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Abstract 

Proper and realistic scheduling is an important factor of success for every project. 
In reality, project scheduling often involves several objectives that must be 
realized simultaneously, and faces numerous uncertainties that may undermine 
the integrity of the devised schedule. Thus, the manner of dealing with such 
uncertainties is of particular importance for effective planning. A realistic 
schedule must also take account of the time-based variations in the capacity of 
renewable resources and the amount of resources needed to undertake the 
activities and the overall effect of such variations on the schedule. In this study, 
we propose a multi-objective project scheduling optimization model with time-
varying resource requirements and capacities. This model, with the objectives of 
minimizing the project makespan, maximizing the schedule robustness, and 
maximizing the net present value, considers the interests of both project owner 
and contractor simultaneously. Two multi-objective solution algorithms, NSGA-
II and MOPSO, are modified and adjusted with Taguchi method to be used for 
determination of the set of Pareto optimal solutions for the proposed problem. 
The proposed solution methods are evaluated by the use of fifteen problems of 
different sizes derived from Project Scheduling Problem Library (PSPLIB). 
Finally, solutions of the algorithms are evaluated in terms of five evaluation 
criteria. The comparisons show that NSGA-II yields better results than MOPSO 
algorithm. Also, we show that ignoring the time-based variations in consumption 
and availability of resources may lead to underestimation of project makespan 
and significant deviation from the optimal activity sequence. 
Keywords: Resource-constrained project scheduling, Net Present Value (NPV), 
robust scheduling, resource variation, multi-objective optimization. 
 

1- Introduction 
   In a Resource-Constrained Project Scheduling Problem (RCPSP), a series of activities to be 
undertaken continuously, according to their precedence relations, and using a limited set of renewable 
resources (such as human resources, machinery and equipment) must be scheduled with the purpose 
of achieving one or several particular objectives of several types of RCPSP, the one with the objective 
of minimizing the project completion time (or makespan) has attracted the most attention (see, e.g., 
Creemers, 2015, Delgoshaei et al., 2015, Wu et al., 2011, Chtourou and Haouari, 2008, Shi et al., 
2010, Ghassemi-Tari and Olfat, 2007, Kumar and Arunagiri, 2010).  
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   But in addition, literature of RCPSP contains valuable publications on not only this objective but 
also other types of objective as well as alternative assumptions for activities, their precedence 
relations, and resources.  
A summary of these works have been compiled and reviewed by Hartmann and Briskorn (2010). 
Another primary objective usually adopted for RCPSPs is the project cost minimization. In this 
approach, studies such as Liu and Zheng (2008) have focused entirely on minimizing the total cost of 
the project while others such as Berthaut et al. (2014) and Kang and Choi (2015) have attempted to 
establish a tradeoff between time and cost. Cost-based objectives can be expressed in terms of 
optimization of Net Present Value (NPV); an approach that was first introduced by(Russell, 1970) and 
later followed in works such as Sobel et al. (2009),Wiesemann et al. (2010) and Leyman and 
Vanhoucke (2016). Also, other articles such as Hsu and Kim (2005),Song et al. (2015) and Yuan et al. 
(2015) have studied the resource investment problem, where objective functions are based on 
renewable resources, while others such as Akkan et al. (2005), Demeulemeester et al. (1998) and 
Vanhoucke et al. (2002)have focused on the discrete time-cost tradeoff problem, where objective 
functions are based on nonrenewable resources. Real world conditions often compel the project 
managers to make their decision in line with multiple objectives. Thus, the overall objective is to 
optimize not only the makespan, but also revenue, cost, and resource leveling and even control the 
uncertainties involved in the project. Consequently, multi-objective project scheduling problem have 
been introduced to aid the project managers in making better decisions by taking multiple aspects of 
the project into consideration. 
    A major issue associated with scheduling problems is the presence of uncertainties and occurrence 
of unexpected events, which may disrupt and delay the work schedule. These disruptions may occur 
for various reasons like misestimating of duration of activities, lack of expected access to resources, 
addition or omission of an activity in the project network, or unexpected adverse weather conditions. 
Goldratt (1997)points out that a disrupted schedule increases the project expenses by causing the 
resource to remain idle, increasing the work-in-progress inventory, and intensifying the system 
atmosphere. In the project scheduling literature, lack of certainty has been addressed by approaches 
such as reactive scheduling, stochastic scheduling and fuzzy scheduling(see, e.g., Soltani and Haji, 
2007). In addition to the above approaches, proactive (robust) scheduling has also proven useful in 
minimizing the effect of unexpected events on primary performance criteria such as project 
makespan. Such approach to scheduling has been utilized effectively by Lambrechts et al. 
(2011),Lamas and Demeulemeester (2016) and Palacio and Larrea (2017). 
    In the project scheduling literature, standard RCPSP has been the subject of many developments 
and modifications, for example, introduction of multiple operating modes for activities, generalized 
precedence relations, preempted activities, and also other approaches for generalizing the resource 
constraints. Another assumption of standard RCPSP is the uniformity of resource requirements and 
capacities over time, which undermines the practical applicability of the solutions; because resource 
availability is subject to variations caused by labor time offs and planned maintenance operations 
while demand for resources may also vary with the progress of activity. It is therefore important to 
incorporate such assumptions into project scheduling problems. However, Hartmann (2015) reports 
that the project scheduling literature contains too few works on time-varying resource requirements 
and capacities, and the concept is only mentioned in articles such as Bartusch et al. (1988), Sprecher 
(2012) and De Reyck et al. (1999).Table 1 lists some of the previous works on robust project 
scheduling. 
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Table 1. Review of RCPSP models with robustness considerations 

Article 

Model  Objective functions Resource 
varying with 

time 

Considering 
interests of owner 

and contractor 
Simultaneously 

Solution method Single-
objective 

Multi-
objective 

Multi-
stage 

 Makespan Robustness Cost NPV Quality 

Haouari and Al-Fawzan (2002)  X   X X      MOTS 

Al-Fawzan and Haouari (2005)  X   X X      MOTS 

Abbasi et al. (2006)  X   X X      SA 

Chtourou and Haouari (2008)   X  X X      Two-stage-priority-rule-based algorithm 

Lambrechts et al. (2008) X     X      TS 

Fallah et al. (2010) X     X      Heuristic methods 

Xiong et al. (2011)  X   X X X    X MOGA 

Lambrechts et al. (2011) X     X      Heuristic methods 

Artigues et al. (2013) X     X      Heuristic methods 

Gomes et al. (2014)  X   X X      
MOG, MOVNS, GMOVNS, MOVNS_I 

& PILS 

Wang et al. (2014)  X   X X X  X  X CGA 

Xiong et al. (2014)  X   X X X    X K-MOEA 

Hao et al. (2014)  X   X X      moEDA 

Rezaeian et al. (2015)  X   X X      SPGA 

Lamas and Demeulemeester (2016) X     X      Branch-and-cut method 

Mogaadi and Chaar (2016) X     X      Improved GA 

Afshar-Nadjafi (2016) X     X      A recursive heuristic 

Proposed model  X   X X  X  X X NSGA-II & MOPSO 
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    As can be seen, existing articles on robust project scheduling, like other works on project 
scheduling, have assumed both the resources availability over a period and the resource consumption 
over the progress of activity to be uniform and time-invariant. Also, despite numerous studies in the 
field of multi-objective project scheduling, few studies have attempted to minimize the makespan and 
maximize the schedule robustness and Net Present Value (NPV) simultaneously. However, these 
objectives encompass the three most important decisions of project managers. Giving due attention to 
the cost-based objectives, which constitute one of the primary goals of the contractor, beside the 
makespan minimization as well as robustness maximization objectives, which constitute the primary 
goals of the owner, allows the interests of both parties to be incorporated into scheduling. Also, 
considering the time-varying resource requirements and capacities along with these objectives allows 
the resulting schedule to be more realistic.  
    In an attempt to make the project scheduling more realistic and enable the project managers to 
make better decisions in regard to project activities, this paper introduces a robust multi-objective 
optimization model for Resource-Constrained Project Scheduling Problem (RCPSP) based on 
discounted cash flows and time-varying resource requirements and capacities. It is assumed that 
activities are carried out by consuming renewable resources (with variable requirements and 
capacities).The objective functions of our proposed model are the minimization of makespan, 
maximization of schedule robustness, and maximization of Net Present Value (NPV).Given that 
RCPSP inherently belongs to the class of NP-hard problems and that solving multi-objective 
mathematical optimization models with metaheuristic algorithms result in more effective 
determination of Pareto optimal solutions, two multi-objective metaheuristic algorithms, namely 
NSGA-II and MOPSO, are used to solve this model. The proposed model and the solution methods 
are evaluated by fifteen problems of different sizes derived from standard data of Project Scheduling 
Problem Library (PSPLIB). After tuning the parameters of both algorithms with Taguchi method, 
solution methods are compared in terms of five different evaluation criteria. 
    In the rest of this paper: in section 2, problem formulations, notations, and description are provided; 
in section 3, solution approaches are discussed; in section 4, the effects of anticipated variations in 
resources on the schedule are explained, problem parameters are discussed, algorithm parameters are 
tuned by Taguchi method, the criteria to be used for evaluation of the algorithms are explained, and 
the results of evaluations are presented. Finally, Section 5 presents the conclusions. 

2- Problem formulation 
    In the project scheduling problem, project consists of n activities that must be performed without 
preemption. Project structure is represented by an Activity-On-Node (AON)diagram in the form of 
the graph ( , )G V E , where V is the set of vertices (or nodes) and E  is the set of edges (or arcs), 
which represent respectively the activities and the associated precedence relations. These precedence 
relations are of finish-to-start type with zero time-lag. Graph nodes are named on a topological basis, 
in other words, the number with which an activity is labeled is greater than the label number given to 
all of its preceding activities. The nodes 1 and n of graph G are dummy nodes representing the start 
and end of project, meaning that they have a zero-long duration and need zero resources to be 
finished. All activities can be performed in only one way and each activity has a time-varying demand 
for resources over its progress. It is also assumed that resources necessary for the progress of activities 
are renewable resources with time-varying capacities (availabilities). 
In the proposed model, the above assumptions are implemented by the following notations and 
definitions: 

2-1- Sets 

j  Set of activities 

k  Set of resources 

t  Set of time periods 

G  Set of nodes and arcs on graph 

V  Set of nodes 
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E  Set of arcs 

jP  Set of direct predecessors of activity j 

jS  Set of direct successors of activity j 
 

2-2- Parameters 

n  Number of activities 

K  Number of type's renewable resources 

jd  Duration of activity j 

ktR  Availability of resource type k in time period t 

jktr  Request for resource type k by activity j in process time t 

jCF +  Positive cash flows for activity j 

jCF −  Negative cash flows for activity j  

jNDS  Number of direct successors of activity j 

α  Discounted rate 

T  Project time window 
 

2-3- Decision variables 

jES  Earliest start time of activity j 

jEF  Earliest finish time of activity j 

jLS  Latest start time of activity j 

jLF  Latest finish time of activity j 

jFS  Free slack of activity j 

jC  Completion time of activity j 

maxC  Maximum completion time 

NPV  Net present value 

Ro  Scheduling robustness 

f activity  is completed in time perI

Ot

iod

herwise

1

0jt

j t
x


= 


 

    Among the decision variables of the model, the values of jES , jEF , jLS and jLF  depend on 

precedence relations, activities durations, and project time window, and since these values are 
calculated by the model, they are listed as decision variables. Also, jFS  and jC  are secondary 

decision variables which are defined for objective function calculations. Also, maxC , NPV , and Ro  

are decision variables expressing the values of objective functions. The primary decision variable of 
this problem is jtx , which expresses the completion time of project activities. 

 
2-4- Objective functions 
    The objective functions of our proposed model are the minimization of makespan, maximization of 
schedule robustness, and maximization of Net Present Value (NPV). In the first objective function, 
the goal is to minimize the project makespan, or in other words, hasten the completion of activity n 
(like a standard RCPSP). This objective is expressed by equation 1: 
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max max( . )
j

j

LF

n jt
t EF

C C t x
=

= = ∑                            

One method to increase the robustness of a schedule against disruptions is to maximize the free float 
of activities. With adequate float considered for the schedule, if, for any reason, some activities take 
more time than initially estimated, project can be finished on time without any need for addition 
funding. The probability of occurring disruptions for an activity is directly related to its duration and 
the amount of resources required, and the effect of disruption grows with the number of activities 
directly succeeding that activity; so in the objective function, jrtr , jd and jNDS are used as weights to 

maximize the summation of free float of activities. The second objective function is expressed by 
Equation 2: 

1 1 1

( . . )
jdn K

jrt j j j
j k t

Ro r d NDS FS
= = =

=∑∑∑                   

   In the real world, every project involves at least two parties: i) the client or the project owner, and ii) 
the contractor, who undertakes the project in practice. From the contractor’s view, payments made by 
client act as revenue and payments the contractor make to procure materials and labor are the 
expenses. There are several different ways a client can pay its contractor, and method of payment may 
affect the project’s NPV from the contractor’s perspective. Ulusoy et al. (2001) have outlined several 
types of payment structures as follows: 
 
• Lump-Sum Payment (LSP) model: In this model, which is one of the most common payment 

structures, contractor receives the total amount specified in contract when the project is finished. 
Assuming that the contractor pays the expenses of all activities within their respective earliest and 
latest start dates, NPV of the LSP model will be in the form of Equation 3: 

 

( ) max

1 1

.
1

(1 )

j

j

LSn n
C j jt

LSP j t
j j t ES

CF x
NPV CF α

α

−
−+

= = =

 
= + −  + 
∑ ∑ ∑   

• Payments at Event Occurrences (PEO) model: In this method, payments will be made after 
completion of previously agreed-upon activities. 

 

 

• Payments of Activities (PAC) model: In this method of payment, contractor receives the amount 
corresponding to each activity once the activity is finished. Assuming that the contractor pays the 
expenses of all activities within their respective earliest and latest start dates, NPV of the PAC 
model will be in the form of Equation 4: 

 

( ) ( )1 1 1

.
(1 )

1 1

j

j

i

j

LSn n n
C j jti

PAC jFT t
i j j t ES

CF xCF
NPV CF α

α α

−
−+

= = = =

= = + −
+ +

∑ ∑ ∑ ∑              

•  Equal Time Intervals (ETI) model: In this model, contractor receives H-1 payments at equal 
time intervals over the course of project and receives the H-th (final) payment once the project is 
finished. The NPV of the ETI model will be in the form of Equation 5: 

 

( ) ( )

( )

( ) ( )max max

1 1
1

1 1 1

1
.

1 1 1 1

i

j

i

j

n
t

j LSH H n
j j jti H H

ETI t C C t
i i j t ES

CF
CF xCF CF CF

NPV
H

α

α α α α

−+
−− −

=

= = = =

 
+ 

 = + = + −
+ + + +

∑
∑ ∑ ∑ ∑     (5)  

  

(1) 

(2) 

(3) 

(4) 
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• Progress Payment (PP) model: In the final payment method known as the Progress Payment 
model, contractor receives regular payments at certain time intervals over the course of the 
project. For example, payments may be made at the end of each month based on the work carried 
out over that duration plus a previously agreed-upon rate acting as the contractor’s profit. The 
difference between the ETI and PP models is that in the PP model, the number of payments is not 
known in advance. 

 

   In the LSP model, maximization of NPV is equivalent to minimization of maxC . In the PEO model, 

the set of nodes at which payments will be made is known, so this has no significant effect on the 
schedule of activities. In the ETI model, payments will be made in H installments and H is known. So 
with the reduction of maxC , value of the third objective function will increase. Thus, given that the 

first objective function of the model seeks to minimize the makespan (maxC ), we use the PAC model 

in this objective function to maximize the NPV. As a result, the first objective function is expressed 
with equation 4. 
 

2-5-Proposed model 

Hence, our proposed mixed-integer optimization model is as follows: 

maxMinimize C  (6)  

1 1 1

Maximize ( . . )
jdn K

jrt j j j
j k t

Ro r d NDS FS
= = =

=∑∑∑  (7)  

( ) ( )1 1 1

.
Maximize (1 )

1 1

j

j

i

j

LSn n n
C j jti

PAC jFT t
i j j t ES

CF xCF
NPV CF α

α α

−
−+

= = = =

= = + −
+ +

∑ ∑ ∑ ∑  (8)  

Subject to:  

1 0ES =   (9)  

j j jEF ES d= +  1,2,...,j n∀ =  (10)  

{ }j iES Max EF=  ; 1, 2,...,ji P j n∀ ∈ ∀ =  (11)  

j j jLS LF d= −  1,2,...,j n∀ =  (12)  

{ }j iLF Min LS=  ; 1, 2,...,ji S j n∀ ∈ ∀ =  (13) 

nLF T=   (14)  

j j jFS LF EF= −  1,2,...,j n∀ =  (15) 

( ).
ji

i j

LFLF

it j jt
t EF t EF

t x t d x
= =

≤ −∑ ∑  1, 2,..., ; jj n i P∀ = ∀ ∈  (16)  

1
j

j

LF

jt
t EF

x
=

=∑  1,2,...,j n∀ =  (17)  

.
j

j

LF

j jt
t EF

C t x
=

= ∑  1,2,...,j n∀ =  (18) 

max jC C≥  1,2,...,j n∀ =  (19)  

1

n

j
j

T d
=

≤∑   (20) 

maxC T≤   (21) 
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1

1

jt dn

jkt jb kt
j b t

r x R
+ −

= =

≤∑ ∑  1, 2,..., ; 1, 2,..., 1jk K t T d∀ = ∀ = − +  (22) 

{ }0,1jtx =  1,2,..., ; 1, 2,...,j n t T∀ = ∀ =  (23)  
 

   The above model utilizes the objective functions described in the previous section as equations 6, 7 
and 8. Constraints 9 to 14 are the formulations tasked with calculation of earliest and latest finishing 
time of all activities. Constraint 15 calculates the free floating time of activityj . Constraint 16 
expresses the precedence relations between the project activities. Constraint 17 states that each 
activity must only have one start and one finish time, and once started must progress without any 
preemption until it is finished. Constraint 18 calculates the completion time of activityj . Constraint 

19 calculates the value of maxC . Constraint 20 determines the project’s time window and Constraint 

21 states that T (time window) is an upper bound formaxC . Constraint 22 ensures that in the presence 

of sufficient resources in a period, activity j  starts at the time b . Finally, constraint 23 defines the 
domain of decision variables. 
 

3- Solution approach 
3-1- Solution representation 
   When developing a metaheuristic algorithm, one of the notable issues is how to represent the 
solution in a way that satisfactory performance in the search space would be achievable. In the case of 
project scheduling problem, solution representation can vary depending on the involved decision 
variables. In this paper, solution is represented by a chromosome consisting of a vector of feasible 
permutation reflecting the sequence of activities. This representation allows the start and finish times 
of activities to be easily determined based on their precedence relations, required resources, and 
available resources in each period of planning. The proposed model is to be solved with continuous 
solution algorithms, so permutation of activities is determined based on the order of obtained 
numbers, or in other words, based on the use of random key strategy. Figure 2 illustrates some of the 
feasible activity sequences for the project with precedence network of figure 1. 
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Figure 1.Precedence network of a problem 
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1 4 7 3 2 5 6 8
 

1 3 4 7 6 2 5 8
 

1 4 2 3 5 6 7 8
 

1 4 3 6 2 5 7 8
 

1 2 4 7 3 5 6 8
 

Figure 2. Some of the feasible activity sequences for the project with precedence 
network of figure 1 

 

3.2. Solving methods 

3.2.1. Non-dominated Sorting Genetic Algorithm II 
   Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a multi-objective evolutionary algorithm 
introduced by Deb et al. (2002)as an improved version of the original NSGA. NSGA-II sorts the 
population of parents and offspring with an elitist strategy and improves the diversity of solutions by a 
mechanism that is based on crowding distance operator instead of niched operators. Thank to these 
features, NSGA-II has become well-known as a reliable and suitable multi-objective genetic 
algorithm and has found extensive applications in many fields. 
 
• The Proposed NSGA-II 
   In this paper, we attempt to improve the efficiency of NSGA-II for our purpose by using Arithmetic 
crossover and Gaussian mutation in the production of new population. In the Arithmetic crossover, 
the parents x1and x2having an equal number of elements will be randomly selected, and then, the 
vector α with the same number of elements as the parents will be used to produce offspring using 
equations 24 and 25. 

( )1 1 2. 1i i i i iy x xα α= + −  0 1iα≤ ≤                 (24) 

( )2 2 1. 1i i i i iy x xα α= + −  0 1iα≤ ≤                (25) 

In the Gaussian mutation, a certain number of chromosomes (this number is an adjustable algorithm 
parameter) will be randomly chosen; then µ  percent of genes of the selected chromosomes will be 

subjected to a mutation with standard deviation δ using equation 26. In cases where mutated gene 
violates a defined range, its value will be set equal to the corresponding limit of that range. 

[ ]( )' 0,1i ix x Randδ= +                          (26) 

As shown in equation 27, the value of δ  is equaled to a coefficient (β ) of the gene’s variation range. 

 
( )max min( ) (x)Var x Varδ β= −  0 1β≤ ≤             (27) 

Finally, once offspring are produced and mutated, all chromosomes will be sorted in terms of the rank 
and crowding distance value obtained according to the objectives, and the fittest chromosomes will be 
selected to form the new generation. 
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3.2.2. Multi-Objective Particle Swarm Optimization Algorithm  
   Multi-Objective Particle Swarm Optimization (MOPSO) algorithm was first introduced by Coello et 
al. (2004) as an extension of PSO for solving multi-objective problems. Unlike PSO, this algorithm 
utilizes a concept known as "repository" or "hall of fame" for storing non-dominated particles and 
Pareto front. In MOPSO, each particle moves toward a member of the repository known as the leader. 
In other words, in MOPSO, the leader chosen from the repository replaces the global best (Gbest) 
used in PSO. 

• The Proposed MOPSO 
   In this paper, MOPSO algorithm is also used to solve the proposed model. To solve the problem, as 
suggested by Coello et al. (2004), first an initial population will be created at random, then the best 
individual experience of each particle will be determined, and non-dominated members will be 
identified and stored in the repository. Each particle should select a member of the repository as the 
leader and move according to that leader. In multi-objective optimization algorithms, dispersion of the 
points in the Pareto front represents the strengths of solution, so we partition the objective space into a 
number of cells divided by gridlines; then utilizing Boltzmann method, we use equation 28 to assign 
each cell with a selection probability, and then select a cell and eventually a leader by using a roulette 
wheel mechanism. According to equation 28, cells with fewer Pareto points have a higher chance of 
being selected, thus their members have higher chance of being selected as a leader. This mechanism 
ensures satisfactory dispersion in the Pareto front. 
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                         (28)  

   In equation 28, ip  is the probability of selecting cell i , in is the number of members in cell i ,andβ  

is the leader selection pressure parameter. Once the leader is chosen and position and velocity of 
every particle are updated, the best individual experience of each particle will be updated and the new 
non-dominated members will be added to the repository. In this step, some of the existing members of 
the repository may be dominated and thus replaced by the new members. The repository can store a 
limited number of members, so there may be not enough room to store new members. In this case, 
algorithm will utilize a mechanism similar to the approach used for selecting the leader to remove 
some of the existing members of the repository. In this mechanism, equation 29 is used to assign each 
cell with a selection probability and then a roulette wheel mechanism is used to select a cell and 
eventually the member to be deleted. In equation 29, cells with higher number of Pareto points have a 
higher chance of being selected. This mechanism also ensures better dispersion in the Pareto front. 
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                           (29) 

In equation 29, iq  is the probability of selecting cell i , in is the number of members in cell i , and γ
is the deletion selection pressure parameter. The entire process, from selecting the leaders to updating 
the repository will be repeated until the desired stop condition is satisfied. 
 

4- Computational results 
    To demonstrate the effect of time-varying resource requirements and capacities, the main 
contribution of the proposed model, on the project scheduling, we assume a small project with 6 real 
(non-dummy) activities, 2 renewable resources, and a precedence network shown in figure 1. Because 
of certain reasons (e.g. labor time offs and planned maintenance operations), the amount of available 
renewable resources ( )ktR  varies over the time period as shown in table 2.The amount of resources 

needed to carry out activities ( )jktr also varies over processing time as shown in table 3.With 

makespan minimization serving as the objective, the project duration will be 11 days and the total 
amount of resources to be consumed in each time period will be as shown in figure 3. 
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Table 2. Amount of available renewable resources over each time period( )ktR  

Resource 
type 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 10 12 12 11 10 6 9 8 8 10 12 11 12 10 10 9 
2 9 9 8 7 7 8 9 9 7 8 8 6 8 9 10 6 

 

Table 3. Amount of resources needed for each activity over the course of its progress( )jktr  

Activity Resource type 
Period 

1 2 3 4 

1 
1 -- -- -- -- 
2 -- -- -- -- 

2 
1 4 4 3 5 
2 3 1 0 4 

3 
1 7 -- -- -- 
2 8 -- -- -- 

4 
1 5 4 6 -- 
2 5 2 2 -- 

5 
1 3 2 4 -- 
2 7 5 9 -- 

6 
1 5 5 -- -- 
2 1 1 -- -- 

7 
1 6 5 7 -- 
2 4 3 5 -- 

8 
1 -- -- -- -- 
2 -- -- -- -- 
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Figure 3. Total amount of consumed resources in each period when resource requirements and availability is 
variable 

   If we ignore the time-based variations of resources, or in other words, assume the amount of 
resource to be consumed ( )jktr  and to be available ( )ktR  during any given time period to be fixed 

over that period (i.e. to be equal to the average of their time-varying counterparts), the result will be a 
project with precedence network shown in figure 4. In this case, with makespan minimization 
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considered as the objective, the project duration will be 10 days and the total amount of resources to 
be consumed in each time period will be as shown in figure 5. 
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Figure 4.Precedence network of the problem in the case of fixed resources 
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Figure5. Total amount of consumed resources in each period when resource requirements and availability is 
constant 

 

 

    Table 4 shows a summary of optimal activity start times obtained with and without consideration of 
time-varying resource requirements and capacities. The difference between these two times is given in 
the column "Absolute deviation ". 
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Table 4. Comparing the obtained schedules 

Activity Activity type 

Start time 

Absolute deviation Considering 
variations in 

resources 

Ignoring 
variations in 

resources 
1 Dummy 0 0 0 
2 Real 1 0 1 
3 Real 0 6 6 
4 Real 1 0 1 
5 Real 5 7 2 
6 Real 9 7 2 
7 Real 8 3 5 
8 Dummy 11 10 1 

 

    
   As can be seen, ignoring the time-based variations in consumption and availability of resources may 
lead to underestimation of project makespan and significant deviation from the optimal activity 
sequence. Therefore, it can also affect the cost of project implementation and increase it. As table 1 
shows, the majority of previous models in the context of RCPSP models with robustness 
considerations ignore the time-based variations in resources. 
   As explained earlier, in order to solve the proposed model, two metaheuristic algorithms have been 
proposed.There are two reasons for solving the proposed model with multi-objective metaheuristics 
NSGA-II and MOPSO. First, since the proposed model is a more general version of RCPSP, which 
belongs to the class of NP-hard problems, the proposed model is NP-hard as well. Second, solving 
multi-objective problems with metaheuristics has an advantage over alternative approaches, that is, it 
allows a set of Pareto optimal solutions to be obtained at once and the solution space to be searched 
more efficiently. Figure 6 shows the set of Pareto optimal solutions given by NSGA-II for a problem 
with 12 activities and 4 types of renewable sources.  
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Figure 6. Set of Pareto optimal solutions for the proposed model 
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   As shown in figure 6, the use of completion time minimization, schedule robustness maximization, 
and cash flow NPV maximization objectives leads to a variety of solutions which, decision maker can 
choose among at will. There is also a relationship between these objectives, as schedule robustness 
(the second objective) increases with the increase of project completion time (the first objective). 
Figure 7 shows the relationship between these objectives in the outputs of NSGA-II for a problem 
with 12 activities and 4 types of renewable sources. This direct relationship is because a longer project 
completion time corresponds to longer float times for project activities, and thereby a reinforced 
schedule robustness or, to put it simply, a lower likelihood of delay in project completion.  
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Figure 7. The relationship between project completion time and scheduling robustness 

 

   It can also be observed that as the project completion time increases (the first objective), on average, 
the net present value of cash flows (the third objective) increases as well. Figure 8 highlights this 
relationship between these two objectives in the outputs of NSGA-II for a problem with 12 activities and 
4 types of renewable sources. 
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Figure 8. The relationship between project completion time and Net Present Value 
 

   To compare the efficiency of the two proposed algorithms, these solution methods are also 
evaluated by using a group of problem instances with 15, 30, 60, 90 and 120 activities and 2, 3 and 4 
renewable resources, which have been derived from the Project Scheduling Problem Library 
(PSPLIB). The problems of this library lack some of the features required for testing the proposed 
model, so the amount of resources required for each activity in each period and the available resources 
in each period (considering time-based variations) as well as the amount of receipts and payments for 
each activity are generated randomly with uniform distribution. The reason for choosing this 
particular distribution function and parameters is the presence of data with the same range in other 
articles as well as PSPLIB. Table 5 shows the parameters used for evaluating the model. 

 

Table 5. Data used for problem parameters 

Parameter 
Uniform distribution 

A B 

jktr *  
0 10 

ktR  10 40 

jCF +  18 35 

jCF −  10 18 

Others Using PSPLIB data 
* Used only for the problems with 15, 60 and 90 activities. For the problems with 30 and 120 activities, 

we have used the standard data of PSPLIB. 

 
 

 



 

 

107 

 

    Before solving the problem with NSGA-II and MOPSO, parameters of both algorithms need to be 
optimized to ensure accurate results and satisfactory performance. One simple and effective method 
of optimizing the parameters of an algorithm is the use of Taguchi tests. This approach allows our 
purpose to be achieved easily and via minimum number of trials. In this process, parameters of 
NSGA-II and MOPSO algorithms are categorized into three levels and then tuned separately for 
small, medium and large problems. The results of parameter tuning with Taguchi method are shown 
in tables 6 and 7. 

Table 6. Tuned parameters of NSGA-II algorithm 

Problem 
size 

Number of 
activities 

NSGA-II Parameters  

Max 
Iterations 

Population size 
Crossover 
Percentage 

Mutation 
Percentage 

Mutation rate 
Mutation step 

size 

Small 15J  150 200 0.9 0.2 0.1 0.05 

Medium 30J , 60J  200 300 0.9 0.2 0.1 0.05 

Large 90J , 120J  250 400 0.9 0.2 0.1 0.05 

 

Table 7. Tuned parameters of MOPSO algorithm 

Problem 
size 

Num of 
activities 

MOPSO Parameters 

Max 
Iter 

Pop 
size 

Rep 
size 

Inertia 
Weight 

IW 
damping 

rate 
1C  2C  

Num of 
Grids 

Inflation 
Rate for 
Grids 

Leader 
selection 
pressure 

Deletion 
selection 
pressure 

Mutation 
rate 

Small 15J  150 150 200 1.5 0.85 1 2 7 0.2 2 6 0.1 

Medium 30J , 60J  200 175 300 1.5 0.85 1 2 7 0.2 2 6 0.1 

Large 90J , 120J  250 200 400 1.5 0.85 1 2 7 0.2 2 6 0.1 

 

   Performance of the algorithms used for solving the proposed model is evaluated in terms of 5 
criteria described in the following. 

• Number of Pareto Solutions (NPS): One convenient criterion for measuring the performance of 
an algorithm developed for solving multi-objective problems is the number of non-dominated 
solutions found by that algorithm. This criterion is particularly more important when the problem 
has a discrete nature and there is a possibility of producing duplicate solutions for objective 
functions. Naturally, access to a higher number of Pareto solutions can assist the decision maker 
to adopt better decisions. Thus, any algorithm that can provide more Pareto solutions will be 
considered to have a better performance. 

 
• Quality Metric (QM): This criterion is one of the most important measures for comparing the 

quality of Pareto solutions obtained by two different multi-objective algorithms. To calculate this 
criterion, we compare the Pareto solutions of both algorithms together and remove the solutions 
dominated by the solution of other algorithm. The QM of each algorithm is defined as the ratio of 
the number of its remaining non-dominated solutions (after comparison) to the initial number of 
its solutions (before comparison). Naturally, the algorithm that achieves a higher QM value has a 
better performance. 

 

• Mean Ideal Distance (MID): This criterion measures the proximity of Pareto solutions to the 
ideal point ( 1 2 3, ,best best bestf f f ) and is calculated by equation 30. 
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i i i

nadir best nadir best nadir best
i

f f f f f f

f f f f f f
MID

n

=

    − − −+ +     − − −     =
∑

 
       (30)  

In equation 30, n is the number of non-dominated solutions, andbest
if and nadir

if are the best and 

worst values of objective function i  subject to existing constraints. In view of this definition, the 
algorithm with lower MID value has a better performance. 

• Diversification metric (DM): This criterion represents the dispersion of Pareto solutions and can 
be calculated by equation 31: 

 

   

22 2

1 1 2 2 3 3

1 1 2 2 3 3

max{ } min{ } max{ } min{ } max{ } min{ }i i i i i i
nadir best nadir best nadir best

f f f f f f
DM

f f f f f f

    − − −= + +     − − −     
    (31)  

This criterion in fact measures the diameter of the cube encompassing the space created by the 
boundaries of objective functions for the set of non-dominated solutions. In view of this 
definition, a higher DM value signifies the better performance of the algorithm. 

• Spacing metric (SM): This criterion measures how uniform is the dispersion of the set of non-
dominated solutions and is defined by equation 32. 

1

1

(n 1)

n

i
i

d d
SM

d

−

=

−
=

−

∑
                          (32)  

In equation 32, id denotes the Euclidean distance between consecutive solutions in the set of non-

dominated solutions obtained by the algorithm, and d  is the average of these distances. 

In this section, the discussed algorithms are evaluated by the use of fifteen problems with 15, 30, 60, 
90 and 120 activities and 2, 3 and 4 renewable resources. The values of performance evaluation 
criteria for the two algorithms are shown in tables 8-12. For better comparison, figures 9-13 illustrate 
the plots of obtained results in terms of different problem sizes. 
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Table 8. Results obtained for the test problems with 15 activities 

Number of 
activities 

Number of 
resources 

Iteration 

Comparison metrics 

NPS  QM  MID  DM  SM 

NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO 

15J  2K  
1 189 144  0.9350 0.6100  1.4722 1.4842  0.8523 0.7994  0.0044 0.0069 
2 190 156  0.9200 0.5850  1.4997 1.5330  0.7966 0.7556  0.0053 0.0065 
3 185 149  0.9412 0.6435  1.5824 1.5667  0.7414 0.6842  0.0042 0.0067 

Average 188 150  0.9321 0.6128  1.5181 1.5280  0.7968 0.7464  0.0046 0.0067 

15J  3K  
1 197 138  0.8900 0.7950  1.0918 1.2123  0.8362 0.7655  0.0038 0.0073 
2 193 164  0.8950 0.8050  1.0822 1.1668  0.8411 0.7875  0.0018 0.0061 
3 198 152  0.8800 0.7300  1.0996 1.1352  0.8264 0.7924  0.0010 0.0066 

Average 196 151  0.8883 0.7767  1.0912 1.1714  0.8346 0.7818  0.0022 0.0067 

15J  4K  
1 195 126  0.9250 0.6800  1.4182 1.6298  0.7998 0.7250  0.0051 0.0080 
2 199 141  0.8950 0.6650  1.4194 1.4980  0.7793 0.7552  0.0027 0.0071 
3 195 137  0.9400 0.5600  1.4064 1.5137  0.8071 0.7536  0.0050 0.0054 

Average 196 135  0.9200 0.6350  1.4147 1.5472  0.7954 0.7446  0.0043 0.0068 

Table 9. Results obtained for the test problems with 30 activities 

Number of 
activities 

Number of 
resources 

Iteration 

Comparison metrics 

NPS  QM  MID  DM  SM 

NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO 

30J  2K  
1 300 232  0.9467 0.6833  0.9956 1.1939  0.8204 0.7148  0.0026 0.00054 
2 300 202  0.9800 0.7200  0.9845 1.0278  0.8283 0.7854  0.0032 0.0238 
3 300 198  0.9400 0.7533  0.9784 1.4215  0.8298 0.6757  0.0025 0.0051 

Average 300 211  0.9556 0.7189  0.9862 1.2144  0.8262 0.7253  0.0028 0.0098 

30J  3K  
1 300 209  0.9333 0.7800  0.9315 1.0158  0.7981 0.7420  0.0028 0.0048 
2 298 249  0.9333 0.7167  0.9307 1.0299  0.8040 0.7376  0.0029 0.0033 
3 300 234  0.8867 0.7800  0.9187 1.0031  0.8084 0.7385  0.0031 0.0043 

Average 299 231  0.9178 0.7589  0.9270 1.0163  0.8035 0.7394  0.0029 0.0041 

30J  4K  
1 298 219  0.9567 0.3933  0.9003 0.9962  0.8032 0.7018  0.0026 0.0046 
2 300 237  0.9600 0.4433  0.8918 1.1858  0.8072 0.6463  0.0028 0.0042 
3 299 230  0.9467 0.3233  0.8991 0.9749  0.8015 0.7216  0.0022 0.0044 

Average 299 229  0.9545 0.3866  0.8971 1.0523  0.8040 0.6899  0.0025 0.0044 
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Table 10. Results obtained for the test problems with 60 activities 

Number of 
activities 

Number of 
resources 

Iteration 

Comparison metrics 

NPS  QM  MID  DM  SM 

NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO 

60J  2K  
1 300 243  0.9667 0.8233  0.8514 1.0069  0.8074 0.7139  0.0024 0.0028 
2 300 296  0.9833 0.7000  0.8514 1.0363  0.8074 0.7183  0.0024 0.0032 
3 300 296  0.9833 0.7000  0.8514 1.0363  0.8074 0.7183  0.0024 0.0032 

Average 300 278  0.9778 0.7411  0.8514 1.0265  0.8074 0.7168  0.0024 0.0031 

60J  3K  
1 300 240  0.9733 0.5600  0.8342 1.0886  0.8100 0.6846  0.0020 0.00056 
2 300 260  0.9600 0.7667  0.7104 1.0572  1.0860 0.6997  0.0012 0.0018 
3 300 244  0.9700 0.5633  0.8239 1.1681  0.8101 0.6875  0.0022 0.0041 

Average 300 248  0.9678 0.6300  0.7895 1.1046  0.9020 0.6906  0.0018 0.0022 

60J  4K  
1 300 250  0.9333 0.6267  0.7728 0.8304  0.8566 0.7975  0.0023 0.0040 
2 300 282  0.9267 0.6133  0.7728 1.0433  0.9565 0.6962  0.0023 0.00049 
3 300 219  0.9667 0.6567  0.7873 0.7808  0.9238 0.8478  0.0020 0.0076 

Average 300 250  0.9422 0.6322  0.7776 0.8848  0.9123 0.7805  0.0022 0.0040 

Table 11. Results obtained for the test problems with 90 activities 

Number of 
activities 

Number of 
resources 

Iteration 

Comparison metrics 

NPS  QM  MID  DM  SM 

NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO 

90J  2K  
1 400 364  0.9925 0.5075  0.7882 1.1714  0.8657 0.7174  0.0010 0.0012 
2 400 388  0.9900 0.5325  0.8255 1.3722  0.8283 0.6797  0.00093 0.0016 
3 400 382  0.9900 0.5525  0.8344 1.2147  0.8160 0.6952  0.00058 0.0022 

Average 400 378  0.9908 0.5308  0.8160 1.2528  0.8367 0.6974  0.0008 0.0017 

90J  3K  
1 400 327  0.9950 0.7300  0.6873 1.0535  1.5157 0.7145  0.0014 0.0031 
2 400 326  0.9800 0.7025  0.6661 1.1571  0.7616 0.6892  0.0023 0.0031 
3 400 326  0.9800 0.7025  0.6661 1.1571  1.2233 0.6892  0.0023 0.0031 

Average 400 326  0.9850 0.7117  0.6732 1.1226  1.1669 0.6976  0.0020 0.0031 

90J  4K  
1 400 347  0.9925 0.7075  0.7118 0.8857  1.1617 0.7410  0.0025 0.0029 
2 400 312  0.9775 0.8400  0.7149 1.0225  1.1887 0.7180  0.0020 0.0031 
3 400 305  0.9800 0.8175  0.7149 1.3401  1.1887 0.6697  0.0020 0.0033 

Average 400 321  0.9833 0.7883  0.7139 1.0828  1.1797 0.7096  0.0022 0.0031 
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 Table 12. Results obtained for the test problems with 120 activities 

Number of 
activities 

Number of 
resources 

Iteration 

Comparison metrics 

NPS  QM  MID  DM  SM 

NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO  NSGA-II MOPSO 

120J  2K  
1 400 299  0.9925 0.9125  0.7566 1.3622  0.6979 0.4645  0.0025 0.0034 
2 400 367  0.9925 0.9225  0.7566 1.4278  0.6979 0.4619  0.0025 0.0027 
3 400 354  0.9825 0.9475  0.7566 1.3413  0.6979 0.4557  0.0025 0.0025 

Average 400 340  0.9892 0.9275  0.7566 1.3771  0.6979 0.4607  0.0025 0.0029 

120J  3K  
1 400 303  0.9750 0.8275  0.6702 1.0645  1.0291 0.4859  0.0020 0.0033 
2 400 318  0.9875 0.8325  0.6702 0.9954  1.0291 0.4912  0.0020 0.0032 
3 400 330  0.9900 0.8650  0.6729 0.8030  1.0069 0.5331  0.0021 0.0030 

Average 400 317  0.9842 0.8417  0.6711 0.9543  1.0217 0.5034  0.0020 0.0032 

120J  4K  
1 400 260  0.9875 0.8500  0.6662 0.8200  1.2981 0.5269  0.0025 0.0039 
2 400 235  0.9875 0.9050  0.6462 0.7105  1.3397 0.6267  0.0025 0.0043 
3 400 362  0.9900 0.7300  0.6662 0.8649  1.2981 0.5185  0.0025 0.0028 

Average 400 286  0.9883 0.8283  0.6595 0.7985  1.3120 0.5574  0.0025 0.0037 
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Figure9. The result of comparing the algorithms in terms of NPS 
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Figure10. The result of comparing the algorithms in terms of QM 
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Figure11. The result of comparing the algorithms in terms of MID  
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Figure 12.The result of comparing the algorithms in terms of DM 
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Figure 13.The result of comparing the algorithms in terms of SM 

 

 

    As can be seen, the proposed solution methods is assessed based on fifteen problem instances of 
different sizes, each of which is solved 3 times with both NSGA-II and MOPSO algorithm. Tables 8-
12 show the value of five evaluation criteria for the problems with 15, 30, 60, 90 and 120 activities. 
The mean values of performance criteria NPS, QM, MID, DM and SM, obtained after solving the 
problems of different sizes are shown respectively in the graphs of Figures 9-13. According to these 
graphs, the following results can be concluded. 

• For each specific problem, although the population size in NSGA-II is equal to the repository size 
in MOPSO algorithm, NSGA-II has obtained a higher number of unique Pareto solutions. 

• From the QM perspective, regardless of the problem size, NSGA-II has shown better capability 
than MOPSO in providing Pareto optimal solutions of higher quality. 

• NSGA-II also outperforms MOPSO in terms of MID criterion. This advantage of NSGA-II 
gradually grows with the size of the problem. 

• For each specific problem, NSGA-II has a better DM value than MOPSO, which signifies its 
ability to search for non-dominated solutions more extensively and thus provide the decision-
maker(s) with more alternatives.  

• The results show that for each specific problem, NSGA-II yields non-dominated solutions with 
lower SM values; a result that again points to its superiority over MOPSO. 

 
In conclusion, the results show that features of NSGA-II and effectiveness of its mechanism in finding 
Pareto optimal solutions of the proposed model allow it to exhibit better performance in this 
application. This superiority of NSGA-II over MOPSO algorithm is evident in all proposed evaluation 
criteria and for the problems of all sizes. 

5- Conclusion 
   In this paper, we introduced a multi-objective mathematical model for robust resource-constrained 
project scheduling with discounted cash flows, time-varying resource requirements, and time-varying 
resource capacities. In the proposed model, the goal is to minimize the project makespan, maximize 
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the schedule robustness, and maximize NPV simultaneously, in order to assist the project managers to 
make better and more realistic decisions for timely completion of project activities. It was found that 
ignoring the predicted time-based variations in consumption and availability of resource (assuming 
them to be constant over time) may lead to inaccurate scheduling; thus to avoid this issue, these 
variations were incorporated into the proposed model. Since RCPSP belongs to the class of NP-hard 
problems and solving multi-objective mathematical optimization models with metaheuristic 
algorithms leads to more effective determination of Pareto optimal solutions, two multi-objective 
metaheuristic algorithms, NSGA-II and MOPSO, were adjusted and used to solve this model. The 
proposed solution methods were evaluated by fifteen problems of different sizes, which were derived 
from the problems of PSPLIB. After tuning the parameters of both algorithms with Taguchi method, 
solution methods were compared in terms of five different evaluation criteria NPS, QM, MID, DMand 
SM. The comparisons showed that, on average, NSGA-II yields better results than MOPSO algorithm. 
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