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Abstract 
In this article studies the leaderless formation control problem for a multi-robot 
system with double integrator dynamics and the interaction dynamics among 
robots and the formation objective are added together and expressed in terms of 
individual cost functions. The problem is posed as a linear quadratic differential 
game. For the non-cooperative mode of play, the open-loop Nash equilibrium 
solution of the formation control differential game problem is discussed. We 
show that the existence of a unique Nash equilibrium solution for the formation 
problem, whose cost functions are Mayer type, depends on the invertibility of a 
matrix introduced. A triangle formation is tested to justify the models and the 
results. 
Keywords: Linear quadratic formulation, formation control, differential 
games, non-cooperative players, Nash equilibrium 

1- Introduction 
    A formation is a collective behaviour exhibited by animal groups mostly during foraging and 
migration. The most common formation is the V (triangle) shape which could be seen among 
migrating bird flocks. The group flight information reduces the energy required by individual birds 
(Lissaman and Shollenberger, 1970). Formation control is one of the first problems that arise in multi-
robot systems. It is defined as designing control inputs for the robots so that they form and maintain a 
pre-defined geometric shape. This problem has been studied using different approaches, such as 
behaviour-based, leader-follower and virtual structure (Balch, and Arkin, 1998), (Das et al., 2002), 
(Benzerrouk, et al., 2010) and (Xu et al., 2014).  
   The current literature mostly relies on the leader-follower approach. The leader robot tracks the 
desired trajectory while the follower robots keep the formation by following the leader with a fixed 
distance. While the leader-follower approach is a popular design for the formation control, there are 
limitations. The loss of the leader causes the entire group formation to fail. If the leader only is 
tracking the desired trajectory without taking the formation error into account, in such situation, the 
formation can become disjoint and followers can be left behind if they are not able to track the motion 
of the leader accurately (Ren and Sorensen, 2008).  
   Moreover, the formation control might also be in the leaderless structure, where all robots have the 
same role and none of them generates a command target trajectory. In order to maintain a formation, 
agents in a robot team need to exchange information like relative displacement, velocity etc. 
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   The formation control problem is more challenging when the robots have different objectives. A 
robot may choose his objectives based on relative displacement and velocity errors with the 
immediate neighbours in the graph topology. In other words, each robot could have its own cost 
function that is only related to neighbours, not the whole team. Thereby, because of the robots' 
different objectives that are formed individually based on one's local information, analysing the 
formation control problem falls within the scope of game theory. Game theoretic approaches have 
been used to solve the formation control problem. In Zhang et al., (2014), formation control problem 
under directed and time-varying topology is investigated with a class of weakly acyclic game. In Lee 
et al. (2014), the formation control problem is solved based on the Nash equilibrium strategies 
incorporating model predictive control (MPC). In Rantzer (2008), the objective of vehicle formation 
control problem is decomposed into individual objectives for all vehicles using a price in the form of 
a minmax potential game and the Nash equilibrium is achieved.  
   In game theory, the differential game is used for the modelling and analysis of conflict in the 
context of a dynamical system. Each player attempts to control the state of the system to achieve his 
goal. The interest for using differential game to model and analyse the optimized behaviour in multi-
agent systems has been increasing. The use of differential game methodology to analyse multi-agent 
behaviours, such as power control in cognitive radio in the area of wireless communication (Xu, H. & 
Zhou, X. (2013)), multi-agent consensus (Semsar-Kazerooni and Khorasani, 2009), swarm foraging 
(Özgüler and Yıldız, 2014) and pursuit-evasion (Lin et al. 2015) has been reported.  
   Within differential games, the framework of linear quadratic differential games is used to model 
problems where the dynamics of the system is described by a set of linear differential equations. In 
particular, in the area of multi-robot formation control, the differential game has been used in Gu 
(2008), Lin (2014) and Mylvaganam, and Astolfi (2015). In Gu (2008), the formation control problem 
is formulated as a linear quadratic tracking problem and the open-loop Nash equilibrium solution is 
used as a self-enforcing controller for all robots in the formation. In Lin (2014), formation control of a 
multiple-UAV (unmanned aerial vehicle) system using differential game approach is studied and a 
distributed Nash strategy design is proposed. Mylvaganam and Astolfi (2015), studied the formation 
control problem with one leader and 𝑁𝑁 follower fashion taking into account collision avoidance and 
formulate it in the form of a nonlinear differential game and the approximate solution to the game is 
given. The linear quadratic differential game in the cooperative and non-cooperative manner has been 
focused in Engwerda (2005). It is stated that the non-cooperative linear quadratic differential game 
under the open-loop information structure has a unique Nash equilibrium solution if and only if a set 
of coupled Riccati differential equations are solvable. Obtaining solutions to the coupled Riccati 
differential equations associated with linear-quadratic differential games are generally not straight-
forward if such solutions exist. The precise integration method is proposed in Peng et al., (2013) to 
solve the non-cooperative type of these coupled equations. 
   In this paper, we consider the leaderless formation control problem for mobile robots with double 
integrator dynamics. The interaction dynamics among robots and the formation objective are added 
together and expressed in terms of individual cost functions. Every individual robot aims to minimize 
its own cost. Herein, each robot in the formation can be viewed as a player or decision maker of a 
differential game. Considering the fact that analysing linear-quadratic differential games are generally 
not straight-forward, we show that the existence of a unique Nash equilibrium solution for the 
formation problem as a differential game, whose cost functions are Mayer type, depends on the 
invertibility of a matrix introduced. In the literature, the linear quadratic differential game setting 
approach has been used in Gu (2008) for the leader-follower formation control problem. The model 
presented in this paper shows much more straightforwardness in analysing the problem with the 
Mayer type of cost functions.  
   The remainder of this paper is organized as follows: Required preliminaries in algebraic graph 
theory and linear quadratic differential game theory are given in section 2. The formation control 
problem is modelled as a standard linear quadratic differential game in section 3. The open-loop Nash 
equilibrium solution is discussed in section 4. The leaderless formation control problem as a Mayer 
type differential game is discussed in section 5. The simulation results are illustrated in section 6. 
Conclusion and future work are expressed in section 7.  
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2- Preliminaries 
   The statement of formation control problem in this paper was based upon in algebraic graph theory 
in basic level and the special class of non-cooperative linear quadratic differential game.   

2-1- Algebraic graph theory 
   A directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) consists of a set of vertices 𝑉𝑉 = {1,2, … ,𝑚𝑚} and a set of edges 𝐸𝐸 ⊆
{(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉} such as 𝑗𝑗 ≠ 𝑖𝑖 and (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 ⇎ (𝑗𝑗, 𝑖𝑖) ∈ 𝐸𝐸 (i.e., the graph has no self-loops and 
contains only ordered pairs of distinct vertices). This definition can be easily assigned to a networked 
dynamical system to represent the interconnections between the network’s nodes. For the formation 
control problem the set of vertices 𝑉𝑉 corresponds to the robots in the formation and then the set of 
edges 𝐸𝐸 represents the interconnections for formation. We make the following assumption about the 
formation graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸). 
Assumption 1. The following statements hold for the directed graph 𝐺𝐺:  
a) 𝐺𝐺is time-invariant, i.e., 𝐸𝐸 is a fixed set. 
b) each edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 is assigned a weight 𝜔𝜔𝑖𝑖𝑖𝑖 > 0. 
c) 𝐺𝐺is connected, i.e., for every pair of vertices 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, from 𝑖𝑖 to 𝑗𝑗 for all 𝑗𝑗 = 1, . . . ,𝑚𝑚, 𝑗𝑗 ≠ 𝑖𝑖, there 
exists a path of (undirected) edges from 𝐸𝐸. ∎ 
   Laplacian graphs are used widely to analyse the behaviour of networked systems. In Dong et al., 
(2017), the formation problem is solved with a distributed protocol based on the Laplacian matrix. 
The Laplacian graph 𝐿𝐿 associated with the graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a 𝑚𝑚 × 𝑚𝑚 matrix that is defined as  
 
𝐿𝐿 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇                                                                                                                                            (1) 
 
Where𝐷𝐷 is the incidence matrix with order 𝑚𝑚 × |𝐸𝐸| and 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝑖𝑖𝑖𝑖) is a diagonal weight matrix 
with dimension |𝐸𝐸|. 𝐷𝐷's 𝑢𝑢𝑢𝑢th element is 1 if the node 𝑢𝑢 is the head of the edge𝑣𝑣, -1 if the node 𝑢𝑢 is 
the tail, and 0, otherwise. The 𝑛𝑛-dimensional graph Laplacian 𝐿𝐿 can be defined as   
 
𝐿𝐿 = 𝐿𝐿⨂𝐼𝐼𝑛𝑛                                                                                                                                              (2) 

 
Where 𝐼𝐼𝑛𝑛 is the identity matrix of dimension 𝑛𝑛 and ⨂ is the Kronecker product that satisfies the 
following properties: 
 
(𝑋𝑋⊗ 𝑌𝑌)𝑇𝑇 = 𝑋𝑋𝑇𝑇 ⊗ 𝑌𝑌𝑇𝑇, (𝑋𝑋⊗ 𝑌𝑌)(𝑈𝑈⊗ 𝑉𝑉) = (𝑋𝑋𝑋𝑋) ⊗ (𝑌𝑌𝑌𝑌) 
 
For real value matrices 𝑋𝑋, 𝑌𝑌, 𝑈𝑈 and 𝑉𝑉. Based on these properties, (2) can be rearranged as 
 
𝐿𝐿 = 𝐷𝐷𝑊𝑊𝑊𝑊𝑇𝑇 ⊗ 𝐼𝐼𝑛𝑛 = (𝐷𝐷⊗ 𝐼𝐼𝑛𝑛)(𝑊𝑊⊗ 𝐼𝐼𝑛𝑛)(𝐷𝐷⊗ 𝐼𝐼𝑛𝑛)𝑇𝑇 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇                                                           (3) 
 
Where 𝐷𝐷 = 𝐷𝐷⊗ 𝐼𝐼𝑛𝑛 and𝑊𝑊 = 𝑊𝑊⊗ 𝐼𝐼𝑛𝑛.  
 
The following lemma expresses the basic properties of the Laplacian graph. 
Lemma 1: For the directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with the properties were mentioned in Assumption 1, 
the following statements are true. 
a) 𝐿𝐿 is symmetric and positive semi definite. 
b) For a vector ∈ 𝑅𝑅𝑛𝑛𝑛𝑛 , 𝐿𝐿 holds the property of sum-of-squares: 
 
𝑧𝑧𝑇𝑇𝐿𝐿𝐿𝐿 = ∑ 𝜔𝜔𝑖𝑖𝑖𝑖‖𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖‖

2
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸                                                                                                              (4) 

Where 𝑧𝑧 = [𝑧𝑧1𝑇𝑇 , … , 𝑧𝑧𝑚𝑚𝑇𝑇]𝑇𝑇, 𝑧𝑧𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 for 𝑖𝑖 = 1, … ,𝑚𝑚, and ‖. ‖ is the Euclidean norm in 𝑅𝑅𝑛𝑛.  
Proof: These two results are well-known in algebraic graph theory and their proof can be found in 
Merris, (1994). ∎ 
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2-2- Linear quadratic differential game    
   Consider an 𝑚𝑚-player game described by the following state equation: 
 
𝑧̇𝑧 = 𝐴𝐴𝐴𝐴 + ∑ 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖𝑚𝑚

𝑖𝑖=1 ,   𝑧𝑧(0) = 𝑧𝑧0                                                                                                          (5) 
 
where 𝑧𝑧 is the state vector of the game, 𝑢𝑢𝑖𝑖 is a control vector player 𝑖𝑖 can manipulate, 𝑧𝑧0 is the initial 
state of the game, 𝐴𝐴, 𝐵𝐵𝑖𝑖 (𝑖𝑖 = 1, … ,𝑚𝑚) are constant matrices of appropriate dimensions and 𝑧̇𝑧 denotes 
the time derivative of 𝑧𝑧. The objective for every player is the minimization of his cost by choosing 
appropriate controls for the underlying dynamical system (5). The cost function player 𝑖𝑖 aims to 
minimize is:  
 
𝐽𝐽𝑖𝑖 = 𝑧𝑧(𝑇𝑇)𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧(𝑇𝑇) + ∫ (𝑧𝑧𝑇𝑇𝑄𝑄𝑖𝑖𝑧𝑧 + ∑ 𝑢𝑢𝑗𝑗𝑇𝑇𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗)𝑑𝑑𝑑𝑑𝑚𝑚

𝑗𝑗=1
𝑇𝑇
0                                                                         (6) 

 
Where  𝑇𝑇 is the finite time horizon, 𝑄𝑄𝑖𝑖𝑖𝑖 and𝑄𝑄𝑖𝑖 are symmetric positive semidefinite matrices  
(𝑄𝑄𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖 ≥ 0), and 𝑅𝑅𝑖𝑖𝑖𝑖 are symmetric positive definite (𝑅𝑅𝑖𝑖𝑖𝑖 > 0). Suppose that the players have 
noncooperative behavior (i.e., they are assumed not to collaborate in trying to attain their objectives). 
For the noncooperative linear quadratic finite horizon differential game, the natural solution concept 
is the Nash equilibrium. Nash equilibrium is a strategy combination of all players with the property 
that no one can gain lower cost by unilaterally deviating from it. Under the open-loop information 
structure in the game defined by (5) and (6), the open-loop Nash equilibrium is defined as the set of 
admissible actions (𝑢𝑢1

∗ , … , 𝑢𝑢𝑚𝑚∗ ) if for all admissible (𝑢𝑢1, … , 𝑢𝑢𝑚𝑚) the following inequalities: 
 
𝐽𝐽𝑖𝑖(𝑢𝑢1∗ , … ,𝑢𝑢𝑖𝑖−1∗ ,𝑢𝑢𝑖𝑖∗,𝑢𝑢𝑖𝑖+1∗ , … ,𝑢𝑢𝑚𝑚∗ ) ≤ 𝐽𝐽𝑖𝑖(𝑢𝑢1∗, … ,𝑢𝑢𝑖𝑖−1∗ ,𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖+1∗ , … ,𝑢𝑢𝑚𝑚∗ ) 

𝑢𝑢𝑖𝑖 ∈ 𝛤𝛤𝑖𝑖  holds for 𝑖𝑖 = 1, … ,𝑚𝑚 where𝛤𝛤𝑖𝑖 is the admissible strategy set for player 𝑖𝑖.  
Remark 1: According to Engwerda, (1998), since the stated assumptions in the definition of this 
game, the cost function 𝐽𝐽𝑖𝑖 (𝑖𝑖 = 1, … ,𝑚𝑚) is a strictly convex function of 𝑢𝑢𝑖𝑖 for all admissible control 
functions 𝑢𝑢𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖 and for all 𝑧𝑧0. This implies that the conditions following from the minimum 
principle are both necessary and sufficient.  
   The results of the minimum principle for open-loop Nash equilibrium of the differential game (5) 
and (6) are given in the following theorem.  
Theorem 1. For the linear quadratic differential game (5) and (6), let there exist a solution set 
 (𝑃𝑃𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚) to the coupled Riccati differential equations: 
 
𝑃̇𝑃𝑖𝑖 + 𝑃𝑃𝑖𝑖𝐴𝐴 − 𝑃𝑃𝑖𝑖 ∑ 𝑆𝑆𝑗𝑗𝑃𝑃𝑗𝑗𝑚𝑚

𝑗𝑗=1  + 𝑄𝑄𝑖𝑖 + 𝐴𝐴𝑇𝑇𝑃𝑃𝑖𝑖 = 0,      𝑃𝑃𝑖𝑖(𝑇𝑇) = 𝑄𝑄𝑖𝑖𝑖𝑖                                                                (7) 
 
Where 𝑆𝑆𝑖𝑖 = 𝐵𝐵𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖−1𝐵𝐵𝑖𝑖𝑇𝑇. Then, the differential game has a unique open-loop Nash equilibrium given by: 
 
𝑢𝑢𝑖𝑖∗ = −𝑅𝑅𝑖𝑖𝑖𝑖−1𝐵𝐵𝑖𝑖𝑇𝑇𝑃𝑃𝑖𝑖𝛷𝛷(𝑡𝑡, 0)𝑧𝑧0                                                                                                                    (8) 
 
where 𝛷𝛷(𝑡𝑡, 0) satisfies: 
𝛷̇𝛷(𝑡𝑡, 0) = (𝐴𝐴 − ∑ 𝑆𝑆𝑖𝑖𝑃𝑃𝑖𝑖𝑚𝑚

𝑖𝑖=1 )𝛷𝛷(𝑡𝑡, 0),         𝛷𝛷(0,0) = 𝐼𝐼.                                                                          (9) 
 
Proof: The proof can be found in Engwerda (2005) for two-player games with adding this note that 
the proof results can be generalized straightforward to the game in (5) and (6). ∎ 
   Theorem 1 provides a set of sufficiency conditions for the existence of open-loop Nash equilibrium 
solution. However, it can be shown that a Nash equilibrium may exist even if (7) does not admit a 
solution as indicated in example 6.2 in Engwerda (2005). 

3- The formation control problem 
   Consider a networked system of 𝑚𝑚 mobile robots, each of which is described by a double integrator 
dynamics as the following: 
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𝑞̇𝑞𝑖𝑖 = 𝑣𝑣𝑖𝑖,  𝑣̇𝑣𝑖𝑖 = 𝑢𝑢𝑖𝑖                                                                                                                                  (10) 
 
Where 𝑞𝑞𝑖𝑖 ,𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 (𝑖𝑖 = 1, … ,𝑚𝑚) are 𝑛𝑛-dimensional coordinates (e.g., 𝑛𝑛 = 2, 3), velocity and 
control vectors, respectively. In this model control 𝑢𝑢𝑖𝑖 is considered input for robot 𝑖𝑖, and hence the 
formation control problem is defined as designing control inputs for the robots so that they form and 
maintain a pre-defined geometric shape. The control objective for leaderless formation control can be 
expressed as to design 𝑢𝑢𝑖𝑖 such that 
 
‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖‖ → 0                                                                                                                           (11) 
 
As 𝑡𝑡 → 𝑇𝑇 and (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 where 𝑑𝑑𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 is the desired distance vector between 𝑖𝑖 and 𝑗𝑗. To control the 
group of robots to keep the formation cohesively, the secondary objective is:  
 
‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖ → 0.                                                                                                                                    (12) 
 
The formation and velocity error vector can be considered in form of:  
 
‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖‖ + ‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖                                                                                                              (13) 
 
and then, the whole group formation and velocity error can be expressed in quadratic form as: 
 
∑ 𝜔𝜔𝑖𝑖𝑖𝑖(‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖‖

2 + ‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖
2)(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 .                                                                                   (14) 

 
Remark 2: It can be verified easily from Lemma 1(b) that 𝐿𝐿 holds the following property:  
 
∑ 𝜔𝜔𝑖𝑖𝑖𝑖(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖) = 𝑧𝑧𝑇𝑇𝐷𝐷𝐷𝐷(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖 . 
 
Using the results in Lemma 1 and Remark 2, the formation and velocity error (14) can be transformed 
into a matrix representation as the following: 
 
� 𝜔𝜔𝑖𝑖𝑖𝑖(‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖‖

2 + ‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖
2)

(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖

= � 𝜔𝜔𝑖𝑖𝑖𝑖(‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗‖
2 − 2(𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗)

𝑇𝑇𝑑𝑑𝑖𝑖𝑖𝑖 + ‖𝑑𝑑𝑖𝑖𝑖𝑖‖
2 + ‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖

2)
(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖

 

= 𝑞𝑞𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑞𝑞 − 2𝑞𝑞𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑑𝑑𝑇𝑇𝑊𝑊𝑊𝑊 + 𝑣𝑣𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑣𝑣

= �
𝑞𝑞
1
𝑣𝑣
�
𝑇𝑇

�
ℒ −𝒟𝒟𝒲𝒲𝑑𝑑 0

−(𝒟𝒟𝒲𝒲𝒲𝒲)𝑇𝑇 𝑑𝑑𝑇𝑇𝒲𝒲𝒲𝒲 0
0 0 ℒ

� �
𝑞𝑞
1
𝑣𝑣
� 

Where 𝑞𝑞 = [𝑞𝑞1𝑇𝑇 , … , 𝑞𝑞𝑚𝑚𝑇𝑇]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛 and 𝑣𝑣 = [𝑞̇𝑞1𝑇𝑇 , … , 𝑞̇𝑞𝑚𝑚𝑇𝑇]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛. This expression can be shown in 
compact form: 

�
𝑞𝑞
1
𝑣𝑣
�
𝑇𝑇

�
ℒ −𝒟𝒟𝒲𝒲𝑑𝑑 0

−(𝒟𝒟𝒲𝒲𝒲𝒲)𝑇𝑇 𝑑𝑑𝑇𝑇𝒲𝒲𝒲𝒲 0
0 0 ℒ

� �
𝑞𝑞
1
𝑣𝑣
� = 𝑧𝑧𝑇𝑇𝑄𝑄𝑄𝑄                                                                                    (15)                            



52 
 

where 𝑧𝑧 = [𝑞𝑞𝑇𝑇 , 1, 𝑣𝑣𝑇𝑇]𝑇𝑇 ∈ 𝑅𝑅2𝑛𝑛𝑛𝑛+1, 𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐[𝑑𝑑𝑖𝑖𝑖𝑖] ∈ 𝑅𝑅𝑛𝑛𝑛𝑛 is the whole formation desired distance 

vector and 𝑄𝑄 = �
ℒ −𝒟𝒟𝒲𝒲𝑑𝑑 0

−(𝒟𝒟𝒲𝒲𝒲𝒲)𝑇𝑇 𝑑𝑑𝑇𝑇𝒲𝒲𝒲𝒲 0
0 0 ℒ

�. Formation matrix 𝑄𝑄 has a property which is given 

below.  
Remark 3.Since 𝑧𝑧(𝑡𝑡)𝑇𝑇𝑄𝑄𝑄𝑄(𝑡𝑡) ≥ 0, formation matrix 𝑄𝑄is positive semi definite(𝑄𝑄 ≥ 0). 
   On the other hand, let 𝑧𝑧 and 𝑢𝑢 = [𝑢𝑢1𝑇𝑇 , … ,𝑢𝑢𝑚𝑚𝑇𝑇]𝑇𝑇 ∈ 𝑅𝑅2𝑛𝑛𝑛𝑛 be the state and control vectors, 
respectively. Differentiating the state vector 𝑧𝑧 with respect to 𝑡𝑡 we have:  
𝑧̇𝑧 = [𝑞̇𝑞𝑇𝑇 , 0, 𝑣̇𝑣𝑇𝑇]𝑇𝑇 = [𝑣𝑣𝑇𝑇 , 0,𝑢𝑢𝑇𝑇]𝑇𝑇 

and expressing 𝑧̇𝑧 in terms of state-space representation yields: 
 
𝑧̇𝑧 = 𝐴𝐴𝐴𝐴 + ∑ 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖𝑚𝑚

𝑖𝑖=1                                                                                                                                               (16) 
 
Where 𝐴𝐴 �0 𝐼𝐼𝑛𝑛𝑛𝑛

0 0 � ∈ 𝑅𝑅2𝑛𝑛𝑛𝑛+1,𝐵𝐵𝑖𝑖 = [0, 𝑏𝑏𝑖𝑖
𝑇𝑇]𝑇𝑇 ∈ 𝑅𝑅(2𝑛𝑛𝑛𝑛+1)×𝑛𝑛 and 𝑏𝑏𝑖𝑖 = [0 … 𝐼𝐼𝑛𝑛 … 0]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛×𝑛𝑛. Linear 

differential state equation (16) is the dynamics of the group of the mobile robots.  
   In the formation graph 𝐺𝐺 each vertex (robot) 𝑖𝑖 ∈ 𝑉𝑉 can choose its own weight matrix 𝑊𝑊𝑖𝑖regarding 
with the immediate neighbours in the graph topology. Suppose that in a formation graph with 4 nodes 
and |𝐸𝐸| = 3 the set of neighbors of vertex 2 are 1 and 3. Then, 𝑊𝑊2 will be selected as 

 

𝑊𝑊2 = �
𝜔𝜔21 0 0

0 𝜔𝜔23 0
0 0 0

�. 

 
Note that the entries of  𝑊𝑊𝑖𝑖 (i.e., 𝜔𝜔𝑖𝑖𝑖𝑖 for all 𝑗𝑗 such that (𝑖𝑖, 𝑗𝑗)𝜖𝜖𝜖𝜖) can be selected to reflect a motion 
situation, for instance, individual robots can choose these entries based on the fuel level in their tank. 
When individual robots have chosen their weight matrix based on a variety of factors, individual robot 
𝑖𝑖 will have its own 𝐿𝐿𝑖𝑖 and 𝑄𝑄𝑖𝑖 matrices.  
   Using the finite horizon cost function concept in the optimal control theory we can define the 
formation and velocity error expression 𝑧𝑧𝑇𝑇𝑄𝑄𝑄𝑄 in form of a finite horizon quadratic cost function for 
robot 𝑖𝑖 to minimize as the following: 
 
𝐽𝐽𝑖𝑖 = 𝑧𝑧(𝑇𝑇)𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧(𝑇𝑇) + ∫ (𝑧𝑧𝑇𝑇𝑄𝑄𝑖𝑖𝑧𝑧 + ∑ 𝑢𝑢𝑗𝑗𝑇𝑇𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗𝑚𝑚

𝑗𝑗=1 )𝑑𝑑𝑑𝑑𝑇𝑇
0                                                                       (17) 

 
Where 
 

𝑄𝑄𝑖𝑖𝑖𝑖 = �
ℒ𝑖𝑖𝑖𝑖 −𝒟𝒟𝒲𝒲𝑖𝑖𝑖𝑖𝑑𝑑 0

−(𝒟𝒟𝒲𝒲𝑖𝑖𝑖𝑖𝑑𝑑)𝑇𝑇 𝑑𝑑𝑇𝑇𝒲𝒲𝑖𝑖𝑖𝑖𝑑𝑑 0
0 0 ℒ𝑖𝑖𝑖𝑖

�, 𝑄𝑄𝑖𝑖 = �
ℒ𝑖𝑖 −𝒟𝒟𝒲𝒲𝑖𝑖𝑑𝑑 0

−(𝒟𝒟𝒲𝒲𝑖𝑖𝑑𝑑)𝑇𝑇 𝑑𝑑𝑇𝑇𝒲𝒲𝑖𝑖𝑑𝑑 0
0 0 ℒ𝑖𝑖

�, 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑊𝑊𝑖𝑖𝑖𝑖𝐷𝐷𝑇𝑇,  

 
𝐿𝐿𝑖𝑖 = 𝐷𝐷𝑊𝑊𝑖𝑖𝐷𝐷𝑇𝑇, 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖 ⊗ 𝐼𝐼𝑛𝑛, 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜔𝜔𝑖𝑖𝑖𝑖], 𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖 ⊗ 𝐼𝐼𝑛𝑛, 𝑊𝑊𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜇𝜇𝑖𝑖𝑖𝑖] and 𝜇𝜇𝑖𝑖𝑖𝑖 ≥ 0, 
𝑅𝑅𝑖𝑖𝑖𝑖 > 0 are the weight parameters.  
Remark 4: From (17) and (14), we can see that the term for terminal formation and velocity error is 
 
𝑧𝑧(𝑇𝑇)𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧(𝑇𝑇) = � 𝜔𝜔𝑖𝑖𝑖𝑖(‖𝑞𝑞𝑖𝑖(𝑇𝑇) − 𝑞𝑞𝑗𝑗(𝑇𝑇) − 𝑑𝑑𝑖𝑖𝑖𝑖‖

2 + ‖𝑞̇𝑞𝑖𝑖(𝑇𝑇) − 𝑞̇𝑞𝑗𝑗(𝑇𝑇)‖2)
(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖

 

and the term for formation and velocity error for the entire process is 
𝑧𝑧𝑇𝑇𝑄𝑄𝑖𝑖𝑧𝑧 = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖(‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖‖

2 + ‖𝑞̇𝑞𝑖𝑖 − 𝑞̇𝑞𝑗𝑗‖
2)(𝑖𝑖,𝑗𝑗)𝜖𝜖𝜖𝜖 . 

Remark 5: Notice from Remark 3 that the matrices 𝑄𝑄𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑖𝑖 are positive semidefinite. With this in 
mind and considering that all matrices are real value and symmetric as well as 𝑅𝑅𝑖𝑖𝑖𝑖 is positive definite 
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(by definition), 𝐽𝐽𝑖𝑖(𝑢𝑢) is then a strictly convex function of 𝑢𝑢𝑖𝑖 for all admissible control functions 𝑢𝑢𝑗𝑗, 
𝑗𝑗 ≠ 𝑖𝑖 and for all 𝑧𝑧0 (from (16)).  
    By state equation (16) and cost functions (17), it can be seen that the leaderless formation control 
problem is transformed into a standard linear quadratic differential game problem given in (5) and (6). 
For this formation game, considering players of the game in a non-cooperative manner as well as that, 
all players make their decision based on initial state 𝑧𝑧(0) = 𝑧𝑧0, (i.e., the open-loop information 
structure is available in the game), the open-loop Nash equilibrium solution in Theorem 1 can be used 
as the formation control strategy for all the robots. In the next section, open-loop Nash equilibrium for 
the formation control is described in details.  

4- Open-loop Nash formation control  
   In the past section, the leaderless formation control problem was considered as a non-cooperative 
linear quadratic differential game. This game under the open-loop information structure admits an 
open-loop Nash equilibrium solution given in the theorem 1. Moreover, the equilibrium associated 
state trajectory is given by: 

𝑧𝑧∗ = [𝐼𝐼0 … 0  ]𝑒𝑒𝑀𝑀(𝑇𝑇−𝑡𝑡) �

𝐼𝐼
𝑄𝑄1𝑇𝑇
⋮

𝑄𝑄𝑚𝑚𝑚𝑚

�𝐻𝐻(𝑇𝑇)−1𝑧𝑧0                                                                                           (18) 

where 

𝐻𝐻(𝑇𝑇) = [𝐼𝐼0 … 0  ]𝑒𝑒𝑀𝑀𝑀𝑀 �
𝐼𝐼
𝑄𝑄1𝑇𝑇
⋮

𝑄𝑄𝑚𝑚𝑚𝑚

�and 𝑀𝑀 �

 −𝐴𝐴 𝑆𝑆1
𝑄𝑄1 𝐴𝐴𝑇𝑇

… 𝑆𝑆𝑚𝑚
0 0

⋮ 0
𝑄𝑄𝑚𝑚 0

⋱ 0
0 𝐴𝐴𝑇𝑇

�. 

 
   As it seen the equilibrium associated state trajectory exists if 𝐻𝐻(𝑇𝑇) is invertible. Additionally, it can 
be shown that the invertibility of 𝐻𝐻(𝑇𝑇) is equivalent to the existence of a unique open-loop Nash 
equilibrium (Engwerda, (2005)). We have the following result for the formation control problem 
based on the minimum principle conditions.  
Theorem 2. Suppose that the formation control problem as a differential game in (16) and (17) 
satisfies the existence condition of unique open-loop Nash equilibrium as stated in Theorem 1. Then, 
𝐻𝐻(𝑇𝑇) is invertible for all 𝑇𝑇 > 0. 
Proof: Engwerda and Weeren (1995) shows that if a set of coupled Riccati differential equations (7) 
has a solution on [0, 𝑇𝑇], this solution is: 
𝑃𝑃𝑖𝑖 = 𝐺𝐺𝑖𝑖(𝑇𝑇 − 𝑡𝑡)𝐻𝐻(𝑇𝑇 − 𝑡𝑡)−1 

where 

𝐺𝐺𝑖𝑖(𝑇𝑇 − 𝑡𝑡) = [00 … 𝐼𝐼… 0  ]𝑒𝑒𝑀𝑀(𝑇𝑇−𝑡𝑡) �

𝐼𝐼
𝑄𝑄1𝑇𝑇
⋮

𝑄𝑄𝑚𝑚𝑚𝑚

�. 

 
   It can be seen that the invertibility of 𝐻𝐻(. ) is vital to obtain 𝑃𝑃𝑖𝑖. This proves the theorem.∎ 
Remark 6: In example 6.2 in Basar and Olsder (1999) for the two-player linear quadratic game, it has 
been shown that for horizon length 𝑇𝑇 = 0.1 matrix 𝐻𝐻(𝑇𝑇) is not invertible, whereas the calculations 
showed that for 𝑇𝑇 = 0.11 matrix 𝐻𝐻(𝑇𝑇) is invertible. Then, invertibility of 𝐻𝐻(𝑇𝑇) obviously depends 
on chosen horizon length 𝑇𝑇 and matrix 𝑀𝑀.  
   In fact, there is no general set of conditions (on the parameters of the linear quadratic Nash game) 
that would guarantee either the existence of a solution to (7) or the invertibility of 𝐻𝐻(𝑇𝑇). One special 
case is the games with weakly coupled players. For a sufficiently small 𝜀𝜀 > 0, let 𝑊𝑊𝑖𝑖𝑖𝑖 =
𝜀𝜀(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜔𝜔𝑖𝑖𝑖𝑖]) and 𝑊𝑊𝑖𝑖 = 𝜀𝜀(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜇𝜇𝑖𝑖𝑖𝑖]) which implies that for 𝜀𝜀 = 0 the game decomposes into 𝑚𝑚 
completely decoupled optimal control problems, one for each player.  
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In the next section, we discuss the problem in which the weight matrices 𝑄𝑄𝑖𝑖 are not included in the 
cost functions, so-called Mayer type cost functions.  

5- Invertibility of the matrix 𝑯𝑯(𝑻𝑻) 
   To simplify the problem, the weight matrices 𝑊𝑊𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝜇𝜇𝑖𝑖𝑖𝑖] could be set zero. Then, the quadratic 
cost functions in (17) will be simplified as 
 
𝐽𝐽𝑖𝑖 = 𝑧𝑧(𝑇𝑇)𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧(𝑇𝑇) + ∫ ∑ 𝑢𝑢𝑗𝑗𝑇𝑇𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑𝑚𝑚

𝑗𝑗=1
𝑇𝑇
0                                                                                         (19) 

 
Where it means that robot 𝑖𝑖 will try to minimize a weighted sum of the terminal formation errors and 
velocity errors while minimizing its control effort made during the entire formation control process. A 
similar quadratic performance index for the formation control has been used in Lee (2014). Before we 
present the next theorem for the formation game problem in (16) and (19), the following definitions 
are introduced first. 
Define 
 
𝑆𝑆 = [𝑆𝑆1 … 𝑆𝑆𝑚𝑚 ], 𝑉𝑉𝑖𝑖 = [0 … 𝐼𝐼… 0  ], 

𝑄𝑄𝑇𝑇 = �
𝑄𝑄1𝑇𝑇
⋮

𝑄𝑄𝑚𝑚𝑚𝑚
�, 

𝐷𝐷 = �
𝐴𝐴𝑇𝑇 0 0
0 ⋱ 0
0 0 𝐴𝐴𝑇𝑇

� 

and 𝑊𝑊 = 𝐼𝐼 − 𝐴𝐴(𝑇𝑇 − 𝑡𝑡) + [𝑆𝑆(𝑇𝑇 − 𝑡𝑡) + (𝑆𝑆𝑆𝑆 − 𝐴𝐴𝐴𝐴) (𝑇𝑇−𝑡𝑡)2

2
− 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑇𝑇−𝑡𝑡)3

6
]𝑄𝑄𝑇𝑇. 

 
The matrix 𝑀𝑀 for the differential game problem in (16) and (19) is 
 
𝑀𝑀 = �−𝐴𝐴 𝑆𝑆

0 𝐷𝐷�. 
 
Theorem 3. The formation control problem defined as a differential game by (16) and (19) admits a 
unique open-loop Nash equilibrium for every initial state if and only if the matrix 𝑊𝑊 is invertible.  
Proof: We observe that  

𝐴𝐴2 = 𝐷𝐷2 = 𝑀𝑀4 = 0. 
The power series for the matrix exponential 𝑒𝑒𝑀𝑀(𝑇𝑇−𝑡𝑡) results 
 

𝑒𝑒𝑀𝑀(𝑇𝑇−𝑡𝑡) = �𝐼𝐼 − 𝐴𝐴(𝑇𝑇 − 𝑡𝑡) 𝑆𝑆(𝑇𝑇 − 𝑡𝑡) + (𝑆𝑆𝑆𝑆 − 𝐴𝐴𝐴𝐴) (𝑇𝑇−𝑡𝑡)2

2
− 𝐴𝐴𝐴𝐴𝐴𝐴

(𝑇𝑇−𝑡𝑡)3

6
0 𝐼𝐼 + 𝐷𝐷(𝑇𝑇 − 𝑡𝑡)

�. 

Then it is verified easily 
 

𝐻𝐻(𝑇𝑇 − 𝑡𝑡) = 𝐼𝐼 − 𝐴𝐴(𝑇𝑇 − 𝑡𝑡) + [𝑆𝑆(𝑇𝑇 − 𝑡𝑡) + (𝑆𝑆𝑆𝑆 − 𝐴𝐴𝐴𝐴) (𝑇𝑇−𝑡𝑡)2

2
− 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑇𝑇−𝑡𝑡)3

6
]𝑄𝑄𝑇𝑇, 

𝐻𝐻(𝑇𝑇) = 𝑊𝑊 

and 
𝐺𝐺𝑖𝑖(𝑇𝑇 − 𝑡𝑡) = 𝑉𝑉𝑖𝑖(𝐼𝐼 + 𝐷𝐷(𝑇𝑇 − 𝑡𝑡))𝑄𝑄𝑇𝑇. 

This result proves the theorem. ∎ 
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6- Simulation results 
   We test a triangle formation shape with a team of four robots in 2-dimensional coordinates (e.g., 
𝑛𝑛 = 2, 𝑚𝑚 = 4) (see Figure 1). In the formation graph the set of edges 𝐸𝐸 and the incidence matrix 𝐷𝐷 of 
the triangle shape are: 
 
𝐸𝐸 = {𝑒𝑒12, 𝑒𝑒14, 𝑒𝑒23}, 𝐷𝐷 = [−1100 − 10010 − 110   ]. 

 
   The weight matrices in the cost functions are formed based on the neighbourhood relation, such that 
for this triangle formation shape it is seen from Figure1, the neighbours of robot 1 are robot 2 and 4, 
the neighbours of robot 2 are robot 1 and 3, the neighbour of robot 3 is robot 2 and the neighbour of 
robot 4 is robot 1. We select the following formation cost weight matrices: 
 
𝑊𝑊1𝑇𝑇 = [500050000 ] ,  𝑊𝑊2𝑇𝑇 = [500000005 ] ,𝑊𝑊3𝑇𝑇 = [000000005 ] ,𝑊𝑊4𝑇𝑇 = [000050000 ]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Triangle shape and formation graph. 
 
 
The desired offset vectors of the formation shape among the robots are:  

𝑑𝑑12 = [−2 − 4 ],𝑑𝑑14 = [2 − 4 ], 𝑑𝑑23 = [−2 − 4 ]. 

The initial positions of the robots are: 
 
𝑞𝑞1(0) = [−10 ], 𝑞𝑞2(0) = [10 ], 𝑞𝑞3(0) = [20 ], 𝑞𝑞4(0) = [−30 ]. 
 
The initial velocities of the robots are: 
 
𝑞̇𝑞1(0) = [02 ], 𝑞̇𝑞2(0) = [03 ], 𝑞̇𝑞3(0) = [01.5 ], 𝑞̇𝑞4(0) = [01 ]. 
 
   The weight matrices for the control effort in the cost functions are selected to be the identity matrix 
of dimension 2, e.g.,  𝑅𝑅11 = 𝑅𝑅22 = 𝑅𝑅33 = 𝑅𝑅44 = [1001 ]. 
The finite horizon time is selected to be 𝑇𝑇 = 7s and the sample time for simulation is considered to be 
0.1s. With the given parameters for the triangle formation, we observe that 𝐻𝐻(7) is invertible. 
Therefore, the game has a unique open-loop Nash equilibrium that can be calculated through (8) and 
then, the state trajectory for the robots are given by (18).  
   The robots' trajectories in the 𝑥𝑥 − 𝑦𝑦 plane are shown in figure 2. The results show that the desired 
triangle shape formation among the four robots is achieved at the specified finite horizon time. The 
formation graph in Figure 1 and the desired offset vectors of the formation shape among the robots 
show that to form the desired shape: robot 1 and 2 have to achieve to relative distance 2 and 4 in the 𝑥𝑥 
and 𝑦𝑦 position, respectively, robot 1 and 4 have to achieve to relative distance -2 and 4 in the 𝑥𝑥 and 𝑦𝑦 
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position, respectively, and robot 2 and 3 have to achieve to relative distance 2 and 4 in the 𝑥𝑥 and 𝑦𝑦 
position, respectively. Moreover, all robots in the order given above have to achieve to zero relative 
velocities on both 𝑥𝑥 and 𝑦𝑦-axis. The position and velocity error between the robots' trajectories and 
their desired configuration in the formation are illustrated in figure 3 and figure 4, respectively. It can 
be seen that all the mentioned relative distances and also zero relative velocities are realized. 

 
 

 
 
 

Fig 2.Progression of four robots in the triangle formation in the 𝑥𝑥 − 𝑦𝑦 plane. 
 
 

  
 

Fig 3. Formation errors on the 𝑥𝑥-axis and on the 𝑦𝑦-axis. 
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Fig 4. Relative velocities on the 𝑥𝑥-axis and on the 𝑦𝑦-axis. 

7- Conclusion and future works 
   In this paper, the leaderless formation control problem for a multi-robot system with double 
integrator dynamics is modelled as a non cooperative linear quadratic differential game. Through the 
use of algebraic graph theory, we formed a formation matrix and used it totransform the cost 
functions into a standard quadratic form. The system dynamics is stated as a linear state equation. The 
formation problem became a linear quadratic differential game. Assuming that the robots play a Nash 
strategy for the formation game, the open-loop Nash equilibrium solution is utilized as the formation 
control strategy. We illustrated the results through testing a triangle formation shape by a group of 
four robots. Taking the collision avoidance constraint in the formulation of formation game into 
account is our next purpose.  

References 
 
Balch, T., Arkin, R. (1998).Behavior-based formation control for multi-robot systems.IEEE 
Transactions on Robotics and Automation,14(2), 926–939. 
 
Basar, T., Olsder G. (1999).Dynamic noncooperative game theory.SIAM, 2nd edition. 
 
Benzerrouk, A., Adouane, L., Lequievre, L., et al. (2010). Navigation of multi-robot formation in 
unstructured environment using dynamical virtual structures.Proceedings of the 23rd IEEE/RSJ 
International Conference on Intelligent Robots and Systems , Oct 18- 22, Taipei, Taiwan: 5589–5594. 
 
Das, A., Fierro, R., Kumar, V., et al. (2002). A vision-based formation control framework.IEEE 
Transactions on Robotics and Automation,18(5), 813–825. 
 
Dong, X., Xiang, J., Han, L., et al. (2017).Distributed time-varying formation tracking analysis and 
design for second-order multi-agent systems.Journal of Intelligent & Robotic Systems, 86(2), 277-
289. 
 
Engwerda, J.C. (1998). On the open-loop Nash equilibrium in LQ-games.Journal of Economic 
Dynamics and Control, 22, 729–762. 
 
Engwerda, J.C. (2005). LQ dynamic optimization and differential games.Chichester: John Wiley & 
Sons. 



58 
 

 
Engwerda, J.C., Weeren, A.J.T.M. (1995). The open-loop Nash equilibrium in LQ-games revisited. 
Discussion Papers / CentER for Economic Research, 9551. 
 
Gu, D. (2008). A differential game approach to formation control.IEEE Transactions on Control 
Systems Technology,16(1), 85-93. 
 
Lee, S., Kim, H., Lee, S., et al. (2014).Nash equilibrium-based geometric pattern formation control 
for nonholonomic mobile robots.Advances in Robotics Research, 1(1). 
 
Lin, W. (2014).Distributed UAV formation control using differential game approach.Aerospace 
Science and Technology, 35, 54–62. 
 
Lin, W., Qu, Z., Simaan, M. A. (2015). Nash strategies for pursuit-evasion differential games 
involving limited observations. IEEE Transactions on Aerospace and Electronic Systems, 51(2), 
1347-1356. 
 
Lissaman, P.B.S, Shollenberger, C.A. (1970). Formation flight of birds.Science, 168 (3934), 1003-
1005. 
 
Merris, R. (1994). Laplacian matrices of graphs: a survey, Linear Algebra Applications.197/198; 143-
176. 
 
Mylvaganam, T., Astolfi, A. (2015).A differential game approach to formation control for a team of 
agents with one leader.American Control Conference, July 1–3, Chicago, IL, 1469-1474. 
 
Özgüler, A.B., Yıldız, A. (2014). Foraging swarms as Nash equilibria of dynamic games. IEEE 
Transactions on Cybernetics,44(6), 979-987. 
 
Rantzer, A. (2008). Using game theory for distributed control engineering. Sweden: Department of 
Automatic Control, Lund Institute of Technology, Lund University, Report TFRT; 7620. 
 
Ren, W., Sorensen, N. (2008).Distributed coordination architecture for multi-robot formation 
control.Robotics and Autonomous Systems,56(4), 324-333. 
 
Semsar-Kazerooni, E., Khorasani, K. (2009). Multi-agent team cooperation: A game theory approach. 
Automatica,45, 2205-2213. 
 
Xu, D., Zhang, X., Zhu, Z., et al. (2014). Behavior-based formation control of swarm 
robots.Mathematical Problems in Engineering, doi/10.1155/2014/205759. 
 
Xu, H., Zhou, X. (2013). Differential game based cooperative power control in cognitive radio 
networks. Wireless Personal Communications, 73, 651-662. 
 
Zhang, J., Qi, D., Yu, M. (2014).A game theoretic approach for the distributed control of multi-agent 
systems under directed and time-varying topology.International Journal of Control, Automation and 
Systems,12(4), 749-758. 
 
Peng, H., Zhang, S., Wu, Z., Chen, B. (2013). Precise Integration Method for Solving Noncooperative 
LQ Differential Game.Mathematical Problems in Engineering, vol. 2013, Article ID 713725, 9 pages, 
2013. doi:10.1155/2013/713725. 
 
 


	2- Preliminaries
	2-1- Algebraic graph theory
	2-2- Linear quadratic differential game
	3- The formation control problem
	4- Open-loop Nash formation control
	5- Invertibility of the matrix 𝑯(𝑻)
	6- Simulation results
	7- Conclusion and future works
	References

