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Abstract 

This paper investigates the integration of strategic and tactical decisions in the 
supply chain network design (SCND) considering assembly line balancing 
(ALB) under demand uncertainty. Due to the decentralized decisions,a novel bi-
level stochastic programming (BLSP) model has been developed in which SCND 
problem has been considered in the upper-level model, while the lower-level 
model contains ALB problem as a tactical decision in the assemblers of supply 
chain network. To deal with demand uncertainty, a scenario generation algorithm 
has been proposed within the stochastic optimization model that combines time 
series model, Latin hypercube sampling method and backward scenario 
reduction technique. In addition based on the special structure of the model, a 
heuristic-based solution method is proposed to solve the developed BLSP model. 
Finally, computational experiments on several problem instances are presented to 
show the performance of the model and its solution method. The comparison 
between the stochastic and equivalent deterministic model demonstrated that the 
developed stochastic model mainly performs better than the deterministic model 
especially in making strategic decisions while the deterministic model works 
better in making tactical decisions. 
Keywords: Bi-level stochastic programming, supply chain network design, 
scenario-based approach, assembly line balancing, uncertain demand 
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1- Introduction 
Supply chain network design (SCND) problem is an important issue in supply chain management 

(SCM) which has attracted research attention over the last few decades. In general in this problem, the 
optimal number and configuration of the facilities is determined in addition to the quantities of 
required raw materials, production, distribution and transportation among the facilities such that the 
customer demand is satisfied and the supply chain value is optimized (Simchi-Levi et al., 2004). 

In SCM, there are three levels of decision-making during the time horizon categorized as strategic 
level (long-term decisions), tactical level (mid-term decisions) and operational level (short-term 
decisions) (Vidal and Goetschalckx, 1997).The strategic level commonly relates to the decisions such 
as the determination of number, location and capacity of the facilities and technology selection 
(Ghiani et al., 2004). SCND is one of the main strategic decisions that sometimes entitled as strategic 
supply chain planning (Chopra and Meindl, 2007).In the tactical decisions, production levels at 
manufacturers/factories, assembly policy, lot sizes and inventory levels are determined. Finally, the 
operational level deals with the scheduling of material flows based on the decisions made in two 
upper levels (Schmidt and Wilhelm, 2000). 

Recently, several review papers have been published on SCND area. Shen, (2007) presents a 
survey on the new developments of integrated SCND optimization models, especially nonlinear 
models. Akyuz and Erkan (2010) provide a review on performance measurement of supply chains. 
They present the basic research approaches and methodologies, requirements and areas for the 
performance management of the recent supply chain era. Melo et al., (2009) review facility location 
models in the SCM context and basic features these models must capture to support decision making 
in the design of supply chain networks across different industries. Klibi et al., (2010) review the 
optimization models proposed for the SCND problem under uncertainty. They also investigate related 
strategic SCND evaluation criteria and their use in the existing models. Very recently, Martínez  and 
Moyano (2014), have evaluated the state-of-the-art researches into the relations between SCM, lean 
management and sustainability to identify the studied areas and the orienting future research. 

Many mathematical models have been developed in the related literature in order to design and 
optimize the supply chain networks (SCNs) by now. These models can range from simple 
uncapacitated single-product facility location models (see for example Sung and Song, (2003)) to 
complex capacitated multi-commodity models (see for example Tsiakis and Papageorgiou (2008)) 
with different objectives such as total cost minimization or profit maximization. Most of these models 
concentrate on the transportation/distribution networks with considerations such as facility location, 
capacity planning, inventory management, vehicle routing and so on (Paksoy and Özceylan, 2012a).  

In the recent studies, the SCND problem under uncertainty has received much attention and the 
literature related to this issue is considerably increasing (Klibi et al., 2010). Many studies have 
addressed customer demand as the only uncertain parameter. Longinidis and Georgiadis (2011) 
present a mathematical model as an effective strategic decision tool to integrate SCND decisions with 
financial statement analysis under demand uncertainty. Hamta et al., (2014) investigate the 
optimization of strategic and tactical decisions in a SCND problem under demand uncertainty. 
Furthermore, some studies consider several stochastic parameters simultaneously. In this regard, 
Pishvaee et al.,(2009) develop a stochastic mixed-integer linear programming (SMILP) model for 
multi-stage logistics network design in which quantity and quality of returned products, demands and 
variable costs are uncertain parameters. Mohammadi Bidhandi and Mohd Yusuff (2011) state that 
uncertainty generally finds in tactical decisions because most of the tactical parameters are not totally 
certain when strategic decisions are made. They consider customer demand, capacity of the facilities 
and operational costs as uncertain parameters. 

The production system is one of the vital factors for the optimization of SCNs. In order to create an 
efficient SCN involved with assembly activities, two main functions of supply chain such as 
transportation and assembly line processes must be integrated appropriately (Paksoy et al., 2012b). 
This integration has two main aspects for a supply chain. Firstly, companies try to obtain maximum 
value by minimizing the transportation costs at each stage of the supply chain. Secondly, companies 
attempt to optimize the operations inside the supply chain such as line balancing and the opening 
costs of workstations. Therefore, there is a relationship between logistics processes and assembly line 
processes that necessitates the integration between them in the SCN (Paksoy and Özceylan, 2012a). 
On the other hand, assembly line balancing (ALB) as one of the decisive factors, is the most common 
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operation in SCNs especially when there are a lot of components. It is worth mention that an assembly 
line consists of a set of sequential workstations connected by a material handling system. In each 
workstation, a set of tasks is performed while each task has a certain processing time and there is a 
pre-defined precedence diagram, which determines the sequence of performing the tasks (Becker and 
Scholl, 2006). In this regard, the main objective of the ALB problem is to assign a set of tasks to the 
workstations in such a way that the precedence constraints among tasks are met and some measures, 
such as number of workstations, cycle time or line efficiency are optimized (Hamta et al., 2013). 
Since balancing the assembly activities has significant influence on the performance and productivity 
of systems, optimizing assembly activities affects the SCN performance. Many companies such as 
automobile companies are confronted with this problemwhere logistics processes and assembly line 
activities should be considered concurrently tolead to better performance in terms of customer 
satisfaction, reliability and agility (Hamta et al., 2014). 

The importance of uncertainty modeling in different decision levels of SCND has motivated a 
number of researchers to use stochastic programming approaches when one or more uncertain 
parameters or variables exist in the optimization problem (see for example Pishvaee et  al., (2009) and 
Santoso et al., (2005)). Schütz et al., (2009) develop a two-stage stochastic program to formulate a 
multi-commodity SCND problem with a description of operational consequences from the strategic 
decisions. They address strategic location decisions in the first stage decisions and operational 
decisions in the second-stage. Hamta et al., (2014) propose a two-stage stochastic programming 
model in which the first-stage contains strategic location decisions, while in the second-stage the 
SCND and ALB decisions are made. 

Table 1 presents a detailed classification of the recent papers published after 2010 based on some 
supply chain characteristics and decisions such as objectives, characteristics of product and period, 
uncertainty in demand, capacity, type of modeling, and the solution method. The characteristics of our 
problem in this paper have been stated in the last row of Table 1. It is worth mentioning that the 
papers reviewed in Table 1 have been selected based on the similarity to our work in terms of 
characteristics such as modeling approach and basic assumptions. 
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Although SCND problem has been investigated widely, but little attention has been given to use 
bi-level programming (BLP) as the modeling approach. SCND problem can be considered as a 
Leader-Follower where top managers are the leaders, and the assemblers are the followers who make 
decisions about their activities considering top-level decisions Hamta et al., (2015). Roghanian et al., 
(2007) propose a probabilistic multi-objective BLP problem and its application in enterprise-wide 
supply chain planning where some parameters are random variables. Sun et al. (2008) developed a 
BLP model to obtain the optimal location of distribution centers where the upper-level model 
determines the optimal location, and the lower-level model gives an equilibrium demand distribution. 

The main contribution of this paper is to develop a bi-level stochastic programming (BLSP) for a 
SCND problem considering ALB and demand uncertainty. To the best of authors’ knowledge, this 
problem which is applicable to many real-world situations, is novel and has not been addressed in the 
related literature. The most similar study to our work belongs to Paksoy et al., (2012b). They 
developed an MINLP model to integrate SCND and ALB problems. However, they did not pay 
attention to the bi-level nature of the problem. In addition, since the variations in customers’ demands 
change the products shipped between layers of the SCN in each period, demand uncertainty has 
significant effects on the flows inside the SCN. This issue also affects the assignment of tasks and 
layout of the workstations. The main objective of the developed BLSP model in this paper is to 
optimize the performance of the considered SCN under demand uncertainty. A scenario-based 
algorithm is proposed to deal with demand uncertainty in which time series model and Latin 
hypercube sampling (LHS) (Iman, 2008) are employed. Finally, the BLSP model performance is 
evaluated under generated scenarios. 

The remainder of this paper is structured as follows. Section  0introduces problem description and 
mathematical formulation of the BLSP model under study. Section  0 explains how to deal with 
demand uncertainty that serve as input to developed BLSP model. Section  0describes the solution 
method. The computational experiments over several problem instances and the comparison with the 
deterministic model are presented in Section 0. Finally, Section  0 leads to the concluding remarks and 
guidelines for future research. 

 

2- Problem statement and formulation 
In this section, the problem statement, notations and the mathematical formulation of problem 

under study are presented. 
 

2-1- Problem statement 
This paper considers the simultaneous optimization of strategic and tactical decisions in the SCN 

to design and optimize an SCN. Figure 1 shows the structure of considered SCN including 
manufacturers, assemblers and customers. An SCND problem is addressed as a strategic decision and 
ALB problem is tackled as a tactical decision. In the assemblers, single-product and straight assembly 
lines are concerned with the aim of minimizing the number of workstations for a certain cycle time. 

The main purpose of this paper is to model and solve an SCND problem considering ALB using 
stochastic BLP. BLP is a tool to model decentralized decisions which contains the objective(s) of the 
leader at the first level and that of the follower at the second level (Colson, 2005). Since the problem 

Table 1. Continued 
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under study involves two different decision-makers including supply chain managers and the 
assemblers’ decision makers who make connected decisions with interactions on each other, BLP is 
adapted to describe the problem appropriately (Hamta et al., 2015).Considering demand uncertainty, 
the problem is formulated as a BLSP model in which SCND problem as a strategic decision is 
considered in the upper-level model, while the lower-level model contains the ALB as a tactical 
decision. The main decision variables obtain after solving the model are the amount of flows between 
two sequential echelons, assemblers’ cycle times, and tasks assignment to the workstations in the 
assemblers. 

 

 

Figure 1. The structure of considered SCN 

  
   The basic assumptions behind the studied problem are common assumptions for SCND and ALB 
problems (see for example Hamta et al., (2014)). In this paper, it is assumed the maximum capacity of 
manufacturers and assemblers is given. In addition, the upper bound of the number of potential 
workstations at each period is determined via dividing total task times by average initial cycle times. 

 
2-2- Mathematical model 

This subsection presents the BLSP formulation of the problem. The scenario-based stochastic 
approach has been used in the BLSP model for capturing the customers’ demands in both levels of the 
model to find the best decisions. The proposed scenario-based approach will be explained in Section  0 
in detail. 
 

2-2-1-Basic model of BLSP 
A BLP model is applied for a problem with two different decision-makers, which make 

decentralized decisions successively (Colson, 2005). In this paper, supply chain network decisions 
such as flows of products and cycle times are made by top-level managers, and then determined 
decisions are employed in assemblers to balance the assembly lines. Since we concern uncertainty in 
customers’ demands, a stochastic version of BLP has been used in the paper. BLSP method allows 
applying concepts of stochastic programming directly to bi-level structure. In other words, BLSP 
completes relationship between the actors to deal with bi-level structure and uncertainty 
simultaneously. The stochastic programming framework seems more flexible and investigations 
connected with the bi-level structure can be incorporated more efficiently into the stochastic 
programming context (Werner, 2005). Therefore, the BLSP approach can treat the implications of the 
bi-level features adequately. 

In terms of BLSP, a general stochastic programming problem with bi-level structure can be 
formulated as follows where the uncertainty environment is expressed by a random variable ω∈Ω. In 
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addition x and y are the decision variables of upper-level and lower-level problems, respectively 
(Werner, 2005): 

*

*

(U) Min  ( , , )

        . .  ( , , ) 0,

x
F x y

s t G x y

ω

ω ≤  

(1) 

where y*is an optimal solution of the leader’s perception of the follower’s decision process. 

(L) Min  ( , , )

       . .   ( , , ) 0

y
f x y

s t g x y

ω

ω ≤  
(2) 

The BLSP model consists of two sub-problems: (U) is an upper-level problem with variables 
1nx R∈ and (L) is a lower-level problem with the decision vector of the lower-level decision-makers
2ny R∈ . Function 1 2: n nR RF R× × Ω →  is the objective function of upper-level decision-makers or 

top-level managers, and the vector-valued function 1 2 1: n n mG R R R× × Ω → is the constraint set of the 

upper-level decision vector. Similarly, function 1 2: n nR Rf R× × Ω → is the objective function of 

lower-level decision-makers, and 1 2 2: n n mg R R R× ×Ω →  is the constraint set of the lower-level 
decision vector. All of the constraints and objective functions may be linear, quadratic, nonlinear, 
fractional, etc. 
 
2-2-2- Model notations 

The sets, indices, constants, parameters and decision variables employed in the mathematical 
model are defined as follows: 
 

Sets and indices: 
M set of manufacturers, indexed by m M∈  

A set of assemblers, indexed by a A∈  

C set of customers, indexed by c C∈  

J set of potential workstations with estimated number of potential workstations, indexed by j J∈  

N set of tasks, indexed by i N∈  

r, q index of tasks 

P set of couples of tasks (r, q) in which task r is the immediate predecessor of task q 

K set of components ,indexed by k K∈  

T set of periods in planning horizon, indexed by t T∈  

S set of scenarios, indexed by s S∈  
 

Constants and parameters: 
MA
matTC  transportation cost from manufacturer m to assembler a at period t 
AC
actTC  transportation cost from assembler a to customer cat period t 
MA
maDc  distance between manufacturer m and assembler a 
AC
acDc  distance between assembler a and customer c 

M
mktCap  capacity of manufacturer m for component k at period t 
A
atCap  capacity of assembler a at period t 

ctsD  demand of customer c at period t in scenario s 

it  task time of task i 
Prts  occurrence probability of scenarios at period t 

tWT  total working time at period t 
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Decision variables: 
MA
maktsY  Quantity of component k shipped from manufacturer m to assembler a at period t in scenario s 

AC
actsY  quantity of product shipped from assembler a to customer c at period t in scenario s 

if task  is assigned to workstation  for assembler  at period  in scenario 1    ,

otherwis
 

 e
 

0  aijts
i j a t s

V


= 


 

if at least one task is assigned to workstation  for assembler  at period  in scenari1 o ,

otherwi

    
  

0 s e  ajts
j a t s

Z


= 


 

atsCT
 

cycle time for assembler aat period t in scenario s 
 

2-2-3- Upper-level model 
In the upper-level of our developed BLSP model, the considered SCND decisions are made 

including the amount of flows between two sequential echelons and assemblers’ cycle times under 
demand uncertainty. 

 

PrMin MA MA MA AC AC AC
ts mat ma makts act ac acts

t T s S m M a A k K a A c C

U TC Dc Y TC cZ D Y
∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = × × × + × ×
 
 

∑∑ ∑∑∑ ∑∑  (3) 

MA M
makts mkt

a A

Y Cap
∈

≤∑  , , ,m M k K t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (4) 

AC A
acts at

c C

Y Cap
∈

≤∑  , ,a A t T s S∀ ∈ ∀ ∈ ∀ ∈  (5) 

AC
acts cts

a A

Y D
∈

≥∑  , ,c C t T s S∀ ∈ ∀ ∈ ∀ ∈  (6) 

0MA AC
makts acts

m M c C

Y Y
∈ ∈

− =∑ ∑  , , ,a A k K t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (7) 

A C
ats t acts

c C

CT W T Y
∈

≤ ∑  , ,a A t T s S∀ ∈ ∀ ∈ ∀ ∈  (8) 

, , 0MA AC
makts acts atsY Y CT ≥

 

, , , , ,m M a A k K t T c C s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
 (9) 

 

   The objective function of upper-level model, i.e. Relation (3), minimizes the expected transportation 
costs between two sequential echelons. Constraints (4) and (5) assure the total quantity of components 
shipped from each manufacturer to the assemblers, and the total amount of products shipped from 
each assembler to the customers should not exceed the capacity of that manufacturer and assembler at 
each period in each scenario, respectively. Constraint (6) guarantees the satisfaction of customer 
demand for all products at each period in each scenario. Relation (7)shows the total component 
amount shipped from manufacturers to the assembler equals to the total shipped product amount from 
that assembler to customers to satisfy the demand at each period in each scenario. Constraint (8) states 
that cycle time of all assemblers at each period in each scenario must be lower than or equal to the 
working time in all periods divided by the total product amount shipped from each assembler to 
customers. Constraint (9) denotes the non-negativity restriction of upper-level decision variables, i.e. 

MA
maktsY , AC

actsY and atsCT . 
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2-2-4-Lower-level model 
The lower-level of our developed BLSP model represents the assignment of tasks to the 

workstations in the assemblers, which is the objective of ALB problem. It should be noted that the 
simple assembly line balancing problem (SALBP) is categorized into two main groups: SALBP-I and 
SALBP-II. SALBP-I intends to assign tasks to the workstations in such a way that the number of 
workstations is minimized for a given cycle time, while SALBP-II tries to minimize the cycle time for 
a given number of workstations (Hamta et al., 2011).Since SALBP-I generally happens when the 
organization intends to design new assembly lines, we select this type which is more compatible with 
the considered problem in the lower-level model. 

Min Prts ajts

t T s S a A j J t T

L ZZ
∈ ∈ ∈ ∈ ∈

 
 = ×
  
 

∑∑ ∑∑∑  (10) 

1aijts

j J

V
∈

=∑  , , ,a A i N t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (11) 

0arjts aqjts

j J j J

j V j V
∈ ∈

× − × ≤∑ ∑  , ( , ) , ,a A r q P t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (12) 

i aijts ats

i N

t V CT
∈

× ≤∑  , , ,a A j J t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (13) 

aijts ajts

i N

V M Z
∈

≤ ×∑  , , ,a A j J t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (14) 

, {0,1}aijts ajtsV Z ∈  , , , ,a A i N j J t T s S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (15) 
 

   The objective function of lower-level model minimizes the expected total number of opened 
workstations in all assemblers. Constraint (11) guarantees that each task must be assigned to one 
workstation in all assemblers at each period in each scenario. Constraint (12) ensures the precedence 
relations between the tasks by assigning task r as an immediate predecessor of task q in all assemblers 
at each period in each scenario. Constraint (13) expresses that total task times in each workstation 
should not exceed the corresponding cycle time in all assemblers at each period in each scenario. 
Constraint (14) guarantees that workstation j is opened, i.e. 1ajtsZ = , if at least one task is assigned to 

it in all assemblers at each period in each scenario. Constraint (15)denotes the binary nature of 
variables aijtsV and ajtsZ . 

 
3- Dealing with Demand uncertainty 

To deal with demand uncertainty, this paper presents a scenario-based approach to generate 
demand scenarios in the BLSP model by approximating the stochastic demand process fitted from 
historical data. It is worth mentioning that a scenario is a description of a future state with a 
probability assigned to it that indicates the importance of that scenario in uncertain environment 
(Birge and Louveaux, 2011).A scenario tree is employed to represent demand uncertainty with a 
given probability for each scenario (Figure 2). Each scenario determines the customer’s demand for a 
certain product in planning horizon. Several demand scenarios are generated from the particular 
distribution through scenario generation algorithm presented in this section. This algorithm includes 
three steps, namely time series forecast modeling, LHS method to generate error term in the forecast 
model, and demand scenario reduction to build the scenario tree from historical data. Details of each 
step are explained in the following subsections. Figure 3 demonstrates the outline of the proposed 
scenario generation algorithmtodeal with demand uncertainty in the considered problem. 
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Figure 2.A scenario tree for a customer (c) with discrete demand scenarios 
 

 

Figure 3.The outline of proposed algorithm for dealing with demand uncertainty and scenario generations 
 

3-1- Time series forecast model 
In order to deal with uncertainty, a suitable time series model can be utilized to consider time 

dependencies of demand in multiple periods in each scenario. We employ an autoregressive (AR) 
process of P th order to model demand uncertainty(see for example [22]). In our case, the predicted 
demand at period t + 1 and scenario s denoted by c, 1,t sD + considering the error termc, 1,t sε +  is given by 

the following relation: 

c, 1, c, c, 1,
1

ˆ
P

t s i t j i t s

i

D Dα β ε+ + − +
=

= + +∑  , ,c C t T s S∀ ∈ ∀ ∈ ∀ ∈  (16) 

where α is a constant, βi is AR parameters,c, 1
ˆ

t iD + − is the historical demand of customer cat (t+ 1– i) 

period, andc, 1,t sε + is the error term at(t + 1) th period and s th scenario. Then, the following formulation 

is employed to generate scenarios at subsequent periods: 
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Figure 4.Demand generation method for customer c 

 

   Figure 4 demonstrates a schematic view of generating different scenarios for customer c. The 
scenarios are generated based on the error terms, which follows normal distribution with mean zero 

and variance 2
εσ . In our case, the error terms are generated at each period for all customers based on 

the method will explain in Subsection  0.As a practical example of implementing the considered time 
series model, the demand of a special type of civil aircrafts is concerned. Since the historical data has 
a non-constant mean and variance, therefore the ARIMA model is the most suitable to describe the 
behavior of demands (Chen and Lu, 2012). For this purpose, first the autocorrelation between data 
should be checked to help determine a likely model. We performed that and found there is a single 
large spike of 0.7 at lag 1, which is typical of an autoregressive process of order one (Figure 5).Figure 
6showsthe historical data from 2002, i.e. period 1 in the abscissa of Figure 6, to 2013, i.e. period 12 in 
the abscissa of Figure 6,used to predict the future demands, including the average and 95%confidence 
intervals of demand values in next 6 months (from period 13 to period 18). Consequently, the 
estimated ARIMA parameters and the results of related hypothesis test for this product are as follows: 
 
Type             Coef. SE    Coef.            T         P 
AR   1           -0.4482     0.2923      -1.53     0.080 
Constant      31.35        12.44           2.52     0.033 
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Figure 5. Autocorrelation Function for demands with 5% significance limits. 

 

 

Figure 6.Historical and predicted demand quantities of the considered product. 

 
It should be noted that the coefficients of the fitted ARIMA model are estimated by maximum 

likelihood estimation (MLE) via Minitab statistical software. The mean demand and95% confidence 
limits (CL) of the considered product based on the fitted model are reported in Table 2for 6 future 
periods. 
 
 

Table 2. The mean demand and 95% confidence limits of the productfor 6 periods. 

Period 13 14 15 16 17 18 

Mean Demand 460.145 482.466 503.812 525.595 547.182 568.857 

95% Lower CL 379.259 390.081 393.17 402.652 411.725 422.508 

95% Upper CL 541.032 574.852 614.454 648.538 682.639 715.205 

 

3-2- Error term generation using LHS method 
Most of former works have used Monte Carlo simulation (MCS) to generate error term (ε)and 

consequently different scenarios (See for example Chen and Lu (2012)). In this paper, LHS method is 
employed to cover more domain space of stochastic parameters rather than MCS. LHS is 
recommended as a method to improve the efficiency of sampling method (Iman, 2008). Figure 
7compares the performance of MCS and LHS methods for an example with two variables x1 

andx2following normal distribution (
2 2

1 2~ (10, 5 ) and ~ (10,2 )x N x N ). 
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Figure 7. Comparison between LHS and MCS methods. 

 
To construct scenario tree, suppose we have |T| periods. In each period, the error terms are 

generated using a normal distribution as mentioned before. Since error terms are period-independent, 
the new terms are generated at the next period by the same way. This procedure is continued until the 
last period. The steps of LHS method employed to generate error terms are explained in pseudo-code 
of proposed scenario generation algorithm presented at the end of this section. 
 

3-3- Scenario reduction 
As it is clear, large number of scenarios makes the optimization model cumbersome to be solved, 

especially in large scale problems. In order to reduce the number of scenarios efficiently, a scenario 
reduction technique should be used. In the literature, two scenario reduction methods exist: backward 
and forward (Dupačová et al., 2003). For simplicity, we employ backward reduction technique. The 
algorithmic framework of backward technique is described in Step 3 of scenario generation algorithm. 

In the civil aircraft case, the backward reduction algorithm has been used to reduce 80 generated 
scenarios to 30 reduced set for 3customers in 6 future periods (Figure 8). As shown in the reduction 
results, the shape and characteristics of generated scenarios are retained and the reduced scenarios can 
be used to predict appropriately. 
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(a)                                                                                 (b)          

Figure 8.(a) 80 generated scenarios for three customers in six future periods (b) 30 demand scenarios 
obtained by reduction method from 80 generated scenarios in (a). 

 
Pseudo-code of the proposed scenario generation algorithm is represented as follows: 
 

Nomenclature: 
|S| number of generating scenarios at each period  
|S|target desired number of reduced scenarios 
|C| number of customers 

tSc set of scenarios at period t 

,Prt j probability of constructed scenario j at period t 

tDSc  set of scenarios that to be deleted at period t 

ijtDis  Euclidean distance between scenario i and j at period t 

 
Begin 

For each t∈T 

Step 1.Generate ( 1,2,...,| |; 1,2,...,| |)cts c C s Sε = =  using LHS as follows[52]: 

i. M is a | | | |C S× matrix in which rows are random permutation of 1,...,|S|. 
ii. M ′ is a | | | |C S× matrix randomly generated using uniform (0,1) distribution.  

iii.  1
( )

| |
G M M

S
′= − . 

iv. 1ˆ ( ) ( 1,2,...,| |; 1,2,...,| |)itj ijF G i C j Sεε −= = = , where 1()Fε
−  is inverse cumulative distribution 
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function of ε. 

Step 2.Construct demand scenarios 

If (t>1)then 
a. Construct set tSc  by | | | |targetS S× Scenarios using Relation (17) using 

( 1,2,...,| |; 1,2,...,| |)cts c C s Sε = = . 

b. ,
1

Pr ,
| |t j S

=  

Else 
a. Construct |S| demand scenarios for period 1 using Relation (16). 

b. 1,
1

Pr , 1,...,| |
| |j j S
S

= =  

End if 

Step 3.Backward scenario reduction 

i. Define tSc as a set of all initial scenarios at period t and tDSc is a null set. 
ii. While ( target| | | |tSc S> ) 

a. ( )
| |

2

1 1

, 1,...,| |; 1,...,| |
C t

ijt rpi rpj t t

r p

Dis D D i Sc j Sc
= =

 
 = − = =
  
 
∑∑  

b. 
1,...,| |
min { }   1,...,| |,

t
st ss t t

s Sc
MDis Dis s Sc t T′

′=
= ∀ = ∀ ∈ , find the scenario index f that has the 

minimum distance with scenario s. 
c. Calculate Pr    1,...,| |,st s st tPS MDis s Sc t T= × ∀ = ∀ ∈  
d. Find the scenario index d such that min    1,...,| |,dt st tPS PS s Sc t T= ∀ = ∀ ∈  
e. , , ,scenario( ), scenario ( ),Pr Pr Prt t t t t f t f t dSc Sc d DSc DSc d= − = + = +  

End while 

End for 

End 

 

4- Solution method 
It is generally difficult to solve the BLP problem. One reason is that BLP even in its simplest 

version is an NP-hard problem (Ben-Ayed et al., 1988). Even if both upper and lower-level problems 
are convex, the whole BLP problem can be non-convex. Therefore, even if we obtain the solution of 
BLP, it is generally local optimum not global. Finding the response or reaction relation is the key 
point to solve the BLP. Response relation determines the relationship between upper and lower 
variables in a BLP model[44]. In the special formulation of this paper, finding relationship between 
upper-level variables and lower ones is simple. Constraint (13) represents explicitly the relationship 
between binary lower-level variables and continuous upper-level variables. 

Our proposed solution method is a heuristic algorithm based on Constraint (13) by considering the 
generated demand scenarios using the algorithm presented in Section  0. It should be mentioned that 
the proposed solution method is a hybrid method in which exact methods have been employed 
through a heuristic approach. Exact methods such as branch and bound have been implemented by 
GAMS solvers. In this method, cycle time (CTats) is a given parameter in the lower-level model. After 
solving the lower-level model and obtaining the value of variable Vaijts, Constraint (13)should be 
added to the upper-level model. Then for the fixed Vaijts obtained from lower-level model, upper-level 
problem is solved to find new CTats. This iterative process is continued until the stopping criterion is 
established and convergence to the optimal solution of the original BLSP model. The stopping 
criterionis that difference betweentwo sequential objective function values of upper-level model 
should be lower than a small positive number (ε). Following the proposed solution method for the 
developed BLSP model is presented: 
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Step 1.Generate demand scenarios using the proposed algorithm in Section  0; 
Step 2.Determine an initial set forCT0; 

Step 3. For the fixed k
atsCT , solve the lower-level model and obtain k

aijtsV ; 

Step 4. Using obtained k
aijtV from Step 3, solve the upper-level model and find a new value for CT; 

Step 5. If 1k k
U UZ Z ε−− ≤ stop, where ε is the convergence tolerance; otherwise, set k=k + 1 and go 

back to Step 3. 
Figure 9 shows the steps of the proposed algorithm to solve the considered BLSP model. It should 

be noted that since upper-level model is an MINLP problem, an appropriate solution method should 
be employed in iterations such as branch-and-bound method or outer approximation algorithm. 
Sometimes an inner penalty function method can be utilized to relax nonlinear constraints, and then 
the upper-level model can be solved by the solution methods of linear convex optimization problems 
(Roghanian et al., 2007). On the other hand, the MILP solution methods can be employed to solve the 
lower-level model. In this regard, GAMS/ Cplex as a well-known GAMS solver is used in the lower-
level model to obtain optimal solution. Since our proposed solution method is a heuristic method, it is 
hard to test its convergence. For this purpose, different initial points can be considered to solve the 
problem and if all results are the same, it shows that the algorithm converges (In this regard, see for 
example Hamta et al. (2015) and Sun et al. (2008)). 
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1  ?k k
U UZ Z ε−− ≤

 

Figure 9. The steps of the proposed algorithm to solve the developedBLSP model 
 

5- Computational experiments 
In order to evaluate the performance of the developed BLSP model and the solution method, 

numerical experiments over some randomly generated problem instances are used. These instances 
have been generated in different sizes (small, medium and large) to evaluate the model 
performance for all sizes of problems. The model and its proposed solution method were 
implemented in GAMS in linkage with MATLAB. 
 
5-1-Data generation and settings 

The required data for the problem instances can be characterized into four groups: transportation 
costs and distances, two types of maximum capacities, customers’ demands and time data. The 
sources of random generation and fixed values of parameters used in the problem instances are listed 
in Table 3.The data for ALB, i.e. task times and precedence constraints, are obtained from homepage 
for assembly line optimization research (www.assembly-line-balancing.de).Afterward, using the 
generated parameters, 15 problem instances with different sizes are constructed. 
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Table 3.Parameters values used in the problem instances 

Category Parameter Corresponding range and distribution function 

Transportation 
costs and distances 

MA
matTC , AC

actTC  ~ Uniform(1,5) 

MA
maDc  

~ Uniform(200,400) 

AC
acDc  

~ Uniform(400,600) 

Capacities
 

M
mktCap  ~ Uniform(6000,7500) 

A
atCap  ~ Uniform(4500,6000) 

Customers’ 
demands 

ctsD
 

c, 1,
ˆ(1) : cts t s ctsAR D Dα β ε−= + +  

α ~ Uniform (20, 40) 

β ~ Uniform (0.15, 0.2) 

ctsε ~ N(0, Uniform (20, 35)) 

c, 1,
ˆ

t sD − ~ Uniform (30, 50) 

Time data 

it

 
From homepage for assembly line optimization research 

Initial atsCT  
~ Uniform( it J∑ , ( )it J f−∑ ), where f is a constant selected 

based on the size of problem 

tWT
 

28800 

 

5-2- Problem instances generation 
Several problem instances are randomly generated considering assumptions that reflect the real-

world situation. Sizes of these problem instances are chosen based on the range of test problems 
presented in the literature (see for example Pishvaee et al.,( 2010)).Table 4 reports the characteristics 
of 15 problem instances used in this section. The size of a problem instance is determined by 
characteristics shown in the first row of Table 4. 
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Table 4. The characteristics of the problems instances. 

 

5-3- Computational results 
This subsection presents iteration number in which the iterative process stops, the best lower and 

upper objective values and the CPU time for the pre-defined problems instances. It should be noted 
that the stopping criterion is based on step 5 of solution method presented in section  0.The proposed 
solution method was coded in MATLAB 7.1 where the lower-level and upper-level models were 
formulated in GAMS 23.5.All experiments were run with an Intel Pentium IV dual core 2.1 GHz CPU 
PC at 3 GB RAM under a Microsoft Windows 7 environment. 

All problem instances were solved using the proposed heuristics solution algorithm. The results for 
each problem instance are reported in Table 5. In addition, Figure 10 shows the convergence of the 
upper-level and lower-level models’ objective values (ZU and ZL) for problem instances 4, 9, 11 and 
13 until the stopping criteria is met. The obtained results show that the proposed solution algorithm is 
efficient in solving the developed model and so this algorithm can be employed in finding the optimal 
solutions of problem instances with different sizes in reasonable computational time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 
instance 

Number of 
manufacturers  

(|M|) 

Number of 
assemblers 

(|A|) 

Number 
of 

customers 
(|C|) 

Number of 
potential 

workstations 
(|J|) 

Number 
of tasks 
(|N|) 

Number of 
components 

(|K|) 

Number 
of 

periods 
(|T|) 

Number 
of 

scenarios 
(|S|) 

Number 
of 

scenarios 
after 

reduction 

1 4 2 4 4 9 7 2 60 20 

2 4 2 4 4 9 7 2 100 40 

3 4 6 6 4 9 7 4 60 20 

4 4 6 8 4 11 7 4 100 40 

5 8 10 10 4 9 7 2 60 20 

6 8 10 12 4 11 7 4 100 40 

7 10 13 13 7 21 8 2 60 20 

8 10 13 15 8 25 8 4 60 20 

9 15 18 18 7 21 8 2 100 30 

10 15 18 20 8 25 8 4 60 20 

11 20 22 22 9 28 10 2 60 20 

12 20 23 24 10 29 10 4 60 20 

13 20 22 25 10 30 10 2 60 20 

14 21 24 25 10 30 10 4 80 30 

15 22 24 25 12 35 11 2 80 30 
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Table 5.Theobtained results fromthe proposed solution method for the defined problems instances 

 
 
 
 

Problem instance 4 

  

Problem instance9 

  

47.4

47.6

47.8

48

48.2

48.4

48.6

48.8

49

49.2

1 2 3 4 5 6 7 8 9 10 11 12

ZL

Iteration No.

2744920

2744940

2744960

2744980

2745000

2745020

2745040

1 2 3 4 5 6 7 8 9 10 11 12

ZU

Iteration No.

73.5

74

74.5

75

75.5

76

1 2 3 4 5 6 7 8

ZL

Iteration No.

3350700

3350720

3350740

3350760

3350780

3350800

3350820

3350840

3350860

3350880

3350900

1 2 3 4 5 6 7 8

ZU

Iteration No.

Problem instance Iteration number (to stop the 
iterative process) 

ZU ZL CPU time 

1 6 1169178 12.67 26 s 

2 5 1007695 13.1 96 s 

3 9 2979740 72.3 2245 s 

4 12 2744954 48 3975 s 

5 6 1614678 61.07 965 s 

6 7 5031525 90.78 7124 s 

7 10 2513249 90.28 3981 s 

8 9 5902075 100.65 3788 s 

9 8 3350761 74.26 8584 s 

10 7 5240030 145.72 8419 s 

11 10 3952291 75.57 > 3 hours 

12 17 8609533 114.57 > 3 hours 

13 11 4553853 75.73 7539 s 

14 21 8370290 196 > 3 hours 

15 25 5116175 148.02 > 3 hours 
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Problem instance 11 

  

Problem instance 13 

  

Figure 10.The convergence of ZL and ZU for several problem instances 

 

5-4- Comparison between stochastic and deterministic models 
In this subsection, the performance comparison between the developed stochastic model and its 

equivalent deterministic version is made. In the deterministic model, the scenario indices and the 
corresponding probabilities (Prts) are removed from the model. In addition due to meaningful 
comparison between deterministic and stochastic models, in the deterministic model, one of the 
generated scenarios is selected randomly for cycle time, i.e. CTats, and customer demand (Dcts) at each 
period. For this purpose, several problem instances with different sizes are selected from Table 4. 
Figure 11and Figure 12 demonstrate the performance of the stochastic and deterministic models in 
terms of ZL and ZU for several problem instances defined in Subsection  0. As Figure 11 shows, the 
deterministic model has obtained better ZL in all problem instances. On the other hand, Figure 
12illustrates that the stochastic model obtains better ZU in comparison with deterministic model in 
most of problem instances. To conclude, the developed stochastic model mainly performs better than 
the equivalent deterministic model in making strategic decisions while the deterministic model works 
better in making tactical decisions, i.e. ALB decisions. 
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Figure 11. Comparison betweenstochastic and deterministic models in terms of ZL for several problem instances 
 

 

Figure 12. Comparison between stochastic and deterministic models in terms of ZUfor several problem instances 

 

6- Conclusions and future research 
   This paper addresses an important issue concerning the integration of strategic and tactical decisions 
in supply chain management. The main objective of this paper is to introduce and characterize the 
problem of integrating supply chain network design and assembly line balancing problems under 
demand uncertainty. A special case of supply chain networks is considered in which assembly 
activities are a main stage of the supply chain in the uncertain environment. A novel bi-level 
stochastic programming model is developed to design and optimize the considered supply chain 
including manufacturers, assemblers and customers. In order to deal with demand uncertainty, a three-
step algorithm is proposed to generate different demand scenarios. Moreover, a heuristic method is 
proposed to solve the developed model. Finally, computational experiments over several problem 
instances show that the developed model is valid and capable to be employed in practical cases. The 
comparison between the stochastic and equivalent deterministic model is also made. 

Future research can investigate multiple products, U-shaped or two-sided assembly lines and 
equipment selection. Considering location, routing or inventory decisions in supply chain network 
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design problem is also a valuable future work. In addition, since CPU time increases significantly 
when problem size and the number of scenarios increase, developing meta-heuristic algorithms or 
exact solution methods (such as branch-and-bound method) to solve large-scale problems is of interest 
for future studies. 
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