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Abstract

Perishability of blood products as well as uncettain their demands complicates
the management of blood supply for blood centelnés Ppaper addresses a mixed-
integer linear programming model for blood platelptoduction planning while
integrating the processes of blood collection adl vas production/testing,
inventory control and distribution. Whole blood-ived production methods for
blood platelets (i.e., Buffy Coat and platelet-righsma methods) are particularly
focused in our research. The problem is tackledh Wit aim of minimizing the
supply chain total cost. To capture inherent uadety of input data, a robust
programming approach is devised. A set of numeggpkriments is carried out to
evaluate the performance of the proposed model thedsolution technique.
Thereto, in this paper we employ two criteria. Ehesiteria are the mean and
standard deviation of constraint violations undemanber of random realizations
to measure the quality of solutions achieved byhlibe proposed deterministic
and robust models. Several sensitivity analyses am@mplished to provide
valuable managerial insights. The results showtti@robust approach dominates
the deterministic one.

Keywords: Blood supply chains, healthcare, platelet-ricaspta, Buffy Coat,
robust optimization.

1- Introduction

The world has witnessed a remarkable increadeeaith spending over the last fifty years.
Health systems, especially in developing countaes,struggling with rapid cost increase, which
seriously prevents them from getting improved (Ridtosseini-Motlagh and Teimourpour,
2013). To be more specific, according to the Wdkhk (2015), healthcare costs comprised
about 18% of GDP in the US in 2010, and it will\grover 20% by the year 2021 (Kaiser Health
News, 2015).However, in Iran, the spending on heale was estimated around 6% of GDP up
to 2010 while it is expected to increase more enears ahead.
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Among all, increasing growth of aging populationsides the developments in healthcare
technologies can exacerbate the costs of healtseavize (Brandeau et al., 2004).

Thus, the necessity of having an efficient eysfor healthcare service supply and delivery,
which can be practically influenced by social netwanalysis (Rastegar-Panah et al., 2013),
arises since public resources cannot bear theypseesEhealthcare costs in the future.

A considerable portion of healthcare costs fiigdato healthcare supply chains. Baring this in
mind, any improvement in the healthcare supply rehedficiency can result in increased cost
savings as well as customer's satisfaction. Thigipaeeks to optimize the blood supply chain
(BSC) as a critical part of a healthcare supplyrcha

BSCs differ substantially from other perishablgply chains. One of the most significant
differences between them lays on both supply amdadd sides. In other words, the (primary)
suppliers of BSCs are humans, being the only aactecsource of blood donation, and the final
customers are humans as well. Blood donation sav@ried from one country to another. In the
US for example, blood donation rate does not exé&8édof the population. Although this rate
will not climb to more than 6% in the UK, it is evevorse in low-income countries. However,
unbelievable or not, some developed countriesdéq@an demand the import of blood (Drackley
et al., 2012; Belién and Forcé, 2012). Indeed, BSS& human-to-human supply chain and any
deficiency or disruption in blood supply may evead to humans' death. Additionally, the most
noticeable of all, is that blood products preparatind storage have major differences, which are
discussed in continue, comparing to other perighapply chains.

Blood is a life-saving product for which theseain endless demand with almost no substitution.
Red blood cells (RBC), platelets (PLT) and plas®@aS) can be mentioned as the main products
fractionated from whole blood, and each productpgplicable for a special need. The most
required blood component (i.e., RBC) is widely udmdsurgeries, etc. As the vessels are
damaged, PLTs, which are normally counted to 27 cubic microliter on average, are the
components in charge of ending bleeding through firection of blood coagulation. In
emergency operations, PLS, by which nearly 55%otdl tblood volume in human's body is
made, plays a critical role (Schreiber et al., 2006

Each blood product has certain shelf life uradspecial storage condition. Blood PLT, which is
known as the most perishable component can livenfaximum 7 days, but it will keep its
storage quality up to 15 days by using additivautsahs if it is fractionated by Buffy Coat
production method (Vassallo and Murphy, 2006). RBIT not be outdated before 42 days of
production date if it is stored at 1*6and lastly, PLS is known as almost non-perishalded
component since it can remain for about one year.

Thus, blood supply chain management (BSCM) is anstraightforward process since it is
incurred complexity due to the special featureblobd products including their perishability,
uncertain and irregular pattern of blood supplyn@an), and demand and inventory shortage.
Therefore, these conditions must be taken intowttowhile planning for BSCs.

A typical BSC (see Fig.1) consists of four maichelons; collection, production/screening,
inventory control and distribution.

Collection : Production : Inventory 3 Distribution

EHe

B ————————]
‘ ‘ ! o o
Blood collection Regional blood ! Storage facilities/blood ! Blood delivery to
centers ‘ centers ‘ banks ‘ hospitals

Fig.1. A typical blood supply chain
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Firstly, donors refer to blood collection cestand blood units are drawn after the donors are
checked up. Afterwards, the blood units are trarisg to regional blood centers within a certain
length of time to be screened and decomposed irddupts. Each product can possibly be
fractionated via different processes. PLTs, formeple, are drawn in two main types; apheresis-
derived platelet concentrates (AP-PCs) and whatedberived PLTs (Vassallo and Murphy,
2006). The latter case can be yielded by two differmethods; Platelet-Rich Plasma (PRP)
production method and Buffy Coat (BC) productiontimoel (Levin et al., 2008), both of which
have their own features in terms of cost, functite, and the PLTs produced by each method is
affected by these features. AP-PC is prepared Bgipa donor's blood through the apheresis
devise (automatic equipment), by which only blotatglets are separated and the rest is returned
to the donor's body. Although the process of AP-B&sefits from less wastage, inventory and
polling, easier cross-matching and less possibilftransferring infection, it is more costly and
more time consuming in comparison to whole bloodweel PLTs since the former requires
special equipment, specialized staff, etc. Evendghadn-vitro properties for all three types of PCs
(i.e., BC-PCs, PRP-PCs and AP-PCs) are almost ainfiiy day 5 or day 7 of storage,
investigating the extant literature reveals th#fiedent platelet preparation methods end up with
different storage characteristics (Vassallo andiyr 2006), which will be discussed in Section
2.1.Blood products are then stored in storageifiesiiland eventually, they are distributed to
demand zones to be transfused into patients.

Planning for BSCs requires to make severalegjratdecisions (e.g. facility location-allocation,
determining the production mechanism) along withe# of tactical and operational decisions
accounting for inventory management and bloodibigtion. Accordingly the main inspiration of
this research is improving BSCs while regardingirttepecial characteristics besides the
inevitable uncertainty in input data by means @itift planning.

Uncertainty in blood demand, supply or any otharameters is generally derived from two
sources: randomness and fuzziness. Randomnes$) iwltaused by random nature of input data
for an event which happens regularly and is replesgeeral times during the planning horizon, is
handled by applying stochastic programming apprafttte distribution function of the random
data is accessible. Robust programming approachlsis applicable when the distribution
function of random parameter is not available. ess lends itself to events not repeated over
the planning horizon and of which enough historidafa is not on hand. Fuzzy parameters are
usually estimated based on the professional opiniorsubjective knowledge of the field experts
(Tofighi, Torabi & Mansouri, 2016).

In this paper, we employ an efficient robustgueanming approach to deal with the random
uncertainty in the demand data. More details altioeitadopted robust programming approach
have been provided in Section 3.1. Now, we firsteha brief review of the related papers to
blood production planning. Afterwards, the works artegrated planning for BSCs are
investigated.

1-1- Blood production planning

Deuermeyer & Pierskalla (1978) addressed anmagdtion problem conceptualized as a
dynamic programming model for a by-product blooddurction system. Their model aimed to
minimize inventory costs along with production cosbrresponding to production processes of
RBC and PLT over a multi-period horizon. Howevégit model does not account for donors as
the system suppliers. A production and inventorgbfgm for a Dutch blood bank was put
forward by Haijema et al. (2007) with the aim ofnmizing costs, shortages and outdates.
Demands and production are both periodic in theirkwTwo types of demands are taken into
account; one for young PLTs and another for PLTsamf age and order-up-to policies are
regarded to satisfy them. Notably, they could reaedr optimal solutions by hybridizing Markov
dynamic programming (MDP) with simulation approakhanother effort, Haijema et al. (2009)
presented an optimization problem for PLT productisith breaks in special periods (e.g.
Christmas and Easter). Arrivals of donors are éainvith uncertainty in their paper. They
provided a new approach in the form of combininghdation and stochastic dynamic
programming (SDP) to present theoretical suppostels as nearly optimal and practical order-
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up-to policies. Their research succeeded in deiorg®d.T shortages and spill considerably. Van
Dijk et al. (2009) considered a mathematical fomtioh for PLT production and inventory
management under supply uncertainty. A five-stemhlined method based on simulation and
SDP was devised to solve the problem. They utilimal data to evaluate the performance of
their research. Their work resulted in a nearhyiroglt policy of PLT production by which they
came up with a main reduction in the level of otitdpwith negligible shortage. A mixed-integer
non-linear programming (MINLP) model was strived Bhandforoush and Sen (2010) to
minimize platelets production costs and schedufgoraal blood centers. Applying a two-step
conversion process, their model was then converbed linear binary problem to assure
optimality since the initial formulation carried aon-convex objective function with no
convergence to optimal solutions.

1-2- Integrated planning for blood supply chains

Research on perishable supply chain managenaetidydarly BSCM was commenced in 1960.
Later on, Nagurney et al. (2012) introduced a hecdtve linear programming (LP) model for
localization of blood bank systems. The locatiorcoliection facilities and laboratories besides
distribution centers and hospitals were to be datexd through the model in a way that the
optimal allocation, supply risks and waste costenatained. Minimizing total costs including
the operating cost, route waste cost, penalty asatisfied demands costs besides total risks of
each route are considered as the objectives. Asgantnon-linear programming model (INLP)
formulation along with new simulation optimizatievas outlined by Duan and Liao (2014) for
modelling inventory management of blood supply shaith ABO blood group compatibility
with respect to their shelf lives. The model lookedminimizing the expected outdating under a
predetermined maximum shortage level. A dynamigrmming (DP) model was utilized by
Abdulwahab and Wahab (2014) for blood plateleteivtgry problem. In their model, platelets
supply and demand amounts are assumed to be diocfiigy evaluated the model by regarding
four measures of effectiveness including platetdisrtage and outdating as well as inventory
level and reward gained in the concerned stochastidel. Jokar and Hosseini-Motlagh (2015)
developed an MILP model for blood supply chainnmeegency situations to reduce the total cost
of considered network including blood shortage aagtage costs. The optimal number as well
as service areas of blood facilities are determineder several disaster scenarios while the
capacity of mobile blood facilities is assumed as@able. Their findings imply that the optimal
number of both permanent and mobile facilities amarkably influenced by changes in the
capacity of mobile blood facilities. A bi-objectiveixed-integer non-linear programming
(MINLP) model was put forward by Arvan et al. (201f6r the blood supply chain network
design considering laboratories, blood bank centewspitals and donation zones. Minimizing
operating costs and transportation costs as wedlal products expiration were considered as
the objectives. They appliegtconstraint approach to solve the proposed modettiich all
parameters are regarded to be deterministic. Ahatic MINLP model was presented by
Gunpinar & Centeno (2015) with the sole objectieelksng to minimize costs including blood
products wastage and shortage costs. C/T ratioededse period of cross match along with two
types of patients (i.e., the ones who demand &shfiblood and the rest with the need of blood of
any age) are taken into consideration in theirystdad handle demand uncertainty, a stochastic
programming approach is utilized. Fahimnia et aD16) suggested a bi-objective two-stage
stochastic programming (TSSP) model while regardirmget of disaster scenarios. Total cost of
the concerned network is minimized through thd bigective function. Determining the optimal
way of blood distribution to hospitals by minimigirthe average delivery time from local and
regional blood centers to demand points in disasteas also taken into account as another
objective. They applied theconstraint and Lagrangian relaxation methods beesine proposed
bi-objective model. An MINLP model for blood collemn management was proposed by Zahiri
et al. (2015). They employed a robust possibiliapproach to handle the data uncertainty, and
applied a case study of Babol city. The locationmaibile blood facilities as well as permanent
blood centers was to be determined in the strateged, and donors’ allocation to blood facilities
besides the quantity of blood, transported fronobléacilities to demand zones in each period,
was then decided in the tactical level.
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In Table 1, the papers are categorized whilenlpa@ionsidering integrated models and focusing
on their special characteristics including plannhayizon, Type of blood product, modeling
approach, etc.

To the best of our knowledge, research on dexjgnlood supply chain particularly accounting
for blood platelet production methods in the cohteéhintegrated planning is non-existent. To fill
this gap, this paper puts forward an integratedraggh toward blood supply chain planning
while concentrating on blood platelet production tmels. To this aim, the following
contributions differentiate our work from other gtithg papers in the literature of BSCs.

1) Integrated planning for blood PLTs productioml@nuncertainty

2) Jointly consideration of different production theds while accounting for the respective
product quantity

3) Regarding blood PLTs life time after fractiowatithrough the production methods
4) Applying robust programming (RP) approach toecofith the data uncertainty

The rest of the paper is organized on thesés:tridne problem description and mathematical
formulation of the proposed model are brought togetn Section 2. Section 3 is dedicated to
define the solution technique. A number of numéreseamples along with several sensitivity
analyses are performed in Section 4. Lastly, Sed@iprovides concluding remarks and possible
future research.
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Table 1. A taxonomic structure of the studied papers

Authors planning horizonType of blood product Modeling approach I%Fc)grginty ioeltuhti)odn Time period
5 2 B 3

g = 8 g g o % £ % = 223
3 & 63383 2 a S0 5 %522 3 5 2 8 58 ¢ & =2fa 32

Haijema et al. (2007) ° ° ° ° ° ° °

Van Dijk et al. (2009) ° ° ° ° ° ° °

Haijema et al. (2009) ° ° ° ° ° °

Ghandforoush and Sen ° ) ) ° ° °

(2010)

Nagurney et al. (2012) ° ) ) ) ° ° °

Duan and Liao (2014) ) ) . . ° °

Abdulwahab and Wahab ° ) . . ° °

(2014)

Jokar and Hosseirhtotlagh e ° ° ° ° ° °

(2015)

Arvan et al. (2015) ° ° ° ° ° ° ° ° °

Gunpinar & Centeno (2015) ° ° o o ° ° )

Fahimnia et al. (2015) ° ° ° ° ° °

Zahiri et al. (2015) ° ° o ° ° ) °

Thisarticle ° ° o o ° ° ° ) °
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2- Problem description
In this research, we address a blood supplinaietwork which is home to mobile blood facilities
and local blood centers as collection sites, regidsood centers which are responsible for testing
whole blood units and preparing blood plateletsl hospitals as demand points. Blood donation can
take place in both mobile and local collectionsifEhe whole blood units are collected at the énd o
each period and transported from mobile blood itasl to local blood centers and from local blood
centers to regional blood centers. After beingeksd assure their health (i.e., no infectiousatise
etc.) blood units are broken down into several potsl such as PLT, the most significant one
considered in this research, by using the produnatiethods of whole blood-derived PLTs (i.e., PRP
and BC production methods). PLT units are thenestan the regional centers blood banks under
specific conditions. Lastly, the units will be dibuted to hospitals based on their demands. The
model is presented with the aim of minimizing tataest of the network such as opening cost of local
collection facilities (i.e., local blood centerggpositioning cost of mobile blood facilities, btbo
transportation cost from mobile sites to local oaed from local sites to regional centers, blood$L
production cost, PLTs outdating cost as well agmery holding cost and transportation cost from
regional blood centers to hospitals. Noteworthye ttandidate locations for both mobile blood
facilities and local blood centers are assumedetgilken. Each group of donors represents a given
blood supplier's point as it is practically impdssito plan for every single donor, and the cenfer
each point is considered for calculating the Ewdiud distance between donors and blood collection
sites. In addition, the locations of regional bloocehters are assumed to be predetermined. The
scheme of concerned network is presented in Figalving the proposed model, we obtain the
following values:
* The optimal number and location of mobile bloodlfiées as well as local blood centers.
» Donors' allocation to each mobile blood facilitylocal blood center in each period.
» The quantity of whole blood, collected by each nebiood facility or local blood center in
each period.
* The quantity of whole blood, transported from meltilood facilities to local blood centers in
each period.
* The quantity of whole blood, transported from loellod centers to regional blood centers in
each period.
* The quantity of blood PLTs produced by each methtodach regional blood center in each
period.
* PLTs inventory level in regional blood centershag €nd of each period.

» The quantity of blood PLTs transported from regiobbod centers to hospitals in each
period.

» PLTs outdates in regional blood centers in eacloger

® Freo i ™~
I ! @
I 9 | g 7
! L] |
| | — s
Donor Local blood facility Regional blood center Hospital

I 1

: : = n - Blood flow

: : : _____ ! Locatedfacility
1 G =====

"""""" l:| Pre-determined center
Mobile blood facility

Fig.2. The scheme of concerned BSC
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2-1- BC method versus PRP method
The aforementioned production methods diffesame aspects mainly pointed out as follows:

» BC method is the least expensive method amongthie(i.e., PRP method and apheresis) for
PLTs production (Vassallo and Murphy, 2006).
» Whole blood units must be decomposed within 8 hduP&RP method is supposed to be used
while this time length will be extended up to 24ir®lending itself to BC method privilege.
The above advantage lets the product be perfeciiyufiactured until the day after collection.
Furthermore, it is logistically cost-effective ihet sense that it avoids multiple trips from local

blood centers to the regional blood centers (Vassald Murphy, 2006).

» BC-derived PLTs perform better in terms of storagmlity in comparison to PRP-derived
PLTs. In other words, the quality of BC-derived RLWill be kept up to 15 days of storage by
using a platelet additive solution. Interestingly, in-vitro study by Bertolini et al. (1992)
compared the viability factors of Buffy Coat-plaklconcentrates (BC-PCs) stored for 15
days in a platelet additive solution with thoseptditelet-rich plasma-platelet concentrates
(PRP-PCs) stored in plasma. The result was intiggushowing improvement in the quality
of BC-PCs even after 15 days of storage, beingréblp comparable with that of PRP-PCs
stored for 7 days.
* PLT counts in PRP-derived PLTs outperform the and3C-derived PLTs (Levin et al, 2008;
Soleimany Ferizhandy, 2011).Due to the differenod8C and PRP methods, PLTs produced
by PRP benefit from somewhat more concentratedisnluvhich means high levels of PLT
concentration in the mixture, in comparison with thore dilute BC-PCs (Levin et al, 2008).
However, no final and settled research exists tk le@idence-based decisions considering a specific
source of platelets (i.e., whole blood-derived gits and apheresis-derived platelets (platelet
pheresis)) as the preferred one (Vassallo and Mur2006). Accordingly, in this paper, we discuss
the harvest of PLTs from whole blood since the wered blood collection system only accounts for
whole blood donation not for apheresis technolegyich requires different collection considerations.
The proposed mixed-integer linear programming mockh be formulated while applying the

following components.

2-2- Notations

Sets:

N UTIOoxT

TI

Set of donors groupgi = 1,2, ..., 1)

Set of candidate locations of mobile blood fa@hti(j = 1,2, ...,J)
Set of candidate locations of local blood centéks= 1,2, ..., K)
Set of regional blood center& = 1,2, ...,R)

Set of platelet production methodp;= 1, 2)

Set of hospitals(h = 1,2, ..., H)

Set of time periodgt = 1,2, ...,T)

Set of time periodgt = 1,2, ...,T")

Cost parameters:

Ck
Gz
Tcjy
Tckr
Tdrh
Pcp

hc,

exp

Opening cost of local blood center

Unit cost of moving a mobile blood facility fromdatiory; to location,

Unit cost of transporting whole blood from mobiledd facility j to local blood centet
Unit cost of transporting whole blood from locabbtl centek to regional blood center
Tr

Unit cost of transporting blood platelets from ice@l blood centerto hospitalh

Unit cost of producing blood platelets by productinethodp in regional blood centers
Unit cost of holding blood platelets produced bgduction methog in regional blood
centers

Unit cost of expiring blood platelets produced bgduction methogin hospitals

Technical parameters:
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Maximum capacity of each mobile blood facility

Maximum capacity of local blood center

Maximum capacity of regional blood centéor receiving whole blood

Production capacity of platelets by method blood center in periodt

Maximum inventory of PLTs for regional blood centar periodt

Quantity of whole blood donated by donors group periodt

Distance between donors grouand mobile blood facility

Coverage radius of each mobile blood facility byickhdonors group is served if
Tij <1

Distance between mobile blood faciljtyand local blood centér

Coverage radius of each local blood center by whicibile blood facilityjis served if
djx = 9o

Distance between donors grauand local blood centér

Coverage radius of each local blood center by whimhors group is served if w;), <
w,

Tgtal demand of hospitah for blood platelgiroduced by production method p in
periodt’

Blood platelet counts produced by production methiadegional blood centers
Blood platelet life time produced by methpith regional blood centers

Lead time for testing and producing platelets faghole blood by production methed
Usable blood rate

Minimum demand satisfaction rate

A reasonably large number

Binary variables:

Zg
Xikt
!
Xijt
rn

Xikt

yj1J'2vt

Is equal to 1 if local blood centkris set up; 0, otherwise

Is equal to 1 if donors groujs assigned to local blood cenkein periodt; 0, otherwise
Is equal to 1 if donors groups assigned to mobile blood facilify in periodt; O,
otherwise

Is equal to 1 if mobile blood facility is assigned to local blood cenfein periodt; O,
otherwise

Is equal to 1 if a mobile blood facility is locataed sitej;in periodt — 1, and moves to
sitej, in periodt; 0, otherwise

Integer variables:

N

number of mobile blood facilities required in egehiod

Positive variables:

Ujjt
!
U jkt

Sikt
!
S krt

Qprt
I prt

tt’
prh

Quantity of whole blood donated by donors groupmobile blood facilityf in periodt
Quantity of whole blood transported from mobile ddofacilityj to regional blood
centerk in periodt

Quantity of whole blood donated by donors gréuplocal blood centet in periodt
Quantity of whole blood transported from local llomenterk to regional blood center
in periodt

Quantity of blood platelet produced by methoih regional blood centerin periodt
Inventory of blood platelet which is produced bythwa p in regional blood centerin
periodt

Quantity of blood platelet produced by methodh regional blood centerin periodt
and distributed to hospitalin periodt’
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E Quantity of blood platelet produced by methodnd expired in regional blood centén

prt’
periodt’

2-3- Mathematical formulation

Total cost of the concerned network includingaleishment cost of local blood centers, cost of
repositioning mobile blood facilities in successperiods, (whole) blood transportation cost from
mobile sites to local ones and from local bloodteento regional blood centers, platelets prodactio
cost, inventory holding cost and outdating costeigional blood centers and transportation cost from
regional centers to hospitals, is to be minimizedugh objective function (1).

2-3-1-Objective function

MinZ = Z CrZp + 2 CirjoYisjat T Z Tc ku]kt + Z TCrrSkre + 2 PCprrt

Juja2,t J.kt k1t rpt
tt! 1
+ z hey I + Z expEpner + Z Tdthprh (1)
r,p,tt’ prt! rhpt,t’

2-3-2-Model constraints

Zyjl,jz,t =1 V), t (2)

J1
Constraint (2) assures that no more than one maldled facility can move to a specific
candidate location from other locations in eachagker

z Yijsjat = N Vit (3)

J1zJ2

Constraint (3) determines the number of mobile titaxilities opened in each period.

Zyjlij:t S Zyjljl't_l le,t 2 2 (4)

J2 ]
Each mobile facility can move to another locatiarthe next period only if it has been founded
before, as presented in constraint (4).

2 Xike + Z Xijt < Vi, t (5)

Constralnt (5) guarantees that each group of docamnsbe assigned to no more than either one
local blood center or a mobile blood facility incegoeriod.

xi’jtrl] rozyh]t Vi, j, t (6)

Constraint (6) determines the coverage restrictibeach mobile blood facility such that each
group of donors can be served by a mobile blootitiaonly if located within coverage radius of
the mobile blood facility.

XjreQjic < QoZk Vi k,t (7)

Each mobile blood facility can be served by a Iddabd center only if located within coverage
radius of the local blood center, as defined insti@nt (7).

Xjee < Z Yivit vj, k,t (8)

Constraint (8) assures that blood units can onlgdlizered from a mobile collection site to a local
center provided that it has been established before

Uijt < Mx{jt Vi, j, t (9)
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Sikt < Mxl-kt Vi, k,t (10)

Constraints (9) and (10) denote that blood donatiay occur in both mobile and local blood sites
only if these centers have been opened before.

Wike < Mxjy Vi k,t (11)

Constraint (11) makes sure the blood flow from rfebiood facilities to local blood centers only
if the local centers exist.

Zui]’t <v Vj,t (12)
i

The capacity of each mobile blood facility is regtrd via constraint (12).

2 Uije = 2 Wkt V)t (13)
i k

Constraint (13) guarantees that total quantity lobt collected by mobile blood facilities are
transported to local blood centers at the end df @ariod.

XiktWik < WoZ Vi k,t (14)

Constraint (14) defines the coverage restrictiomadh local blood facility in the sense that each
group of donors can be served by a local bloodecently if located within coverage radius of the
local blood center.

2 Sike + Z Uije < dgy Vi, t (15)

Constralnt (15) restricts blood donation from eguotup of donors in each period.

Z Sike + Z Wike < vy, vk, t (16)
l. .

j
Constraint (16) limits the capacity of each lodalddl center in each period.

Z Sikt + z Ujkt = Z S'kre Vk,t a7

Constralnt (17) makes sure that total (whole) blaais collected by each local blood center are
transported to regional blood centers at the erehoh period.

Z S ke Sy vr (18)
k,t

Constraint 18) limits the capacity of each regional blood eeffior receiving whole blood.

Q(E S'krt)ap = Qz’,,r,t+l,’g vr,p,t (29)

k
Constraint (19) determines the volume of PLTs peeduby each production method in each
period.

!

Qp,r,t+l;, < Ppre vr,p,t (20)
Constraint (20)confines the production capacityPafTs in each regional blood center in each

period.
/ _ t+ipt’
Qp,r,t+l;, + Ip,r,t+l{,—1 - [p,r,t+l,’g + Z Qp,r,h vr,p,t (21)
nt’

Constraint (21) is known as inventory conservagqguoation for each regional blood center in each
period.

Z Ip,r,t < Ort vr,t (22)
p

65



Constraint (22) restricts the inventory of PLTs éach regional blood center in each period.

t+i,,t’
Z Qp,r,;’l = w(dehpt’) Vh,pt (23)
t'st+lp-l, T
Constraint (23) forces the model to satisfy totaindnd of each hospital for PLTs at leastvat
percent in each period.
t+ipt’
> ,
Qprh = Erpe vr,p.t (24)
ht'>t+l_
P_lp
Constraint (24) restricts blood PLTs expirationmegional blood centers in each period.
Zie Xike Xije Xjkee Vi jp,e € 10,13 (25)

’ ’ ’ tt’
Uije W jkesSikesS krt-@predpre: QpriiEprer 2 0 (26)

Constraints (25) and (26) define the domain of slenivariables.

3- Therobust programming approach

Robust programming synchronizes optimality Beabibility robustness required to an optimization
problem. The feasibility of solutions for any pddsivalues of uncertain parameters lends itseti¢o
feasibility robustness while finding (near) optinsalutions under a set of realizations is guarahtee
by the optimality robustness (Zahiri et al., 2018) this research, an RP approach is employed to
capture the random nature of data. Several robystoaches can be addressed in the literature,
applied to a number of optimization models; e, @ne introduced by Soyster (1982) to handle data
uncertainty by means of mathematical models, howévesed to hand rather poor solutions in terms
of optimality due to its over-conservative modelkich are not appropriate in terms of cost, in most
cases. Later on, Ben-Tal and Nemirovski (1999),-Bahand Nemirovski (2000), and Ben-Tal and
Nemirovski (2002) put forward less conservative piedwhile accounting for ellipsoidal
uncertainties. A new approach arose resulting fileenworks of Bertsimas and Sim (BS) (2003) and
Bertsimas and Sim (BS) (2004) to make up for thevipus deficiencies in the sense that, as
observed, all coefficients will not concurrentlygsess their worst-case values.

3-1- Thelight robust (LR) heuristic

Light Robustness, an efficient approach to owmjtle uncertainty, is somehow the combination of a
lightened two-stage stochastic programming approant robust optimization, which carries
simplicity as well as flexibility as its privilege®\pplying LR, we can sometimes come up with
comparable solutions in terms of quality with threes acquired by either robust models or stochastic
programming individually while benefiting from sit@p model formulation along with less
computing time Fischetti and Monaci2009). To tackle infeasibility, LR employs slacériables
having a role like what second-stage recourse hasahave in stochastic programming models.
These slacks let local violations of constraintettdr to say, define solution robustness while
absorbing variations of uncertain parameters. Tlaeks are then minimized via an auxiliary
objective function. Thereto, the optimality of sibms is accounted for in the form of a constraint
through the LR model.
This approach will be accomplished by solving thlieear programming (LP) models (i.e., the
nominal problem and the two following models of LR)

Step 1 Consider nominal problem (26)—(29) for whichrepresents an optimal solution.

min 2 Cj Xj (27)

JEN
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Z aijxj 2 d; ieM (28)

JEN

> byx <hy iem (29)
JEN
X 20 JEN (30)

In which the number of constraints and variablesdafined byyM|andN|, respectively.

Step 2 Assume matrice3and Htakevalues, sai € [d;, d; + d;] and; € [h; — h;, h;], respectively.
Thus, the maximum violations of uncertain constsaaredetermined by equations (31) and (32):

JEN
Li = z byjx;* = (hi — h;) (32)

JEN

In addition, the constraints for which sufficiedacks should be considered are introduced in the
setU, say/ ={i € M:L; > 0} and |U| =1 since the slack variable is required for at lease
constraint, otherwisec® would be feasible, thereby optimal in any reai@atof the uncertain
parameter.

The first model of LR in the form of the followirig® model is solved:

max o (33)
Zaijxj_5i=di ieM (34)
jeN
Z bijxj +s; = h; ieM (35)
jen
Si
(S 5 ieVU (36)
i
2 cxi < (1+8)z" (37)
jen
5, >0 ieM (39)

That maximizes the minimum slack considered for angertain constraint. The uncertainty in
constraints can be taken into account individually by dividithg slack variable; by L; such that
€U (i.e., normalization) as can be observed in cairgtf36).

The max-min nature of the above LP model resalteveral equivalent optimal solutions. Indeed,
since only the minimum normalized slack is accodrite by the objective function, no force will be
imposed to assign a large slack, however importantmprove robustness, to the remaining
constraints. Thus, LR presents its second LP m@tek(49) with the aim of balancing the slacks
among uncertain constraints.

Step 3 The model (33)—(39) is assumed to have an optsokition, say X*,s*,6*). Therefore, we
can define the average of the normalized slackekmsv:

_ iU s;/L;
Savg - |U|

Additionally, the normalized slacks have the minimualue as defined in relationship (41).

(40)
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Smin = min{s; /L;:i € U}

The second model of LR is presented as follows:

min Z t;

ievu
aijxj - 5= di
JEN
Zbux] + Si = hi
JEN
2 cixj < (1+8)z"
JEN

Si
E +t; = Savg
i

SiZO,ti >0

i€vU
jEN
ievU

iev

(41)

(42)
(43)
(44)
(45)

(46)
(47)
(48)

(49)

In which variablegtake positive values in casg, is bigger than the corresponding normalized
slack. Also, the sum af is to be penalized through objective function (@2palance the normalized

slacks among all rows.

3-2- Therobust equivalent of our original model

After solving the nominal model (1) - (26), thabust counterpart of our basic model would be
introduced as follows with respect to the aforenoe@d steps. It is worth mentioning that, we have

considered the amount of blood PLT demand as aartaiue (random) parameter (ithptI) such

thatdey,,,,’ € [depy, depyyr + deyyer], in whichde,,,r represents the worst-case (maximum
violation) of the nominal value of blood PLT demane.,de,,.’).
Thus, by definingL“;lpt, as equation (50) and the détthe first LR counterpart for our original
formulation would be presented as model (51)-(%%) @)-(26).

1ot
t+ip,t

L;pt' = w(dehpt’ + dehpt') - Z z Qp,r,h

t'st+lp=lp T
The seV is also considered as:

U={(hpt") €M: Ly, >0}

Therefore, we have the first LR counterpart forrtedaas:

max o

t+1,t!
Z Qp,r,;,l = w(dehpt’) + Shpt’

t'st+lp-l, T

Shpt!

o< T
hpt'
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Vh,p,t'

Vh,p,t’

Vh,p,t’

(50)

(51)

(52)

(53)



(54)

Shpt' 2 0 Vh,p,t' €U (55)

In which Z* states the objective function value of the nomipainulation (1) — (26) and denotes
deterioration degree in the objective function ealor better to say, conservative level decidethby
DM.

plus relationships (1) — (26).

Thereto, we have the average of normalized slagksetl as:

' ) A 56
_ ) V(hpt )EUShpt /tht (56)
o = U]
Then, the second LR counterpart (i.e., third LP efpdould be modeled as follows:
min Yty (57)
h,p,teyu

Shpt!

7o+ thpe! = Savg Vh,p,t' €U (58)
hpt'
Shpt'

L*_P = Smin Vh,p, t'evu (59)
hpt'

In which s,,,;;, denotes the objective function value of the fiRtcounterpart (i.eg™).

4- Computational experiments

In this section, the efficiency of the proposeddel besides its solution method is evaluated by
carrying out a series of numerical examples. Teadoth deterministic and robust models are ¥irstl
implemented on test problems, specified in Tabr2leu different uncertainty levelg)(while using
nominal data which are generated randomly by apglyie uniform distributions presented in Tab.
3.The value of parameters is logically determinéith wespect to the paper presented by Zahiri et al.
(2015). Additionally, some parameters such as Riefirhe and PLT counts from either production
method are considered based on the objective amteahe sources such as Vassallo and Murphy
(2006), Levin et al. (2008) and Soleimany Ferizlyafg11).

Table 2. The size of test problems

Problem no. [ /I K| [R| |P| |H| |T|
#TP 1 3 3 3 2 2 3 4
#TP 2 5 5 5 4 2 5 6
#TP 3 10 7 7 6 2 10 8
#TP 4 15 10 10 8 2 15 10
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Table 3. Random generation of nominal parameters

Corresponding random

Corresponding random

parameters distribution parameters distribution

Cx ~uniform (1500,3000) d;; ~uniform (1400,1600)
Cis s ~uniform (0.1,0.6) 47} ~uniform (20,40)

Tcjx ~uniform (0.35,3.5) 7o 100

Tcy, ~uniform (0.35,3.5) djik ~uniform (20,30)
Td,p, ~uniform (0.75,1) qo 180

Pc, ~uniform (0.1,0.3) Wi ~uniform (100,200)
dp ~uniform (0.25,0.35)  wy 100

v ~uniform (500,700) do 180

v ~uniform (1000,2100)  Ppre ~uniform (2000,2500)
24 ~uniform (2000,2500) o, ~uniform (600,800)
deppe! ~uniform (300,600)

Then, the performance of deterministic and robusdels are compared under a number of
realizations of the uncertain parameter (i.e., dethain continue. Realizations are generated
randomly in the corresponding uncertainty set,x®sessed in Section 5.2. Using GAMS software,
the experiments are carried out on a laptop computé Intel Core i5, CPU 2.5GHz and 6GB of
RAM.

4-1- Sensitivity analysison demand satisfaction level (w)and uncertainty level (8)

In this section, we determine how the changethe value otw andé affect the performance of
proposed deterministic (D) and robust (R) modets.dd so, each test problem is performed while
varying the values ofv anddaccording to Tab. 4. As can be understood fromréselts, for test
problems 1 and 4, increasing demand satisfactivel iEom 0.6 to 0.8 makes an increase in the
number of blood collection facilities, mobile (Nhailocal (Z) facilities, in both deterministic and
robust models while test problems 2 and 3 remaimosl indifferent to this change. It can be justifie
that when the value of increases, in test problems 1 and 4, we needddhednumber of collection
facilities, since their capacities are limited,ctwver the additional service. However, test prolslém
and 3 can still respond to the increased demansfeszton level by the current capacity, thus they
require no tangible changes in the number of ctitledacilities.
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Thereto, the normalized values (i.e., dividing eaeliue by the sum of respective column) of

Table4. Summary of results (robust approach versus matestic approach)

w & 1Z] [N| Total network cost under Constraint violation CPU
a=08 nominal data ($) cost under nominal time (s)
data ($)
Problem D R D R D R R
no.
06 004 1 1 1 0 9162.372 9528.867 6625.032 0:1.524
008 1 1 1 0 9895.362 3760.916 0:1.375
012 1 1 1 0 10261.857 896.8 0:1.329
0.2 1 1 1 0 10994.846 0 0:1.273
! 08 004 2 2 2 2 14965.322 15563.934 8006.213 0:1.818
008 2 2 2 2 16162.547 3248.398 0:2.402
012 2 2 2 2 16761.160 0 0:1.803
0.2 2 2 2 2 17958.386 0 0:1.721
06 004 1 1 2 2 22141.788 23027.459 15100.436 0:7.964
008 1 1 2 2 23913.131 6548.878 0:12.321
012 1 1 2 2 24798.802 0 0:10.901
2 0.2 1 1 2 2 26570.145 0 0:7.974
0.8 004 1 1 1 0 30271.456 31482.314 20164.912 0:8.449
008 1 2 2 2 32693.172 6348.536 0:13.154
012 1 2 2 2 33904.031 0 0:8.115
0.2 1 2 0 2 36325.747 0 0:6.67
06 004 2 2 3 3 37647.123 39153.008 31428.644 1:14.861
0.08 2 2 3 3 40658.893 12054.465 1:01.32
012 2 2 3 3 42164.778 4020 0:57.120
0.2 2 2 3 3 45176.548 0 1:13.359
3 0.8 004 2 2 3 3 49877.839 51872.953 42946.734 0:59.646
008 2 2 3 3 53868.066 13925.964 1:10.776
012 2 2 3 3 55863.18 0 0:56.705
0.2 2 2 3 3 59853.407 0 1:20.487
0.6 004 2 2 4 4 70961.217 73798.824 65207.112 8:14.736
0.08 2 2 4 5 76821.618 24131.415 8:06:24
012 2 2 4 5 80137.22 0 7:47.215
0.2 2 3 4 5 85144.275 0 7:31.12
4 08 004 3 3 5 5 94780.13 98571.335 86459.177 8:29.066
0.08 3 3 5 6 102416 31878.104 8:31.274
012 3 3 5 6 106270 0 7:55.414
0.2 3 4 5 7 113740 0 7:16.118

objective function of both robust and deterministiodels and robust constraint violation cost are
compared schematically in Figs. 3-6. As can be mkskin the following figures, on one hand, the
objective function (total network cost) of robusbael takes higher values as the uncertainty level
increases and it gets intensified when reaches 0.8 while the objective function value of
deterministic model remains constant. On the otterd, we witness a considerable decrease in
constraint violation cost in all test problems whhba value of§ goes up, and it comes to zerodas
gets the value 0.12 for all test problems 1-é at 0.8.
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robust objective function value robust objective function value
deterministic objective function value deterministic objective function value
constraint violation (robust approach) constraint violation (robust approach)
Fig. 5 Objective function value versus constraint Fig. 6 Objective function value versus constraint
violation for test problem 3 under = 0.8 violation for test problem 4 undw = 0.8

As mentioned before, increasing the valueSdieads to an increase in total network cost, but
simultaneously leads to the reduction of violattmst. For test problem one, for instance, condtrain
violation cost comes to zero at= 0.12 andw = 0.8 while it imposes a total cost about $16,761. As
the problem gets larger, this cost expectedly emee until it reaches the value of $106,270 fdr tes
problem 4.

Accordingly, the DM needs to make a tradeoffAssn these two costs to decide on an appropriate
conservative leveld). Depending on the DM's professional point of vi¢lae value ofd might be
increased or lessen. In more critical situationsnstraint violation cost might be even more
highlighted and assigned higher weight by the DMjclv may push the value @ to the right (i.e.,
to increasé) in favor of reducing violation cost rather thifwe objective function value.
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In this article, we suggest basic levelséfodetermined by the intersection between the cuofes
robust constraint violation cost and robust to&tlvork cost. These levels are 0.085 for test proble
1, 4 and 0.08 for test problems 2 and 3 which anegoused in Section 4.3.

4-2- Sensitivity analysison different realization values and uncertainty levels

In this section, we put the proposed robust @gtgtrministic models into analysis via uniformly
generating random realizations of the uncertainamater (i.e., demand) and under different
uncertainty levels. The realizations are genera@adomly in the respective uncertainty set,
sa){dehptr, deppe’ + El?ehptf], in which Zi?ehptr represents maximum violation in demand defined as:
c’iéh,t = 0.1dep,,/, and then are sorted ascendingly. The modelsnapéemented while varying the
uncertainty level and generating five realizatiforseach test problem, as presented in Tab. 5hAs t
results show, for all test problems, larger redilimavalues result in increasing constraint viaati
costs. Having the value éfincreased, we observe a decrease in robust wolatist, but an increase
in the value of robust objective function while tbeterministic model shows no changes in the
values.

A general observation from Figures 7-10 is thlfhough robust constraint violation cogtvg)
increases as the result of increasing realizatedoes, it can be remarkably lessen by taking larger
uncertainty levels. For test problem Nol in Figdr&€v,; decreases from $7371.813 to zero as the
value of§ changes from 0.04 to 0.12 under realization =itn 8, we will have the minimum value
of Cvg by spending $33904.031under the fifth realizatiod § = 0.12. In Fig. 9, we will come up
with no constraint violation cost of robust modethem takingd = 0.12 and spending $55863.18
under realization 5. Eventually, for test problemHg. 10Cvzcomes to its minimum value by
imposing a cost of $106270 under realization 5&rd0.12.
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Table 5. Objective function values (Z) and constraint &tain (Cv) costs under different realizations and
uncertainty levels (robust approach versus detéstigrapproach)

@ =08 Realization
w =038 Avg.
£ CPU
S 6 1 2 3 4 5 time (s)
a2
Zp 14965.322 0:2.384
Cvp, 2537.6 4440.8 6344 10150.4 12053.6
0.04 Zp, 15563.934 0:3.213
Cvg O 0 1662.213 5468.613 7371.813
1 0.08 Zp 16162.547 0:4.213
Cvg O 0 0 787.38 2690.58
0.12 ZzZ, 16761.16 0:4.407
Cvg O 0 0 0 0
0.2 Zp 17958.386 0:2.643
Cvg O 0 0 0 0
Zp 30271.456 0:7.491
Cv, 6385.6 11270.8 16156 25926.4 30811.6
0.04 Zz, 31482.314 0:10.76
Cvg O 0 3928.105 13651.312  18536.512
5 0.08 Zp 32693.172 0:10.54
Cvg O 0 0 385.146 4850.346
0.12 Zp 33904.031 0:9.619
Cvg O 0 0 0 0
0.2 Zrp 36325.747 0:10. 3
Cvg O 0 0 0 0
Zp, 49877.839 1:17.54
Cvp 1442432 2524256  36060.8 57697.28 68515.52
0.04 ZzZp 51872.953 1:04.73
Cvg O 0 6885.934 28522.414  39340.654
3 0.08 Zp; 53868.066 1:00.51
Cvg O 0 0 0 10373.644
0.12 Zp 55863.18 1:15.74
Cvg O 0 0 0 0
0.2 Zr 59853.407 1:16.69
Cvg O 0 0 0 0
Zp, 94780.13 8:41.21
Cvp 9883.721 32171.116 55815.23 74741.62 117921
0.04 ZzZp 98571.335 8:46.3
Cvg O 0 1821.312 20115.06 61276.4
4 0.08 ZzZp 102416 9:04.15
Cvg O 0 0 0 8713.521
0.12 ZzZ, 106270 9:23.61
Cvg O 0 0 0 0
0.2 Zr 113740 9:32.04
Cvg O 0 0 0 0
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levels;w = 0.8 levels;w = 0.8

4-3- A senditivity analysis for the performance of robust model versus deterministic
model

To evaluate the robustness of solutions obtainethéyroposed robust model as well as the
achieved by the deterministic MILP model, the medaie solved under a set of realizations, sc
ascendingly. Then, thguality of solutions obtained by th models iscompared by employing tw
criteria: the average and standard deviation of constramiation cost. To be more specifics
mentioned earlier in Section4 we carry out each test problem under a spegiftertainty leve
(i.e., the intersgtion between robust objective function and comstngolation curves). Accordingly
as reported in Tab. 6, we set the valué to 0.085, 0.08, 0.08 and 0.08% test problems 1, 2, 3 al
4, respectively.
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Table 6. Objective function values and constraint violatasts under a number of realizations (robust
strategy versus deterministic appro:

a=0.8 P o . . .
) Realization Total network cost under realizations Constraint violation cost CPU time (s)
w = 0.8
Problem
no. Robust Deterministic Robust Deterministic
1 16237.374 18137.322 0 3172 2.516
2 16237.374 19786.762 0 4821.44 2.023
3 16237.374 21943.722 0 6978.4 1.915
4 16237.374 23212.522 0 8247.2 1.931
1 0.085 5 16237.374 24861.962 0 9896.64 2.541
' 6 16439.6 25115.72 202.226 10150.4 2.164
7 17074 2575012 836.626 10784.8 35
8 17962.16 26638.28 1724.786 11672.96 2114
9 18469.68 27145.8 2232.306 12180.48 2.289
10 18723.43 27399.56 2486.06 12434.24 2.257
Average 16985.57 23999.18 748.2004 9033.856
Standard deviation 1015.511 3169.912 1015.511 3169.913
1 32693.17 38285.46 0 8014 8.48
2 32693.17 425193 0 12247.84 8.015
3 32693.17 48055.86 0 17784.4 7.504
4 32693.17 51312.66 0 21041.2 10.187
5 3269317 55546.5 0 25275.04 7.913
2 008 ¢ 33078.32 56197 86 385.146 25926.4 8.067
7 34566.72 57826.26 1873.546 27554.8 9.01
8 36650.48 60106.02 3957.306 29834.56 8.904
9 378412 61408.74 5148.026 31137.28 9.244
10 38432.46 62066.11 5739.288 31794.656 8.405
Average 344035 53332.47 1710.331 23061.02
Standard deviation 2345.399 8137.36 2345.399 8137.36
1 53868.07 67908.24 0 18030.4 1:47.118
2 53868.07 77284.05 0 27406.208 1:06.708
3 53868.07 89544.72 0 39666.88 1:22.055
4 53868.07 96756.88 0 46879.04 1:15.616
5 53868.07 106132.7 0 56254.848 1:13.328
3 0.08
6 53868.07 107575.1 0 57697.28 59.177
7 57186.13 111181.2 3318.062 61303.36 59.853
8 62110.32 116229.7 8242.252 66351.872 1:34.98
9 64952.18 119114.6 11084.11 69236.736 1:49.38
10 66373.1 120557 12505.036 70679.168 1:20.97
Average 57383.01 101228.4 3514.946 51350.58
Standard deviation 5105.87 18018.54 5105.87 18018.54
1 127308.4 115233.2 0 20453.1 8:21.04
2 127308.4 125475.1 0 30694.95 8:38.17
3 127308.4 139207 0 44426.91 8:16.3
4 127308.4 147284.7 0 52504.52 9:24.61
5 127308.4 157785.6 0 63005.43 9:34.23
4 0.085 _
6 127308.4 159401.1 0 64620.95 10:16.1
7 127308.4 163439.9 0 68659.76 10:32.4
8 137023.6 169094.2 9715.2 74314.1 11:10.37
9 141323.6 172325.3 14015.203 77545.14 11421
10 143451.5 173940.8 16143.12 79160.67 10:37.25
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Table 6. Continued (Results)

Deterministic Robust Deterministic Robust
Average 57538.55 3987.352 152318.7 131295.8
Standard deviation 20127.63 6603.211 20127.63 2603.

As the results show, for all four test problenige proposed robust model dominates over the
deterministic one in terms of both the average staddard deviation of constraint violation cost] an
this could happen for any other test problems withass of generality. For the first test problemn f
instance, the average constraint violation cosbbfist model is about $748which represents a high
gap with that of the deterministic model ($9034)rkbver, it is obvious from Figs. 11-14 that for
realizations 1-6, the robust model ends in no camgtviolation cost while the deterministic model
carries this cost under all 10 realizations fortedit problems. Additionally, test problem four d®l
this pattern till realization 7, and it terminatee analysis while imposing an average robust timia
cost about $3987, which is too little in comparidor$57538.55 caused by the deterministic model.
Test problem 2 ends in an average robust violatomt of $1710.331 with a high difference from that
of the deterministic model ($23061.02). Lastly,ttpsoblem three imposes an average robust
violation cost about $3515 with considerably lessidard deviation than the deterministic approach
with an average violation cost about $51350 andarkably large standard deviation. To sum up, in
all test problems robust approach overcomes thermetistic one as it burdens lower total network
cost in comparison to that of the deterministicrapph.
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5- Concluding remar ks and future resear ch recommendations

This paper proposed an MILP model for blood Plproduction under integrated planning. The
concerned network is composed of four echelonsudhicy collection, production/screening,
inventory control and distribution as well. Two ggpof methods for PLTs production, called BC and
PRP and known as whole blood- derived productiothogs are taken into account in the production
echelon. The proposed model seeks to minimize éteark overall cost. The amount of demands
from hospitals, tainted with random uncertaintyh#ndled by using a robust programming approach.
The performance of proposed model along with itkiteim technique was tested into several
numerical examples. Eventually, valuable insigh&senextracted through computational results. To
be more specific, domination of robust strategyraleterministic approach is proved by comparing
the results. In other words, the proposed robusdainabsorbs unfavorable changes resulting from
demand realizations and outperforms the determgémsbdel in terms of mean and standard deviation
of constraint violation cost and thus the totalwwk cost.
Future investigation on this subject could be earon in the following directions:
» Developing the presented model to an MOMILP modelabcounting for objectives such as

minimizing maximum unsatisfied demand and maxingznood freshness.

» Considering uncertainty in other parameters incigdilood supply, etc. besides demand amounts
and applying other approaches (e.g., stochastigrgnaming, or fuzzy approach when facing
fuzzy uncertainty)

» Applying (meta) heuristic algorithms in case theljem comes in larger size for which the exact
solvers may not be able to obtain a solution iseeable length of time.
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