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1- Introduction 
One of the most critical stages in the design of manufacturing system is the Facility Layout 

Problem (FLP). Facility layout is the problem of determining the relative location of facilities on the 
shop floor. In manufacturing systems, a facility can be a work station such as a machine or a group of 
machines named cell. Regarding the importance of the FLP, it is nessesary to mention that the 
Material Handling Cost (MHC) forms from twenty to fifty percent of the total manufacturing costs 
and it can be reduced by at least from ten to thirty percent by an optimal layout design (Tompkins et 
al., 2003). According to the nature of product demands and time planning horizon, the FLP can be 
classified into four problems as follows: (i) static (single period) facility layout problem (SFLP) with 
deterministic and constant flow of materials over a single time period, (ii) dynamic(multi-period) 
facility layout problem (DFLP) with different deterministic flow of materials in each period, (iii) 
stochastic static facility layout problem (SSFLP) with stochastic flow of materials over a single time  
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period, (iv) Stochastic Dynamic Facility Layout Problem (SDFLP) where product demands are 
random variables so that their parameters change from period to period. Among the aforementioned 
problems, the SDFLP is the most comprehensive, realistic and complicated problem.Thus this paper 
considers the robust layout design approach in the SDFLP.  
   The MHC is one of the most appropriate measures, which has been widely used to evaluate the 
efficiency of a facility layout. This measure should be minimised to design an optimal 
layout.Uncertainties and changes in product demands lead to changes in the flow of materials. 
Increase in the flow of materials during the transition from the current period to the next period 
increases the MHC, which in turn leads to an inefficient layout. Therefore, it is necessary to rearrange 
the facilities in the next period to obtain the optimal layout. The rearrangement of facilities is a costly 
process. This cost is named the rearrangement cost. Therefore, to avoid the high facility 
rearrangement costin transition from one period to the next, it is preferable to design just one layout 
named a robust layout for theentire multi-period time planning horizon. Actually, in each period, the 
MHC of therobust layout remains near to its optimal (minimum) value in spite of changes in product 
demadsfrom period to period.The lower deviation from the optimal value of the MHC indicates the 
better robustness of the layout. The robust layout has some advantagessuch as lack of the 
rearrangement cost and being flexible (robust) enough to cope with uncertainties in demand of 
products. However, it suffers from the disadvantage of not necessarily being an optimal layout for 
each time period.  
   In general, the FLP having discrete representation and equal-sized facilities assigned to the same 
number of known locations is usually formulated as the Quadratic Assignment Problem (QAP) model. 
In discrete representation, the manufacturing cite is split into a quantity of the same-sized facility 
places.Koopmans and Beckman (1957) formulated the QAP as amathematical model, whichis usedto 
formulate the SDFLP in this paper. 
   The QAP is a nonlinear nondeterministic polynomial (NP)-complete combinatorial optimisation 
problem (COP) (Sahni & Gonzalez, 1976). Besides, the computational time required for solving the 
QAP is exponentially proportional to the size of the problem (Foulds, 1983). Therefore, intelligent 
approaches should be used to solve the large-sized problem rather than the exact methods. Simulated 
annealing (SA) intelligent approach is one of the promising tools for solving COPs such as the FLP 
(Alvarenga, Gomes, & Mestria, 2000). SA algorithm is animitation of physical solids annealing. This 
algorithm belongs to the class of improvement resolution approaches so that it needs toa known initial 
solution. SA algorithm consists of two loops namely, the inner loop to search for a neighbouring 
solution, and the outer loop for decrease the temperature to reduce the probability of accepting the 
non-improving neighbouring solutions. 
   The outstanding performance of SA in comparison with genetic algorithm (GA) and tabu search 
(TS) was concluded in solving a dynamic cell formation problem (Tavakkoli-Moghaddamet al., 
2005). This algorithm can not only solve the stochastic and single period inter and intra-cell layout 
problem as good as the lingo software from quality solution standpoint, but also it can solve the larger 
problems in a reasonable computation time (Tavakkoli-Moghaddam, Javadi, & Mirghorbani, 2006). 
According to Moslemipour et al. (2012), SA algorithm has some advantages as follows: (i) it reduces 
the computational time and in turn, it has low memory requirement; (ii) accepting the non-improving 
solution (uphill movement) prevents the algorithm from getting entrapped at a deprived local solution; 
(iii) the ability of finding global optimal solution; (iv) this algorithm is easy for implementation; (v) it 
has the convergent property upon executing the large number of iterations; and (vi) SA is more robust 
and flexible in comparison with other local search methods.In this paper, the SA approach is used for 
solving the proposed model because of its above-mentioned advantages and the complexity of the 
model. 
   Lee et al. (2012) proposed a novel hybrid AC/SA approach having an outstanding performance to 
solve the SDFLP. Moslemipour et al. (2012) reviewed the SA and other intelligent approaches for 
solving layout problems, comprehensively. 
   Rosenblatt and Lee (1987) and also Kouvelis, Kuawarwala and Gutierrez (1992)defined the 
robustness of a layout as the number of times that the layout drops inside a pre-defined fraction of the 
optimum solution for dissimilar groups of product demand patterns.Using the robust approach, a 
single robust layout is designed for the whole time planning horizon so that the total MHC is 
minimised (Kouvelis & Kiran, 1991). Montreuil et al. (1993) proposed a robust layout named 
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holographic or holonic layout where different types of machines are spread over the shop floor to 
cope with uncertainties in a manufacturing system. For more information about the holonic layout the 
following papers can be referred (Hsieh, 2009a, , 2009b; Hsieh & Chiang, 2011). The robust layout 
design approach is a good method to prevent the shifting cost (Hassan, 1994). Benjaafar and 
Sheikhzadeh (2000) proposed a robust layout by duplicating the same facilities in the FLP to deal 
with uncertainties in product demands.The robustness can be an intrinsic property of a layout for 
example, by replication of the main facilities at the strategic places within the shop floor, which will 
guarantee a reasonable efficiency for the material handling system during the different production 
periods (Benjaafar, Heragu, & Irani, 2002). 
   Braglia, Simone and Zavanella (2003) designed the most robust layout for a single row FLP by 
assuming the independent product demands as normally distributed random variables. Kulturel-
Konak,Smith and Norman (2004) considered the most robust layout with minimum region under the 
total MHC curve over a pre-determined range of uncertainty. Enea, Galante and Panascia (2005) 
suggested a fuzzy-based model for designinga robust facility layout in the SFLP with multiple product 
demand scenarios.Braglia,Simone and Zavanella (2005) proved that in the stochastic FLP, the most 
robust layout is obtained by using the matrix of average flows between facilities.Norman and Smith 
(2006) proposed a mathematical model to design the most robust layout by considering a large 
number of independent product demands as random variables with known expected value and 
variance.Tavakkoli-Moghaddam et al. (2007) proposed a novelformulation to simultaneous design of 
the optimum intra and inter-cell facility layouts for the SSFLP. Irappa-Basappa and Madhusudanan-
Pillai (2008) designed a robust machine layout for the DFLP using the quadratic assignment 
formulation by considering machine sequence and part handling factor, which represents changes in 
the attributes of parts from process to process. Balakrishnan and Cheng (2009) considered both of the 
fixed and rolling planning horizon in the DFLP. They concluded that the algorithms having good 
performance under condition of fixed planning horizon don’t have necessarily good performance in 
the case of rolling planning horizon.Madhusudanan-Pillai,Irappa-Basappa and Krishna (2011) 
proposed a SA algorithm to solve their robust layout design model in dynamic environment. 
   Moslemipour and Lee (2012) designed an optimal machine layout for each period of the SDFLP, 
which is named as dynamic layout.They considered independent uncertain product demands having 
normal distribution with known and changeable probability density function (PDF) from current 
period to the next one. Lee and Moslemipour(2012) proposed a new mathematical model to deal with 
a dynamic inter-cell layout problem in which the flow of materials is assumed to be a random variable 
with known expected value. Lee and Moslemipour (2012) developed a novel QAP-based 
mathematical model for designing the most stable facility layout in the whole time planning horizon 
of the SDFLP. This layout has the maximalcapability to exhibit a little sensitivity to product demand 
changes. Forghani, Mohammadi and Ghezavati (2013) proposed a new robust method to deal with the 
cell formation and the layout design problem by considering stochastic demands. Neghabi, Eshghi and 
Salmani (2014) developed a novel mathematical model named RABSMODEL along with a two-stage 
algorithm to design a robust layout in which facilities have flexible dimensions. Tavakkoli-
Moghaddam, Sakhaii and Vatani (2014) proposed a robust optimisation method to design a dynamic 
cellular manufacturing system (CMS) by incorporating production planning so that processing time of 
parts is assumed to be a stochastic variable. Hosseini, Khaled and Vadlamani (2014) developed a 
robust simple hybrid approach by incorporating three meta-heuristic methods including imperialist 
competitive algorithms, variable neighborhood search, and SA to cope with the DFLP. 
   In modern manufacturing systems such as the flexible manufacturing system (FMS) and the CMS, 
machines are grouped into some cells in terms of the philosophy of group technology. Therefore, 
according to the aforementioned importance of the FLP, an optimal layout of machines inside each 
cell (intra-cell layout) and an optimal layout of cells on the shop floor (inter-cell layout) should be 
designed simultaneously. The novelties of this paper as the gaps in the literature are as follows: (i) to 
propose a QAP-based mathematical model for simultaneous design of robust inter and intra-cell 
layouts in the SDFLP, (ii) to consider dependent product demands and time value of money. In this 
model, regarding the SDFLP,the product demands are presumed to be dependent normally distributed 
random variableswith known expectation, variance, and covariance that change from period to period 
at random. In fact, despite considering uncertain product demands, the proposed model is free of any 
uncertain parameters and thereby there is no need to implement the robust optimisation technique. As 
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mentioned before, the term “robust” refers to the flexibility of the layout to deal with uncertainties and 
changes in product demands from period to period.  
   Regarding the normal distribution assumption, it is essential to mention that many real world data 
naturally follow a normal distribution (Kulturel-Konak et al., 2004). Product demands have also been 
considered as normally distributed random variables in layout design problem by the following 
authors (Ji, Yongzhong, & Haozhao, 2006; Rezazadeh, et al., 2009; Ripon, et al., 2011; Tavakkoli-
Moghaddam et al., 2007; Vitayasak, Pongcharoen, & Chris Hicks, 2016). 

 
2-The proposed model 
   In this section, the new mathematical model is formulated by considering the following 
assumptions. Table 1 shows the notations used in the proposed model.  
 

Table1. Notations 
Notation Description 

K Total quantity of parts 
M Total quantity of machines / machine locations.  
T Total quantity of periods 

Mc The quantity of machines / locations of machine inside cell c 
C Total quantity of cells / locations of cell 
k Part index   (k = 1, 2,. . . , K) 
t Period indicator   (t = 1, 2,..., T ) 

i, j Machine indices  (i,  j = 1, 2,. . . , M); i ≠ j 
l, q Machine location indices  (l, q = 1, 2,. . . , M); l ≠ q 
c, w Cell indices  (c, w = 1, 2,. . . , C); c ≠ w 
u, v Cell location indices  (u, v = 1, 2,. . . , C); u ≠ v 
Nki Process number for the process performed on part k by machine i 
ftijk Materials flow between machines i and j in period t created by part k 
ftij Materials flow between machines i and j in period t created by all parts 
ftcw Materials flow between cells c and w in period t 
Dtk Part k demand during period t 
Bk Part k batch volume 
Ck Present value of the movement cost per batch for part k 
Ctk Cost of movements for part k in period t  
atilq Cost of shifting machine i from location l to location q in period t 
atcuv Fixed cost of shifting cell c from location u to location v in period t 
dlq Distance from machine location l to machine location q 
duv Distance from cell location u to cell location v  
xil Decision variable for robust machine (intra-cell) layout problem 
xcu Decision variable for dynamic inter-cell layout problem 

TC(Lrm) Total cost of layout Lrm 
E( ) Expectation 

Var( ) Variance 
Cov( ) Covariance 

UTC(Lrm , p) The highest value of TC(π) with the percentile value p 
Ir Interest rate 
Tc Total part movement and rearrangement costs for cell c 
bic A zero-one variable representing the assignment of machine i to cell c 

OFVrm Total cost of the robust machine layout  
OFVrc Total cost of inter and intra-cell layouts 

 
 

i. Equal-sized machines/cells are assigned to the same number of known machines/cells 
locations. 

ii. The discrete representation of the SDFLP is considered. 
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iii.  Demands of parts are dependent normally distributed random variables with known expected 
value, variance, and covariance that change from period to period at random.  

iv. The confidence level (percentile p), which represents the decision maker’s attitude about 
uncertainty in product demands, is considered.  

v. Time value of money is considered.  
vi. The parts are moved in batches between facilities. 

vii.  The data on number of facilities (machines-cells), number of periods,  machine sequence, 
present value of part movement cost, transfer batch size, distance between facility locations, 
money interest rate for each period (e.g. year), present value of facility (machine/cell) 
rearrangement cost, the expected value, variance, and covariance of  part demands in each 
period are known as inputs of the models. 

viii.  There is no constraint for dimensions and shapes of the shop floor.  
ix. Machines can be laid out in any configuration such as rectangular and U-shaped 

configurations. 
x. Cell formation is accomplished in advance so that each cell is formed by a certain number of 

known machines used for doing known operations on parts. 
 
2-1- Robust intra-cell layout design model 

Using the robust facility planning approach, a multi-period problem is changed into a single period 
one. Hence, considering the assumption (i), the following QAP formulation developed by Koopmans 
and Beckman (1957)is utilised to develop the novel mathematical model for designing inter and intra-
cell layouts in the SDFLP. 

1 1 1 1

M M M M

ij lq il jq
i j l q

Minimise f d x x
= = = =
∑∑∑∑  (1)

 

Subject to:  

1

M

il
i

x l
=

= 1        ; ∀∑
 

(2) 

1

M

il
l

x i
=

= 1        ; ∀∑
 

(3) 

{1
0

if facility i is assigned to location l
il otherwisex =  

(4) 

 

The equation (1) is a quadratic objective function representing the total MHC. In this equation, ijf  

symbolises the materials flow between facilities i and j. The distance from locations l to location q is 
indicated by lqd . The equation (2)  confirms that each facility location has the capability of containing 

just one facility.The equation (3) states a specified facility can be allocated to precisely one facility 
location. Equation (4) displays the decision variables ilx  as the solution to the problem indicating the 

place of each facility.  
The input parameters of the model are as follows: sequence of machines, batch volume, the present 

cost of part handling per batch, machine locations distance matrix, cell locations distance matrix, and 
the expectation and variance of  part demands in addition to the covariance of each pairs of part 
demands in each period. The total cost of the inter and intra-cell layouts is considered as the output of 
the novel model. This cost should be minimised in order to optimial design of machine and cell 
layouts. 

   It is assumed that, M machines are located in C cells such that 
1

C

c

c M
=

=U  and 
1

C

c

c
=

= ∅I and Cell c 

contains Mc machines in accordance with equations (5) and (6). Equation (7) displays the formulation 
for computingftijk, where, the equation│Nki─ Nkj│═ 1 denotes two consecutive operations, which are 
performed on part k using machines i and j. The formulation for computing fijk is shown in equation 
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(8), which is modified as equation (9) by combining with equation (7). In fact, consistent with 
equation (8), considering a particular part k, the arithmetic average of parts flow in eachperiod fijk is 
regarded as the part flow during the total time planning horizon. The total materials flow between 
machines i and j created by all parts (fij) is computed using equation (10), that can be writtenin the 
form of equation (11) by combining with equation (9). Lastly, the equation (11) is reordered as 

equation (12), where tkD is an uncertain variable having normal distribution with expectation E( tkD ) 

and variance Var( tkD ). Consequently, fij is also an uncertain variable with normal distributionhaving 

the expectation and variance as shown  in equations (13) and (14), respectively. Considering the 
interest rate, the handling cost for part k in time period t is computed by applying the equation (15). 
Equation (16) shows the total cost of part handling for a known robust machine layout Lrm by 
considering equation (1). According to equation (16),  since fij is an uncertain variable with normal 
distribution, TC(Lrm) is also a an uncertain variable with normal distribution having the expectation 
and variance as shown in equations (17) and (18) respectively. 
 

1

; 1,2,...,
M
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b M c C
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( )( ) ( )
1 1 1 1
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   For a known robust machine layout Lrm, UTC (Lrm, p) is considered as the highest value of the 
TC(Lrm) with percentile value p. Doing so,U(Lrm, p) represented in equation (19) can be minimised 
rather than minimising TC(Lrm) (Kulturel-Konak et al., 2004; Moslemipour & Lee, 2012; Norman & 
Smith, 2006; Tavakkoli-Moghaddam et al., 2007). Equation (20) is written by utilising equations from 
(13) to (19). To design the optimum robust machine layout inside cell c, the cost function Tcr is 
formulated as equation (21) in accordance with equation (20). Considering C cells in the SDFLP, the 
total intra-cell layouts cost is computed as equation (22). As a result, the mathematical formulation in 
order to the intra-cell layouts design can be modelled as equation (22) subject to equations (2), (3), 
and (4). 
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C

cr
c

Minimise T
=
∑  

Subject to: Equations (2), (3), and (4). 

 
(22) 

 
2-2-Robust inter-cell layout design model 
   In this part, anovel model is developed for designing an inter-cell layout. The totalmaterials flow 
between cells c and w is computed by utilising equation (23). In this equation, fij is anuncertain 
variable and therebyfcw is also an uncertain variable with the expectation and variance as shown  in 
equations (24) and (25), respectively. In equations (24) and (25), the parameters( )ijE f , ( )ijVar f and 

bic are represented in equations (13), (14), and (6), respectively. In the inter-cell layout design process, 
the cells are regarded as facilities. By doing so, similar to equations (17) and (18), the expected value 
and variance of the total MHC of the robust cell layoutLrc (i.e.TC (Lrc) )are calculated using equations 
(26) and (27), respectively. Therefore, using the equations (2), (3), (4), (13), (14), (15), (19), (24), 
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(25), (26), and (27), the mathematical model for the inter-cell layout design can be written as 
equations from (28) to (31). 
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0

if cell c is assigned to location u
cu otherwisex =  (31) 

 

2-3- Robust inter and intra-cell layouts design model 
   Finally, the new mathematical model for concurrent design of inter-cell and intra-cell layouts in 
multi-period uncertain environments of the manufacturing system can be written as follows: 
 
Minimise OFVrc={ Intra-cell cost (equation (22)+Inter-cell cost (equation (28)}(32) 

Subject to: 

 Equations (2), (3), (4), (5), (6), (29), (30), and  (31). 

3- Computation results and analysis 
In this section, in addition to evaluating the performance of  the SA algorithm, the proposed model 

is verified. To this end, first of all,four small-sized test problemsare solved by using dynamic 
programming (DP) and SA approaches in Sub-section 3-1. Then, in Sub-sections 3-2 and 3-3 a large-
sized test problem and a real world problemare applied to the proposed model and solved by using the 
SA algorithm. Finally, In Sub-section 3-4, the sensitivity analysis is perfomed using design of 
experiment and analysis of variance (ANOVA) techniques.In addition, the effect of considering 
dependent product demands and varying interest rate on the total cost function of the proposed model 
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is investigated in Sub-section 3-5.A personal computer with Intel 2.10 GHZ CPU and 3 GB RAM is 
used to run the SA and the DP algorithms programmed in Matlab. 

 
3-1- Solving small-sized test problems 
   In this section, to evaluate the performance of the SA, four small-sized test problems are solved by 
using both of the DP exact method and the SA algorithm. If we represent the quantity of machines M 
and the quantity of time periods T as the ordered pair (M, T), then the Problems 1, 2, 3, and 4 will be 
correspond to the ordered pairs (3, 4), (3, 5), (4, 4), and (4, 5) respectively.In the problems, the 
number of cells is assumed to be one (C=1).Rectangular configuration of layouts with recti-linear 
distance between the locations of facilities is considered.The results are displayed in Tables 2 and 
3.On comparison, the SA algorithm has a performance as good as the DP algorithm from solution 
quality point of view. In addition,SA algorithm is better than the DPalgorithm from computational 
time standpoint. Therefore, it can be considered as a promising tool for obtaining the best solution to 
the large-sized dynamic layout problems in reasonable computation time. 
 

Table2.The Results of DP and SA for Problems 1 and 2 
Problem No.  1 2 

Algorithm 

 

Confidence Level 

DP 
 

SA 

 

DA 

 

SA 

 

0.75 7058400 7061400 9763100 9766100 

0.85 7168000 7171000 9914300 9917300 

0.95 7352300 7355300 10169000 10172000 

Computational Time (Sec.) 1.527 0.096 2.756 0.229 

 
Table3.The Results of DP and SA for Problems 3 and 4 

Problem No.  3 4 

Algorithm 

 

Confidence Level 

DP SA DP SA 

0.75 19796000 19796000 26557000 26557000 

0.85 20200000 20200000 27113600 27113600 

0.95 20879191 20879191 28111316 28111316 

Computational Time (Sec.) 3.1483 0.0298 3.3007 0.0346 

 

3-2- Solving a large-sized test problem 
   To validate the proposed model, alarge-sizedrandomly generated test problem as a numerical 
example is solved. The test problem includes ten parts, twelve machines grouped into three cells, 
and ten time periods. The three groups of machines, including (1,2,3,4), (5,6,7,8), and (9,10,11,12) 
constitute the cells 1, 2, and 3 respectively.Solving a number of different-sized problems, which are 
applied to the proposed model, indicates that the DP algorithm cannot solve the SDFLP including 
five periods and more than ten facilities. Therefore, the above-mentioned problem is solved by using 
the SA algorithm programmed in Matlab. The initial solution for the SA algorithm is given in Table 
4. This solution consists of the initial machine layout within each cell (intra-cell layout) and the 
initial layout of cells on the shop floor (inter-cell layout). Here, the solution to the robust inter and 
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intra-cell layout problem is given as a row matrix where each column represents a location, and each 
element represents a machine/cell number. Three different confidence levels (percentile p) including 
0.75, 0.85, and 0.95 taken from Tavakkoli-Moghaddam et al. (2007) are also considered. 

For each of the three above-mentioned confidence levels, the best solutions to the robust inter 
and intra-cell layout problem obtained by solving the test problem using SA algorithm are displayed 
in Tables 5 to 7. In fact, using these solutions, the total MHC of inter and intra-cell layouts (OFVrc) 
defined by Eq. (32) is minimised. These results include the best layout of machines within each cell 
(intra-cell layout) and the best layout of cells on the shop floor (inter-cell layout) along with their 
corresponding cost function value, the total cost of intra and inter-cell layout (OFVrc), and elapsed 
computation time. The objective function values obtained by running the SA algorithm ten times are 
evaluated statistically. Considering p = 0.75, the results obtained from the statistical evaluation, 
including the worst, mean, best, and standard deviation (Std. Dev.) of the objective function values 
(OFVs) are given in Table 8. The statistical evaluation shows that the objective function values are 
pretty close to each other. As a result, the SA algorithm is a robust method and a promising tool to 
solve the proposed model.Here, the term “robust” refers to the fact that the solutions (i.e. OFVs) 
obtained by running the SA algorithm ten times for solving the aforesaid problem are close to each 
other. 

Table4. Initial solution (Robust layout) 
 Intra-cell layout   Inter-cell layout 

Cell 1 Cell 2 Cell 3 

Location 1 2 3 4  1 2 3 4  1 2 3 4   1 2 3   

Facility 1 2 3 4  5 6 7 8  9 10 11 12   1 2 3   

 
Table5.The best solution (Robust layout; p = 0.75) 

 Intra-cell layout Inter-cell layout 

 Cell 1 Cell 2 Cell 3  

Location 1 2 3 4   1 2 3 4   1 2 3 4     1 2 3 

Facility 2 3 4 1 7 8 5 6 12 10 11 9   2 1 3 

 

Cost 

478460 767850 544300 Inter-cell cost = 21910580 

 Intra-cell cost = 1790610 

OFVrc = 23701190 Elapsed time = 1.258761  (seconds) 

 
Table6.The best solution (Robust layout; p = 0.85)  

 Intra-cell layout Inter-cell layout 

 Cell 1 Cell 2 Cell 3  

Location 1 2 3 4   1 2 3 4   1 2 3 4     1 2 3 

Facility 1 4 3 2 8 7 6 5 12 10 11 9   2 1 3 

 

Cost 

479950 770240 545850 Inter-cell cost = 21972120 

 Intra-cell cost = 1796040 

OFVrc = 23768160 Elapsed time = 1.092169 (seconds) 
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Table7.The best solution (Robust layout; p = 0.95)  
 Intra-cell layout Inter-cell layout 

 Cell 1 Cell 2 Cell 3  

Location 1 2 3 4   1 2 3 4   1 2 3 4     1 2 3 

Facility 2 3 4 1 7 8 5 6 9 11 1012   2 1 3 

 

Cost 

482450 774270 548480 Inter-cell cost = 22075800 

 Intra-cell cost = 1805200 

OFVrc = 23881000 Elapsed time = 1.055283 (seconds) 

 
Table8.Statistical evaluation (p = 0.75) 

Objective Function Value (OFVrc) - (10 trials) 

Worst        Mean             Best            Std. Dev. 

2399154023959537 2370119027543 

 

3-3- A real world problem( Raytheon Aircraft Company) 
   In this section, the Raytheon Aircraft Company studied by Krishnan, Cheraghi and Nayak (2006) is 
used to validate and to show the functionality and application of the proposed model.Inthis company 
as a real world case, six parts are processed by using 21 equal-sized machines (35' X 35'), which are 
grouped into one cell. Part movement cost and machine rearrangement cost are presumed to be 
$3.75/foot and zero respectively. The time planning horizon includes 5 time periods (years). An aisle 
space of 10 feet is considered around each machine and Euclidean distance between centres of 
machines is considered in the case study. The data on yearly part demands and Machine sequence has 
been given by Krishnan, Cheraghi and Nayak (2006). As mentioned, the proposed model deals with 
the SDFLP where the expectation, variance and covariance of part demands are known in each period. 
Thus, to apply the proposed model to the deterministic aforementioned real case, the data on yearly 
part demands are considered as the expectation of the part demands. Since there is no data on variance 
and covariance of part demands, a fifty percent percentile p equivalent of zp = 0 is regarded. Doing 
so,the second term of the proposed model given in Eq. (32) is ignored. The data of the problem are 
applied to the proposed model and it is solved by using the SA algorithm.Table 9 shows the results of 
the proposed method and that of the previous one including the cost associated with each period and 
the total cost over the whole time planning horizon. As shown in Table 9, the obtained robust machine 
layout leads to 7.35% improvement with respect to the previous one proposed by (Krishnan et al., 
2006). 

Table9.The Results of Real Case Study  
           Approach 

Year 

Krishnan et al. 

(2006) 

Proposed model 
&SA algorithm 

Percentage 

Savings 

2002 $194,638.76 $165,816 14.80 % 

2003 $211,428.07 $200,324 5.25 % 

2004 $347,675.62 $343,410 1.22 % 

2005 $464,675.32 $480,124 3.20 % 

2006 $560,878.42 $458,821 18.20 % 

Total Cost $1,779,296.19 $1,648,495 7.35 % 
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3-4- Sensitivity analysis 
   In this section, to investigate more about the behaviour of the proposed model, sensitivity analysis is 
carried out.Besides,using the sensitivity analysis, the inputs of the model are ranked in terms of the 
degree of their impact on the output of the model (objective function). Sensitivity of the output of the 
proposed robust layout design model with respect to the input parameters including expectation of 
materials flow, variance of materials flow, and confidence level is investigated by using one-way 
analysis of variance (ANOVA) technique.Using this technique, the null and alternative hypotheses are 
usually tested by using the F-test. The null hypothesis states that the means amongst two or more 
groups are equal and the alternative one indicates that at least two means are different. In ANOVA, it 
is assumed that the mean of the model outputs for each group is normally distributed random variable 
with approximately the same variance. Considering the assumptions, the F-value is statistically 
important at P-value < 0.05 and the null hypothesis is rejected (Sharma, 1996). In ANOVA, an input 
and an output of a model are named as a “factor” and  a “response variable” respectively (Neter, 
Kutner, & Nachtsheim, 1996).The factors are ranked according to the F-values (Carlucci, Napolitano, 
Girolami, & Monteleone, 1999). Inputs with higher F-values are more sensitive factors, which have 
more effects on the output of a model.The aim of one-way ANOVA is to realise whether data from 
several groups have the same mean.   
   To perform the sensitivity analysis, 100 randomly generated test problems are applied to the 
proposed model in three different cases, namely Case E, Case V, and Case P, which are corresponding 
to investigate sensitivity of the objective function of the model with respect to expectation of 
materials flow (matrix E), variance of materials flow (matrix V) and confidence (percentile) level (p) 
respectively. The input data are as follows: For each test problem, the expectation and variance of part 
demands (E and V) are randomly generated with uniform distribution so that (1000,10000)E∈   and

(1000,3000)V ∈ . Besides, the number of cells, the number of machines and the number of periods 
are one, six and three respectively (C=1, M = 6 , T=3). For simplicity and without losing the 
generality, independent part demands is considered. It is necessary to mention that the effect of 
assuming dependent part demands and time value of money (interest rate) on the total cost of the 
proposed model is investigated in sub-section 3-5. 
   In the case E, matrix E is changed by , whereas matrix V and confidence level p 
remain unchanged. Considering nine different values of  ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9} leads to generate nine different matrices including E1, E2, ..., E9. Each of the 100 test problems is 
solved by considering the nine different matrices so that the optimal value of the objective function of 
the proposed model corresponds to each matrix is obtained. Similarly, in the Case V, matrix V is 
changed by ,whereas matrix E and confidence level p remain unchanged. Considering 
the nine aforementioned values of r leads to generate nine different matrices including V1, V2, ..., V9.. 
Each of the 100 test problems is solved by considering the nine different matrices so that the optimal 
value of the objective function corresponds to each matrix is obtained. Finally, in the case P, the 
confidence level p is set to each element in A while matrices E and V remain unchanged. Likewise the 
two former cases, each test problem is solved for each of the nine different p values so that the 
optimal value of the objective function corresponds to each p is obtained. In fact, each case includes 
nine groups (populations) and each group contains a hundred samples of objective function values. 
Each case, group, and sample is denoted by k, g, s respectively, where ( k = E, V, P) , ( g = 1, 2, ..., 9), 

and ( s = 1, 2, ... , 100). Mean of samples within group g in case k is represented by . As 

mentioned, the condition of having normal distribution for the mean of each group is necessary for the 
ANOVA technique. To meet the condition, 100 randomly generated test problems is considered. This 
is due to the central limit theorem (CLT), which states that the average of sufficiently large number 
(say, bigger than 30) of independent random variables follows normal distribution (Hogg & Ledolter, 
1992).    
   In fact, the aim of this section is to test the hypothesis given in table 10.To this end, using Matlab 
software, the ANOVA technique is applied to the results of the randomly generated test problems for 
testing the aforementioned hypothesis. The results of the ANOVA technique is given in table 11. 
According to the results including F-values andP-values, the null hypothesis H0 is rejected. In other 
words, as expected, different values of input parameters containing expectation of product demands, 

*E E r E′ = +
r A∈

*V V r V′ = +

k
gµ
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variance of product demands, and confidence level lead to design of different facility layouts. 
Therefore, the prposed model is valid. As mentioned, the input with higher F-value is more sensitive 
parameter. According to F-values in table 11, the expectation of product demand and the variance of 
product demand are the most sensitive and the least sensitive parameters respectively. This is because 

of ( ) ( ) ( )8.70 2.99 0.35E P VF F F= ≥ = ≥ = ,where FE , FV , and FP are F- values in the cases E, V, 

and P respectively. Experimentally, we concluded that changes in the parameters including number of 
machines, number of periods, confidence level, the range in which the expectation and variance of 
product demands are randomly generated, can change the sensitivity ranking of the inputs studied in 
this section. 

Table10. Hypotheses needed for sensitivity analysis using ANOVA 
Case Case Description Hypothesis 

 
E 

 
 
 

 

At least two means are different 

 
V 

 
 

 

 

At least two means are different 

 
P 

 
 
 

 

 At least two means are different 

 
Table11. Results of ANOVA 

Case Source Sums of 
Squares 

(SS) 

Degrees 
of 

Freedom 
(df) 

Mean 
Squares 
(MS) 

F = 
SS / 
df 

Prob > F 
(P - 

Value) 

 
E 

Columns 1.232e+017 8 1.54e+016  
8.70 

 
2.013e-10 Error 1.574e+018 891 1.77e+015 

Total 1.697e+018 899  

 
V 

Columns 2.904e+015 8 3.63e+014  
0.35 

 
0.9305 Error 9.344e+017 891 10.48e+014 

Total 12.24e+017 899  
 

P 
Columns 1.506e+016 8 1.88e+015  

2.99 
 

0.0034 Error 5.598e+017 891 6.28e+014 
Total 5.749e+017 899  

 
3-5-The effect of demands correlation and interest rate on total cost  
   In this section, the effect of assuming dependent part demands and time value of money (interest 
rate) on the total cost of the proposed model is investigated. To this end, a numerical example with 
input data given in table 12 is applied to the model. For the known solution [123], the values of the 
objective function of the proposed model is calculated by considering different p percentile levels in 
the three following cases: (i) independent demands with no interest rate, (ii) dependent demands with 
no interest rate, (iii) independent demands with non-zero interest rate. Regarding other data,this 
problem includes two periods and three equal-sized machines placed in a line with a unit distance 
between each two consecutive ones. For each part, transfer batch size and movement cost are assumed 
to be fifty and five respectively. The results are shown in table 13. 
 
 
 
 
 

 

*E E r E′ = +
V V′ =

0.75p =

0 1 2 9: ....E E E EH µ µ µ= = =

1 :EH

E E′ =
*V V r V′ = +

0.75p =

0 1 2 9: ....V V V VH µ µ µ= = =

1 :VH

E E′ =
V V′ =
p r=

0 1 2 9: ....P P P PH µ µ µ= = =

1 :PH



 

Table12. Example for analy
Part 

Number 
Variance-

1 
1 10,000 
2  
3  
Machine relocating cost = 1000

P 
Case 

0.1 0.2 

i 3763.6 3857.1 
ii 3649.6 3782.9 
iii 4344.7 4471 

    
   Using the results, the curve of the total cost with respect to confidence level is plotted in 
The figure indicates that a non zero interest rate leads to increase in 
uncertainty. As shown in the figure, 
the same value in both cases of
which is equivalent of zp = 0, leads to ignoring the second term of the objective function of the 
proposed model given in equation
functions is variance of MHC, which is 
Therefore, by ignoring this term, demands correlation does not affect the total cost. In other words, if
the user defined percentile level is 
affect the total cost. It is necessary to state that, in 
dependent demands, the term of covariance is zero and non
decreased for p< 0.5 (equivalent of 
levels by considering dependent demands.
 

Figure
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Example for analysing demands correlation and interest rate
- Covariance Matrix Expectation of part 

demand 
2 3 Period 1 Period 2 

640 4000 1000 1500 
100 4000 10,000 15,000 

 2500 5,000 7500 
Machine relocating cost = 1000 Interest rate = 10 %

 
 

Table13. Total cost for three cases 
0.3 0.4 0.5 0.6 0.7 0.8

3926.9 3983.8 4009 4094.3 4151.3 4225
3879.9 3961.8 4037.5 4116.3 4198.1 4295.1
4564 4640.3 4712.5 4787.4 4865.1 4957.9

Using the results, the curve of the total cost with respect to confidence level is plotted in 
zero interest rate leads to increase in the total cost over the range of 

uncertainty. As shown in the figure, considering 50% percentile level (p = 0.5), 
cases of independent and dependent demands, because this 

= 0, leads to ignoring the second term of the objective function of the 
uation (32). According to the equation, the second term of the objective 

functions is variance of MHC, which is function of demands correlation indicated by covariance. 
Therefore, by ignoring this term, demands correlation does not affect the total cost. In other words, if

user defined percentile level is equal to 0.5, independency or dependency of demands does 
affect the total cost. It is necessary to state that, in equation (32), in the case of independent and 
dependent demands, the term of covariance is zero and non-zero respectively. Besides, the total cost is 

< 0.5 (equivalent of zp< 0) and it is increased for p> 0.5 (equivalent of 
levels by considering dependent demands. 

 

1.Demands correlation and time value of money 

ing demands correlation and interest rate 
Machine 
sequence 

1→2→3 
2→3 
1→2 

Interest rate = 10 % 

0.8 0.9 

4225 4314.4 
4295.1 4428.4 
4957.9 5085.3 

Using the results, the curve of the total cost with respect to confidence level is plotted in figure1. 
total cost over the range of 

= 0.5), the cost function has 
independent and dependent demands, because this percentile level, 

= 0, leads to ignoring the second term of the objective function of the 
). According to the equation, the second term of the objective 

function of demands correlation indicated by covariance. 
Therefore, by ignoring this term, demands correlation does not affect the total cost. In other words, if  

0.5, independency or dependency of demands does not 
), in the case of independent and 

zero respectively. Besides, the total cost is 
> 0.5 (equivalent of zp> 0) percentile 

 



137 

 

4- Conclusion 
   This paper proposed a new nonlinear QAP-based mathematical model for concurrent design of 
robust inter and intra-cell layouts in uncertain dynamic (multi-period) environments of manufacturing 
systems. In the proposed model, in addition to considering time value of money, the product demands 
have been presumed to be dependent normally distributed random variables with known expectation, 
variance, and covariance that change from period to period at random. This model has beenverified 
and validated by solving a number of different-sized test problems and doing sensitivity analysis by 
using the ANOVA technique.Since the proposed model is an NP-Complete COP, SA intelligent 
approach has been used for solving the problems. To evaluate the performance of the SA algorithm, 
four small-sized test problems have been solved using both of the DP and SA algorithms.The 
validation process has been ended by investigatingthe effect of assuming dependent part demands and 
time value of money (interest rate) on total cost.The obtained conclusions can be summarised as 
follows: (i) the SA algorithm has a performance as good as the DP algorithm from solution quality 
point of view; (ii) SA algorithm is better than the DP algorithm from computational time 
standpoint;(iii) according to the statistical evaluation, the objective function values are pretty close to 
each other and thereforethe SA is a robust algorithm; (iv) sensitivity analysis indicated that different 
values of input parameters containing expectation of product demands, variance of product demands, 
and confidence level lead to design of different facility layouts;(v)the expectation and the variance of 
product demands are the most sensitive and the least sensitive parameters respectively. However, 
changes in the parameters including the number of machines, the number of periods, the confidence 
level, the range in which the expectation and variance of product demands are randomly generated, 
can change the sensitivity level of the inputs; (vi) considering nonzero interest rate leads to increase in 
the total cost over the range of uncertainty; (vii) the total cost is decreased for p< 0.5 (equivalent of 
zp< 0) and it is increased for p> 0.5 (equivalent of zp> 0) percentile levels by considering dependent 
demands;(viii) Regarding the application of the proposed model,it can be used in both of the 
stochastic and deterministic environments. The real world problemstudiedin Sub-section 3-3 is an 
example of a deterministic case and the problems solved in other sub-sections are samples of the 
stochastic case;(ix) In addition, since the proposed model has been developed based on the QAP 
formulation, it can be applied to any manufacturing systems, particularly the modern ones such as 
cellular and flexible manufacturing systems having equal-sized facilities.The Raytheon Aircraft 
Company discussed in Sub-section 3-3 and the Vought Aerospace Company in Dallas, Texas are two 
real world examples of such systems (Groover, 2008). Finally, the following works can be taken into 
consideration in the future researches:(i) concurrent design of a dynamic inter and intra-cell layout so 
that the best layout of each period is found; (ii)considering some constraints such as unequal-sized 
machines/cells, adding and removing machines in different periods, closeness ratio, aisles, routing 
flexibility, and budget constraint for the total cost. 
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