0.51 

Pr4 0.27 0.4 0.46 0.45 0.47 0.51 0.57 

 Pr5 0.31 0.42 0.49 0.52 0.53 0.55 0.62 

 

 

 

Table 3. The ARL1 and performance of change point estimator under negative shifts in the CPI index 

Shift -0.001 -0.005 -0.01 -0.02 -0.05 -0.1 
-0.5 

ARL1 166.18 164.38 152.2 150.56 140.76 133.92 125.09 

A
cc

u
ra

cy
 

τ̂  97.11 97.55 98.06 98.21 99.35 99.98 99.99 

        

Std( τ̂ ) 1.93 1.12 1.04 0.89 1.01 0.9 0.92 

E
st

im
at

o
r 

P
re

ci
si

o
n

 

Pr0 0.08 0.15 0.16 0.2 0.23 0.24 0.35 

Pr1 0.23 0.22 0.23 0.25 0.27 0.26 0.42 

Pr2 0.26 0.25 0.3 0.34 0.35 0.35 0.51 

Pr3 0.35 0.4 0.42 0.45 0.47 0.46 0.58 

Pr4 0.41 0.42 0.49 0.51 0.55 0.55 0.63 

 

 

 

 

 

 

Table 4. The ARL1 and performance of change point estimator under negative shifts in the EVM indices 

Shift -0.001 -0.005 -0.01 -0.02 -0.05 -0.1 -0.5 

ARL1 161.15 159.55 147.93 141.8 134.55 131.13 125.8 

A
cc

u
ra

cy
 

τ̂  97.55 97.99 98.51 98.75 99.21 99.97 99.98 

        

Std( τ̂ ) 1.5 1.03 0.95 1.11 0.97 0.81 0.92 

E
st

im
at

o
r 

P
re

ci
si

o
n

 

Pr0 0.12 0.14 0.18 0.25 0.26 0.29 0.33 

Pr1 0.19 0.25 0.26 0.26 0.3 0.31 0.37 

Pr2 0.25 0.29 0.32 0.34 0.36 0.38 0.42 

Pr3 0.36 0.35 0.45 0.45 0.46 0.48 0.51 

Pr4 0.41 0.42 0.47 0.52 0.58 0.58 0.64 
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Table 5. The ARL1 and performance of change point estimator under positive shifts in the SPI index 

Shift 0.001 0.005 0.01 0.02 0.05 0.1 0.5 

ARL1 163.15 160.79 155.33 149.96 147.25 132.72 120.56 

A
cc

u
ra

cy
 

τ̂  97.67 97.88 98.28 98.64 99.41 99.95 99.98 

        

Std( τ̂ ) 1.3 1.09 1.1 0.96 1.01 0.89 0.96 

E
st

im
at

o
r 

P
re

ci
si

o
n

 

Pr0 0.06 0.08 0.13 0.15 0.19 0.25 0.35 

Pr1 0.12 0.15 0.17 0.18 0.2 0.27 0.31 

Pr2 0.18 0.24 0.26 0.27 0.33 0.34 0.39 

Pr3 0.23 0.37 0.38 0.38 0.42 0.45 0.49 

Pr4 0.28 0.41 0.45 0.46 0.46 0.49 0.55 

 Pr5 0.32 0.39 0.48 0.51 0.53 0.54 0.62 

 
 

 

Table 6. The ARL1 and performance of change point estimator under positive shifts in the CPI index 

Shift 0.001 0.005 0.01 0.02 0.05 0.1 0.5 

ARL1 164.18 163.38 153..2 148.56 144.55 132.94 130.5 

A
cc

u
ra

cy
 

τ̂  97.11 97.55 98.06 98.21 99.35 99.97 99.98 

        

Std( τ̂ ) 1.53 1.12 1.04 0.89 1.01 0.9 0.98 

E
st

im
at

o
r 

P
re

ci
si

o
n
 

Pr0 0.06 0.08 0.13 0.15 0.19 0.25 0.28 

Pr1 0.12 0.15 0.17 0.18 0.2 0.27 0.35 

Pr2 0.18 0.24 0.26 0.27 0.33 0.34 0.41 

Pr3 0.23 0.37 0.38 0.38 0.42 0.45 0.52 

Pr4 0.28 0.41 0.45 0.46 0.46 0.49 0.65 

 Pr5 0.32 0.39 0.48 0.51 0.53 0.54 0.71 

 
 

 

Table 7. The ARL1 and performance of change point estimator under positive shifts in the EVM indices 

Shift 0.001 0.005 0.01 0.02 0.05 0.1 0.5 

ARL1 160.17 158.25 146.91 140.8 135.75 130.21 125.32 

A
cc

u
ra

cy
 

τ̂  98.75 98.98 98.35 98.1 99.89 99.98 99.99 

        

Std( τ̂ ) 0.96 0.98 1.1 1.01 0.99 0.8 0.82 

E
st

im
at

o
r 

P
re

ci
si

o
n
 

Pr0 0.06 0.08 0.13 0.15 0.19 0.25 0.34 

Pr1 0.12 0.15 0.17 0.18 0.2 0.27 0.37 

Pr2 0.18 0.24 0.26 0.27 0.33 0.34 0.44 

Pr3 0.23 0.37 0.38 0.38 0.42 0.45 0.51 

Pr4 0.28 0.41 0.45 0.46 0.46 0.49 0.59 

 Pr5 0.32 0.39 0.48 0.51 0.53 0.54 0.64 

   The results show that the proposed procedure performs well in monitoring project cost and 

scheduling performance indices under different shifts. In addition, the simulation results show that the 
performance of the change point estimator is satisfactory under different shifts in terms of the 

precision and accuracy criteria. In addition, as the magnitude of the step shift in the mean of EVM 

indices increases, the detection power of shift and performance of the change point estimator enhance. 
By comparison between different shifts in the EVM indices (separately and simultaneously), it is 

concluded that the proposed approach has more ability in detecting the simultaneously shifts against 

the separate shifts in the mean of EVM indices. It is claimed that the proposed approach could handle 



96 

auto-correlated cost and schedule performance indices coming from time series model (MAR(1)). 

Afterwards, the change point estimator can estimate the real change point using the proposed 
approach to improve planning of the engineers.   

   Identification of the EVM indices responsible for unstable condition in project is a critical issue in 

project management as well, because signal diagnostic leads to saving time and cost in conducting 

corrective actions. So, we performed diagnosing procedure of releasing signal from T2 control charts 

in order to identify the responsible index for out-of-control. For this purpose, the
CPId and

SPId statistics 

are calculated according to discussed method in subsection 3.3.  Also, the UCL for the 
CPId and

SPId

statistics is set equal to 6.67 and 5.75, respectively. Then, if each of the statistic exceeds the 

corresponding UCL, it is introduced as the index responsible for the out-of-control condition. 
Signal diagnosing percent is provided the responsible index under different shifts. Hence, in Tables 

8 and 9 diagnosing percent of the EVM indices under different mean shifts is provided under negative 

and positive shift, respectively. As seen in the results, when a shift is occurred in CPI, diagnosing 
percent of the CPI are more than other states (SPI and simultaneously shift). Also, the proposed 

approach gives more diagnosing percent for the SPI when the SPI mean shifts. Similarly, it provides 

more diagnosing percent for the both of indices when the CPI and SPI mean shifts simultaneously. In 

addition, when the magnitude of both positive and negative shifts increases, the performance of 
diagnosing procedure improves and the percent of correct diagnostic increases. This shows the 
satisfactory performance of the proposed diagnosing procedure. 

Table 8. The performance of diagnosis method in monitoring project under negative shifts in the mean of EVM 
indices. 

Shift  -0.001 -0.005 -0.01 -0.02 -0.05 -0.1 -0.5 

S
h

if
t 

in
 

S
P

I 

SPI 0.41 0.43 0.40 0.38 0.45 0.40 0.42 

CPI 0.28 0.35 0.25 0.29 0.26 0.28 0.30 

CPI & SPI 0.16 0.12 0.21 0.20 0.15 0.17 0.19 

         

S
h

if
t 

in
 

C
P

I 

SPI 0.29 0.31 0.26 0.34 0.25 0.28 0.30 

CPI 0.43 0.45 0.41 0.39 0.43 0.39 0.41 

CPI & SPI 0.18 0.16 0.2 0.21 0.19 0.21 0.23 

S
im

u
lt

an
eo

u
s 

S
h
if

t 

        

SPI 0.24 0.25 0.31 0.29 0.29 0.24 0.26 

CPI 0.33 0.30 0.28 0.31 0.22 0.30 0.32 

CPI & SPI 0.36 0.34 0.34 0.37 0.39 0.41 0.43 

 
 

Table 9 The performance of diagnosis method in monitoring project under positive shifts in the mean of EVM 

indices. 

Shift  0.001 0.005 0.01 0.02 0.05 0.1 0.5 

S
h
if

t 
in

 S
P

I SPI 0.43 0.41 0.40 0.42 0.44 0.41 0.43 

CPI 0.27 0.33 0.24 0.28 0.27 0.27 0.29 

CPI & SPI 0.16 0.14 0.18 0.19 0.18 0.19 0.21 

        

S
h
if

t 
in

 

C
P

I 

SPI 0.31 0.30 0.26 0.33 0.27 0.30 0.32 

CPI 0.43 0.44 0.42 0.39 0.42 0.41 0.43 

CPI & SPI 0.16 0.16 0.20 0.18 0.17 0.18 0.20 

S
im

u
lt

an
eo

u
s 

S
h

if
t 

        

SPI 0.24 0.24 0.26 0.29 0.26 0.25 0.27 

CPI 0.32 0.29 0.27 0.32 0.21 0.28 0.30 

CPI & SPI 0.37 0.33 0.35 0.38 0.41 0.42 0.44 
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5- An illustrative example in projects 
An illustrative example is given to illustrate the application of the proposed methodology. The Q 

statistics are generated according to the previous section. Afterwards, a shift is imposed with =-0.02 

magnitude in 20th period in the CPI mean. This negative shift shows that project exceeds its devoted 

cost. So, in these situation engineers should try on enhancement of the project progress after signals 

are discarded. Figure 3 shows a self-starting Hotelling’s T2 control chart constructed based on the Q 

statistics. The Hotelling’s T2 control chart alarms tardily unfavorable condition of project in 35th 

period. Hence, the proposed change point estimator in equations (5-7) is applied to estimate the real 

change point in project performance indices. The change point is computed in 26th period that it is 

close to exact change point in project performance. Also, the proposed diagnostic method in 

subsection 3.3 can utilized to identify the responsible index that caused the signal under probability of 

type I error equal to 0.01.

Fig  3. Simultaneously monitoring of EVM indices under shift in CPI index

 

6-Conclusion 
   The earned value management indices cannot give results about variation of the project progress 
during the time. This study introduced a novel statistical approach based on a self-starting monitoring 

using multivariate control chart to analyze EVM performance indices. So, a self-starting monitoring 

was proposed in monitoring earned value indices owing to costly sampling and lack of historical 
dataset. In addition, EVM indices can be auto-correlated and follow a non-Normal distribution in 

which these indices are considered correlated. On the other hand, an estimator was proposed for the 

first time in the literature of projects to find the real time of a step change in indices mean. In this 
regard, performance of the proposed change point estimator appraised by Mont Carlo simulation. 

Moreover, a diagnosing method was applied, unlike the previous studies, to show deviated index from 

expected performance. The performance of the proposed procedure was investigated through an 

illustrative example in projects. Finally, it was concluded that the proposed framework for the EVM 
indices monitoring enhanced considerably the project controlling scheme and saving in time and cost.  
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