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Abstract 
Proper models for prediction of time series data can be an advantage in making 
important decisions. In this study, we try to compare one of the most useful classic 
models of economic evaluation, Auto Regressive Integrated Moving Average model 
with one of the most useful artificial intelligence models, Adaptive Neuro-Fuzzy 
Inference System (ANFIS). Furthermore, we analyze the performance of these methods 
to predict the global gold price. Our sample data is 200 gold prices from February 2015 
to October 2015. We use both methods for determination of model parameters’ and to 
apply them on our test data. With respect to reliable evaluation methods, as root mean 
square of errors, it can be seen that in our test data, prediction of Adaptive Neuro-Fuzzy 
Inference system model is more accurate than auto-regressive integrated moving 
average. So we can conclude that at least in some cases where time series have non-
linear trend, it is better to use Adaptive Neuro-Fuzzy Inference system for prediction.  
Keywords: Adaptive Neuro-Fuzzy Inference System, Auto Regressive Integrated 
Moving Average, comparison of prediction methods, global gold price 

1- Introduction  
   Prediction will provide a powerful tool for managers to be more successful in the long and short term 
planning for their organization. Prediction can be done in two ways: it can either be the result of 
deduction and analysis of an expert in a given field of knowledge, or the analysis and evaluation of raw 
data and statistics. In this study we consider prediction using time series data. Time series show different 
trends in different cases. If we want to divide this behavior into two general categories, we can say that 
data have either linear or non-linear trend. The purpose of this study is to analyze Auto-Regressive 
Integrated Moving Average model and artificial neural network model in fuzzy systems. Then with 
comparing these models we can conclude whether the classical Auto-Regressive Integrated Moving 
Average Model has the same prediction power as the neuro-fuzzy model or not. Classical model of 
moving average or Box-Jenkins model, have conventionally been used with data having linear trend. But 
in the real world there are fewer cases where data having linear trend or static state in average and 
variance, so recently more accurate methods of modeling non-linear systems are invented.  
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Two important examples of these methods are neural network and fuzzy system. Although neural network 
and fuzzy system have high ability for modeling of non-linear data but they also have some drawbacks. 
For example, to use neural network we need too much data. Sometimes lack of rules and certain tests for 
choosing an appropriate neural network structure causes the neural network being unable to understand 
the complexity of a time series observations. Hence with respect to different researches, it has been shown 
that we can’t say with certainty that neural network has a better performance than a classical forecasting 
methods. In many cases especially when data show linear behavior, the classical methods predict more 
accurate. To fix the weaknesses of neural network models and fuzzy systems and obtain a more accurate 
model with higher prediction ability, we propose combining these two methods. Modeling neural 
networks in fuzzy system is one way of combining these two methods so that the perdition error decreases 
as the model continuously adapts with time series data. In this study such modeling procedure which is 
called Adaptive Neural-Fuzzy Inference System and Auto regressive integrated Moving Average Model 
are investigated and their performance are compared in a case study involving the prediction of gold 
price. Anticipating the gold market changes’ is vital for investors so that they can be one step ahead of 
their opponents and have computational advantageous. Different researchers have published papers in this 
field. Khan (2013), used Box-Jenkins method for predicting gold price. Newer methods such as neural 
networks are also been used for prediction of gold price. In the work of Zahra-Nezhad and Hamid (1388), 
inflation rate is predicted using dynamic neural network. Some researchers tried to present a more 
accurate model with combination of neural networks and fuzzy systems. For example, Reuter and Moller 
(2010) are two German researchers who used neural networks in predicting fuzzy time series. In these 
papers, researchers have introduced models with high reliable results. Here we only use one model for 
prediction and it has not been compared with better models and weaknesses of model have not been 
analyzed. 

2- Auto regressive integrated Moving Average Model 
   Box-Jenkins model is for identification, estimation, evaluation and prediction of single variable time 
series (Box et al., 2015). Single variable time series are a kind of series in which the amount of one 
variable in time series is related to its past amount and the amount of its present and past element of error. 
Processes like autoregressive, moving average and autoregressive moving average are some examples of 
this series.  

2-1- Auto correlation function 

Where: h hγ λ− +=  

So if h=0 we have: 

 

2-2-Auto correlation function 
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If we divide λh  per  λ0  then we have ACF function like this:       

So if h=0 then P0=1 (Abbasi-nezhad, 1384). 

2-3- Partial autocorrelation function 
   ACF (k) function in degree of k shows impure relation between Xt and Xt-k. impure relation between 
those name is Partial Autocorrelation and is defined as simple Autocorrelation between Xt and Xt-k minus 
that section with linear relation between Xt and Xt-k from past have not been explained, i.e.: 
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2-4- Difference Stationary Process (DSP) 
If X t is a series like the following: 

 (2) 1t t tX X β ε−− = +
 

It is called DSP. εt is a stationary series with mean  zero and variance σ2 (Abbasi-nezhad, 1384). 

2-5- Autoregressive Moving Average Process models  
If we recombined two DSP with different property like AR and MA, it forms a DSP like Autoregressive 
Moving Average Process. For example ARMA (1,2) is written as below: 

 

                                     (6) 1 1 2 2t t t t tX Xα ε θ ε θ ε− −= + + +
  

Autoregressive Moving Average DSP is one of the most flexible patterns for single variable time series. 
An ARMA (p, q) series is defined as follows: 
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It depends on θ1…θq parameters which must be estimated. We can turn DSP (5) into an Autoregressive 
DSP (Abbasi-nezhad, 1384). 

2-6- Autoregressive integrated Moving Average 
   If we difference a time series d times, the series is said to be integrated of order d. With autoregressive 
degree of P and moving average degree of qit can be shown as ARIMA (p,d, q) (Abbasi-nezhad, 1384). 

2-7- Time series prediction of Autoregressive integrated Moving Average models  

   In this section we will discuss prediction by using an Autoregressive integrated Moving Average model 
with and without Thrust. If 0 0θ = then we have: 
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If 1t n= +  and Pn multiplied in each side we have:  

                                                                         (5) 
1

1

( 1)

n n l n n l

d
i

n n l
i

P X PW

d
P X

i

+ +

+ −
=

= −

 
− 

 
∑

 

 

We know that {Wi} is an ARMA (p, q) with average zero and using previous method we calculate PnWn+l 
and then PnXn+l is obtained successively from above relation (khazaii, 1387).   

3- Neuro-fuzzy system (ANFIS) 
   Modeling the systems with common mathematical tools like differential equations for complicated 
systems with uncertainty is not efficient.  On the other hand fuzzy system with utilization of a set of fuzzy 
rules can give an accurate model for qualitative aspect of human knowledge and logical processes without 
using quantitative analysis. Modeling and fuzzy identification have been investigated by Takagi& Sugeno 
and they have obtained many practical applications in control, identification and prediction (Jang, 1993).  
Neuro-fuzzy network is obtained by combining fuzzy structure with artificial neural network. They can be 
used for identification of systems, time series prediction and other cases. 
   ANFIS structure that was presented in 1993 is the result of combining adaptive neural network and 
fuzzy inference in which hybrid training process is applied. Parameters of this ANFIS structure can be 
regressed for modeling systems based on available input-output data. Structures that have been presented 
before 1993 have less ability of adaptation in comparison with ANFIS. Furthermore After 1993 various 
neuro-fuzzy structures were presented. Evolving Fuzzy Neural Networks and Inference System Dynamic 
are two most important models of these structures. These structures (except ANFIS) somehow use 
clustering of data for modeling. For instance in training process of Evolving Fuzzy Neural Networks and 
Inference System Dynamic, new fuzzy rules are produced and clustering is done evolutionary. For this 
reason these structures are called “evolving”. In these networks the number and the limit of clusters 
change during training process (Kasabov, 2001) and (Kasabov et al., 2002). 
 

3-1- ANFIS structure  
ANFIS (Adaptive Network-based Fuzzy Inference System) is an adaptable and trainable network. In term 
of performance it is absolutely like inference fuzzy system. For simplicity we assume that our fuzzy 
system has two x and y inputs and an output z. Now if rules be as follows: 
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= + +
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The final structure equivalent to ANFIS is shown in figure 1. 
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Layer 1: in this layer inputs pass through membership functions: 
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Membership functions of each function could be a proper parameter that in most cases Gaussian functions 
are chosen. For example general form of Bell curve function is as follows: 
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Where{ ia , ib , ic } are set of parameters. Parameters of this layer are well known as premise parameters. 

Layer2: output of this layer is the product of input signals which is actually equivalent to if part of rules.  
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Layer 3: output of this layer is the normalization of previous layer: 
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Layer 4: 
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Layer 5: output of this Layer is total output of the system: 
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Now a network is produced which is equivalent to Sugeno inference fuzzy system. 

(13) 
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Figure1. Layers output 

 

3-2- Clustering 
   One of the important issues in designing fuzzy systems is to choose proper numbers of principles. 
Choosing a lot of numbers for principles make the system complicated and choosing a few principles may 
produce weak fuzzy system which doesn’t meet our purpose. In this section, number of principles is 
considered as an important parameter in fuzzy systems and it is determined based on input-output pair and 
error of the model. The main reason for clustering is grouping of input-output pairs in different categories 
and using a principle or a fuzzy rule for each category. The concept of clustering is to partition data into 
subsets and separate clusters where data in each cluster are similar as much as possible and they are very 
different from data in other clusters. 
 
4- Case study  
   After explaining the theoretical aspects of these two models, we can now explain the method of 
modeling the global gold price data and comparing the results obtained from these models. Analysis of 
data with ARIMA is done by Eviews software and analysis of data with ANFIS model is done by Matlab 
software.  

4-1- ARIMA model 
4-1-1- Identification  
   Time series data for gold price from 2/2/2015 to 10/13/2015 is obtained from (www.kitco.com) and its 
plot is shown in figure 2.We use the augmented Dicky-Fuller test to check whether our data is stationary, 
and to conduct a unit root test  , (Table 1 and  
Figure33) (Enders, 2010) and (Khan, 2013). 
  As seen, the P-value is more than 0.05 and we can't reject the null hypothesis of there is a unit root, 
therefore our data isn't stationary. Of course this conclusion can also be reached from the autocorrelation 
plot which decreases very slowly. To make data stationary, we difference it once and its augmented 
Dicky-Fuller test is shown in figure 4. It can be seen that the null hypothesis of having unit root is now 
rejected with respect to a low P-value close to zero. So after first differencing, our data has become 
stationary. Now we can identify model using autocorrelation function and partial autocorrelation function. 
As can be seen, the autocorrelation function at different delays is close to zero except at delay 22 where at 
both plots, bars are out of bounds. Now values of p and q should be determined. These two delays should 
be analyzed more carefully because their values specify our model. With respect to this, there is three 
candidates for best model: ARIMA(0,1,22), ARIMA(22,1,0) and ARIMA(22,1,22). Now to find which 
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model is the best, we should use Akaike and Schwartz criteria. Model with minimum Akaike and 
Schwartz value is considered as the best model (Akaike, 1969).  
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Figure 2. Gold price from 2/2/2015 to 10/13/2015 (www.kitco.com)

 

 
Table 1.Augmented Dickey-Fuller test statistic. maxlag=13 

 
 
 
 

 

 

 

 

 

 

 

 

Null Hypothesis: D(GOLDPRICE) has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, max lag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -12.79072  0.0000 

Test critical values: 1% level  -3.466786  
 5% level  -2.877453  
 10% level  -2.575332  
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Figure3. Auto correlation and partial coloration 

Date: 01/11/16   Time: 16:17
Sample: 2/02/2015 11/06/2015
Included observations: 200

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.951 0.951 183.67 0.000
2 0.897 -0.07... 347.92 0.000
3 0.845 -0.01... 494.21 0.000
4 0.796 0.009 624.73 0.000
5 0.747 -0.03... 740.28 0.000
6 0.707 0.066 844.26 0.000
7 0.667 -0.02... 937.52 0.000
8 0.627 -0.03... 1020.2 0.000
9 0.590 0.028 1093.9 0.000

1... 0.557 0.005 1159.8 0.000
1... 0.526 0.007 1219.0 0.000
1... 0.505 0.083 1273.7 0.000

Null Hypothesis: GOLDPRICE has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=14) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -2.102875  0.2439 

Test critical values: 1% level  -3.463235  
 5% level  -2.875898  

     

Table 2.Augmented Dickey-Fuller test statistic. maxlag=14 
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Date: 01/11/16   Time: 16:20
Sample: 2/02/2015 11/06/2015
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.059 0.059 0.7092 0.400
2 0.055 0.052 1.3293 0.514
3 -0.03... -0.04... 1.5921 0.661
4 0.044 0.046 1.9834 0.739
5 -0.05... -0.05... 2.5886 0.763
6 0.052 0.053 3.1430 0.791
7 0.099 0.104 5.2013 0.635
8 -0.00... -0.03... 5.2087 0.735
9 -0.02... -0.02... 5.3103 0.806

1... -0.05... -0.04... 5.8898 0.824
1... -0.07... -0.07... 7.0156 0.798
1... 0.024 0.050 7.1417 0.848
1... -0.01... -0.02... 7.1716 0.893
1... -0.02... -0.03... 7.2965 0.923
1... -0.04... -0.02... 7.6669 0.936
1... 0.006 0.008 7.6741 0.958
1... -0.03... -0.01... 7.9783 0.967
1... -0.03... -0.02... 8.2787 0.974
1... 0.015 0.011 8.3266 0.983
2... 0.018 0.016 8.3985 0.989
2... 0.009 0.010 8.4164 0.993
2... -0.17... -0.17... 15.097 0.858
2... 0.006 0.025 15.104 0.891
2... -0.06... -0.04... 15.993 0.888
2... 0.075 0.071 17.275 0.872  

 

Figure 4. Autocorrelation and partial coloration 

4-1-2- Evaluation  
   Now this question may arise that which model has better regression on data and gives better modeling. 
As we have mentioned before for this purpose, Akaike and Schwartz criterions (Akaike, 1969) should be 
used and the model that shows smaller value of these criteria gives a better regression. Considering the 
Akaike and Schwartz values (Akaike, 1969) for the three models, we can see these values for ARIMA 
(0, 1, 22) are respectively 7.262 and 7.311 which are the lowest among the three models. Therefore the 
parameters of our model are: 

 

ma(22)= -0.226551 
a0 =-0.84820  

Therefore we can define our model as: 

X t= -0.848201+-0.226551 Xt-22 

Because the q value of 22 is too high in this model indicating that 22 observations are lost in the 
estimation process, it is better to use p with unit value instead of q with high value. So we can substitute 
ARIMA (1, 1, 0) model as the best model. With respect to purpose of this study, it is possible that we 
have several models as best model and we can't choose definitely one model as best model. It should be 
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noted that every model that is introduced should have scientific justification. Now for more evaluation we 
analyze the residuals and make sure they are not auto correlated. A residuals test in Eviews software is 
shown in figure 4. 

 

Table 3.Convergence achieved after 4 iterations 

 

 

 

 

 

 

 

 

 
Q-statis tic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.066 0.066 0.8737
2 0.051 0.047 1.4023 0.236
3 -0.02... -0.02... 1.5067 0.471
4 0.027 0.028 1.6547 0.647
5 -0.03... -0.04... 1.9700 0.741
6 0.042 0.045 2.3437 0.800
7 0.091 0.091 4.0581 0.669
8 -0.03... -0.05... 4.3030 0.744
9 -0.02... -0.02... 4.4463 0.815

1... -0.04... -0.04... 4.9561 0.838
1... -0.10... -0.09... 7.0873 0.717
1... 0.019 0.046 7.1657 0.786
1... -0.01... -0.02... 7.2009 0.844
1... -0.04... -0.06... 7.6736 0.864
1... -0.00... 0.024 7.6736 0.906
1... 0.012 0.010 7.7057 0.935
1... -0.03... -0.02... 7.9384 0.951
1... -0.04... -0.02... 8.3711 0.958
1... 0.005 -0.00... 8.3760 0.972
2... 0.021 0.028 8.4792 0.981
2... 0.023 0.023 8.5974 0.987
2... 0.013 -0.00... 8.6342 0.992
2... -0.00... -0.00... 8.6353 0.995
2... -0.04... -0.05... 9.1657 0.995
2... 0.056 0.063 9.8968 0.995

  
Figure 5. Q-Statistic probabilities adjusted for ARMA term 

  
 

Coefficient covariance computed using outer product of gradients

Variable CoefficientStd. Error t-Statistic Prob.  

C -0.848201 0.516620 -1.641826 0.1022 
MA(22) -0.226551 0.073713 -3.073421 0.0024 
SIGMASQ 80.49932 7.633983 10.54486 0.0000 

S.E. of regression 9.040545     Akaike info criterion 7.262101
Sum squared residue 16019.36     Schwarz criterion 7.311749
Log likelihood -719.5791     Hannan-Quinn criter. 7.282195
F-statistic 4.685014     Durbin-Watson stat 1.864680
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   With respect to Q-Stat values we can realize whether an error component is auto correlated. If 
probability value in each delay is lower than 0.05, there is autocorrelation at that delay. As can be seen, 
probabilities are higher than 0.05in all delays indicating there aren't any autocorrelation between error 
components. Also assumption of error components having normal distribution should also be 
investigated. Results of this test are shown in figure 4. 
The probability value of J-B statistic is 0.39 which is above the 0.05significance level indicating the 
normality assumption can't be rejected.  
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Skewness   0.168348
Kurtosis   3.329053

Jarque-Bera  1.837764
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Figure 6. Distribution parameters 

 

4-1-3- Results of ARIMA model  
   The results of 40 days forecast using ARIMA (1, 0, 22) model is shown in figure 7. To evaluate 
forecasts we should consider Mean Absolute Error (MAE), root mean square error (RSME) and mean 
absolute percentage error (MAPE). The lower value of these statistics determine better forecast. In the 
next step we will also do these forecasts with ANFIS model and then we will compare the results. 

4-2- Modeling and forecasting with ANFIS model   
   As we have mentioned before in this method errors decrease continuously until it is adapted with 
system. With respect to type of data and to reach lower level of error it is better to use clustering which 
here in this example clustering algorithm is based on error data. Membership function in fuzzy system is 
also Gaussian.  
   Now we separate data into two Train and Test groups. At first, based on Train data we find proper 
model and then in order to see whether our model has good ability to forecast the future, we compare 
future forecast with Test data. So we use first 160 data for model identification and model parameter 
estimation. Plots are shown in Error! Reference source not found.. 
With respect to first 160 data which is Train data, model parameters are estimated as: µ=0.00040101, 
σ=0.084453. To see whether the model has good future forecasting ability we test it with our next 40 
data. 
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Figure 7. First behavioral analysis 

Figure 8. Second behavioral analysis 
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4-2-1- Results from ANFIS model forecast 
Results are shown in Error! Reference source not found.. Other error values are as follows: 

MAPE =0.3061 
MAE=0.092149 
Comparing real data with forecasted data shows that our model has high forecasting ability with RSME, 
MSE, MAE and MAPE show very small values. This testifies that our model can forecast future with 
small error. 

4-3- Summary and comparison  
   To compare the two models, we should compare error criterions like RSME, MSE, MAE and MAPE as 
shown in table 3. The Model that shows a lower value is better. It is clear that all forecast errors in ANFIS 
model is much lower than those errors in ARIMA model. So we can say with high certainty that ANFIS 
model gives better forecasts than ARIMA model. 

5- Conclusion 
   With respect to results obtained in this study, we can conclude that ANFIS model can forecast future 
gold price much better than ARIMA model. But it is not right to conclude that with every kind of data, 
the difference between errors of the two methods will be as high as that is reported in this model. Indeed 
type of data will affect the modeling of time series. In this study, our ARIMA data are close to non-
linearity rather than to be linear and so gave us proper model but the data are unable to give a model with 
small amount of error. Maybe if data type is closer to linearity, ARIMA model can give more accurate 
forecast. However, it is mentioned in introduction. So depending on type of data, test result will be 
different but main point in this study was high modeling ability of ANFIS method. If we look at the 
structure of this method carefully, we understand that modeling procedure in this method is so powerful 
and efficient because in this method error value is calculated continuously until approaching to minimum 
possible, we can reduce error to any desired amount. So this method has identification ability of 
complicate and dynamic data. Especially when we partition data with clustering, it helps us to have 
similar data in each cluster and it can easily identify relation between data and reduce error more and 
more. We already knew that neural network and fuzzy system have high ability in forecasting of time 
series when they are non-linear. Combination of these two methods can generate a new synergy and has 
more advantages than applying them separately for forecasting the time series. 

 

Table 4. ARIMA model versus ANFIS model 

MAPE MAE RMSE  

3.665439 42.34575 49.87085 ARIMA model 
0.3061 0.092149 0.10974 ANFIS model 
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