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Abstract 

Perishability of blood products as well as uncertainty in their demands complicates 
the management of blood supply for blood centers. This paper addresses a mixed-
integer linear programming model for blood platelets production planning while 
integrating the processes of blood collection as well as production/testing, 
inventory control and distribution. Whole blood-derived production methods for 
blood platelets (i.e., Buffy Coat and platelet-rich plasma methods) are particularly 
focused in our research. The problem is tackled with the aim of minimizing the 
supply chain total cost. To capture inherent uncertainty of input data, a robust 
programming approach is devised. A set of numerical experiments is carried out to 
evaluate the performance of the proposed model and the solution technique. 
Thereto, in this paper we employ two criteria. These criteria are the mean and 
standard deviation of constraint violations under a number of random realizations 
to measure the quality of solutions achieved by both the proposed deterministic 
and robust models. Several sensitivity analyses are accomplished to provide 
valuable managerial insights. The results show that the robust approach dominates 
the deterministic one. 
 
Keywords: Blood supply chains, healthcare, platelet-rich plasma, Buffy Coat, 
robust optimization. 
 

1- Introduction  
   The world has witnessed a remarkable increase in health spending over the last fifty years. 
Health systems, especially in developing countries, are struggling with rapid cost increase, which 
seriously prevents them from getting improved (Riahi, Hosseini-Motlagh and Teimourpour, 
2013). To be more specific, according to the World Bank (2015), healthcare costs comprised 
about 18% of GDP in the US in 2010, and it will grow over 20% by the year 2021 (Kaiser Health 
News, 2015).However, in Iran, the spending on healthcare was estimated around 6% of GDP up 
to 2010 while it is expected to increase more in the years ahead.  
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Among all, increasing growth of aging population besides the developments in healthcare 
technologies can exacerbate the costs of healthcare service (Brandeau et al., 2004). 
    Thus, the necessity of having an efficient system for healthcare service supply and delivery, 
which can be practically influenced by social network analysis (Rastegar-Panah et al., 2013), 
arises since public resources cannot bear the pressure of healthcare costs in the future.   
    A considerable portion of healthcare costs belongs to healthcare supply chains. Baring this in 
mind, any improvement in the healthcare supply chain efficiency can result in increased cost 
savings as well as customer's satisfaction. This paper seeks to optimize the blood supply chain 
(BSC) as a critical part of a healthcare supply chain. 
   BSCs differ substantially from other perishable supply chains. One of the most significant 
differences between them lays on both supply and demand sides. In other words, the (primary) 
suppliers of BSCs are humans, being the only and scarce source of blood donation, and the final 
customers are humans as well. Blood donation rate is varied from one country to another. In the 
US for example, blood donation rate does not exceed 5% of the population. Although this rate 
will not climb to more than 6% in the UK, it is even worse in low-income countries. However, 
unbelievable or not, some developed countries like Japan demand the import of blood (Drackley 
et al., 2012; Beliën and Forcé, 2012). Indeed, BSC is a human-to-human supply chain and any 
deficiency or disruption in blood supply may even lead to humans' death. Additionally, the most 
noticeable of all, is that blood products preparation and storage have major differences, which are 
discussed in continue, comparing to other perishable supply chains. 
   Blood is a life-saving product for which there is an endless demand with almost no substitution. 
Red blood cells (RBC), platelets (PLT) and plasma (PLS) can be mentioned as the main products 
fractionated from whole blood, and each product is applicable for a special need. The most 
required blood component (i.e., RBC) is widely used in surgeries, etc. As the vessels are 
damaged, PLTs, which are normally counted to 270,000 per cubic microliter on average, are the 
components in charge of ending bleeding through the function of blood coagulation. In 
emergency operations, PLS, by which nearly 55% of total blood volume in human's body is 
made, plays a critical role (Schreiber et al., 2006). 
   Each blood product has certain shelf life under a special storage condition. Blood PLT, which is 
known as the most perishable component can live for maximum 7 days, but it will keep its 
storage quality up to 15 days by using additive solutions if it is fractionated by Buffy Coat 
production method (Vassallo and Murphy, 2006). RBC will not be outdated before 42 days of 
production date if it is stored at 1-6	℃	and lastly, PLS is known as almost non-perishable blood 
component since it can remain for about one year. 
   Thus, blood supply chain management (BSCM) is not a straightforward process since it is 
incurred complexity due to the special features of blood products including their perishability, 
uncertain and irregular pattern of blood supply (donation), and demand and inventory shortage.          
Therefore, these conditions must be taken into account while planning for BSCs.  
   A typical BSC (see Fig.1) consists of four main echelons; collection, production/screening, 
inventory control and distribution.  
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Fig.1. A typical blood supply chain 
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   Firstly, donors refer to blood collection centers and blood units are drawn after the donors are 
checked up.  Afterwards, the blood units are transported to regional blood centers within a certain 
length of time to be screened and decomposed into products. Each product can possibly be 
fractionated via different processes. PLTs, for example, are drawn in two main types; apheresis-
derived platelet concentrates (AP-PCs) and whole blood-derived PLTs (Vassallo and Murphy, 
2006). The latter case can be yielded by two different methods; Platelet-Rich Plasma (PRP) 
production method and Buffy Coat (BC) production method (Levin et al., 2008), both of which 
have their own features in terms of cost, function, etc. and the PLTs produced by each method is 
affected by these features. AP-PC is prepared by passing donor's blood through the apheresis 
devise (automatic equipment), by which only blood platelets are separated and the rest is returned 
to the donor's body. Although the process of AP-PCs benefits from less wastage, inventory and 
polling, easier cross-matching and less possibility of transferring infection, it is more costly and 
more time consuming in comparison to whole blood-derived PLTs since the former requires 
special equipment, specialized staff, etc. Even though in-vitro properties for all three types of PCs 
(i.e., BC-PCs, PRP-PCs and AP-PCs) are almost similar by day 5 or day 7 of storage, 
investigating the extant literature reveals that different platelet preparation methods end up with 
different storage characteristics (Vassallo and Murphy, 2006), which will be discussed in Section 
2.1.Blood products are then stored in storage facilities and eventually, they are distributed to 
demand zones to be transfused into patients.  
   Planning for BSCs requires to make several strategic decisions (e.g. facility location-allocation, 
determining the production mechanism) along with a set of tactical and operational decisions 
accounting for inventory management and blood distribution. Accordingly the main inspiration of 
this research is improving BSCs while regarding their special characteristics besides the 
inevitable uncertainty in input data by means of efficient planning. 
   Uncertainty in blood demand, supply or any other parameters is generally derived from two 
sources: randomness and fuzziness. Randomness, which is caused by random nature of input data 
for an event which happens regularly and is repeated several times during the planning horizon, is 
handled by applying stochastic programming approach if the distribution function of the random 
data is accessible. Robust programming approach is also applicable when the distribution 
function of random parameter is not available. Fuzziness lends itself to events not repeated over 
the planning horizon and of which enough historical data is not on hand. Fuzzy parameters are 
usually estimated based on the professional opinions or subjective knowledge of the field experts 
(Tofighi, Torabi & Mansouri, 2016).  
   In this paper, we employ an efficient robust programming approach to deal with the random 
uncertainty in the demand data. More details about the adopted robust programming approach 
have been provided in Section 3.1. Now, we first have a brief review of the related papers to 
blood production planning. Afterwards, the works on integrated planning for BSCs are 
investigated.  
 
1-1- Blood production planning  
   Deuermeyer & Pierskalla (1978) addressed an optimization problem conceptualized as a 
dynamic programming model for a by-product blood production system. Their model aimed to 
minimize inventory costs along with production costs corresponding to production processes of 
RBC and PLT over a multi-period horizon. However, their model does not account for donors as 
the system suppliers. A production and inventory problem for a Dutch blood bank was put 
forward by Haijema et al. (2007) with the aim of minimizing costs, shortages and outdates. 
Demands and production are both periodic in their work. Two types of demands are taken into 
account; one for young PLTs and another for PLTs of any age and order-up-to policies are 
regarded to satisfy them. Notably, they could reach near optimal solutions by hybridizing Markov 
dynamic programming (MDP) with simulation approach. In another effort, Haijema et al. (2009) 
presented an optimization problem for PLT production with breaks in special periods (e.g. 
Christmas and Easter). Arrivals of donors are tainted with uncertainty in their paper. They 
provided a new approach in the form of combining simulation and stochastic dynamic 
programming (SDP) to present theoretical support as well as nearly optimal and practical order-
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up-to policies. Their research succeeded in decreasing PLT shortages and spill considerably. Van 
Dijk et al. (2009) considered a mathematical formulation for PLT production and inventory 
management under supply uncertainty. A five-step combined method based on simulation and 
SDP was devised to solve the problem. They utilized real data to evaluate the performance of 
their research. Their work resulted in a nearly optimal policy of PLT production by which they 
came up with a main reduction in the level of outdating with negligible shortage. A mixed-integer 
non-linear programming (MINLP) model was strived by Ghandforoush and Sen (2010) to 
minimize platelets production costs and schedule regional blood centers. Applying a two-step 
conversion process, their model was then converted to a linear binary problem to assure 
optimality since the initial formulation carried a non-convex objective function with no 
convergence to optimal solutions.  
 
1-2- Integrated planning for blood supply chains 
   Research on perishable supply chain management particularly BSCM was commenced in 1960. 
Later on, Nagurney et al. (2012) introduced a bi-objective linear programming (LP) model for 
localization of blood bank systems. The location of collection facilities and laboratories besides 
distribution centers and hospitals were to be determined through the model in a way that the 
optimal allocation, supply risks and waste cost were obtained. Minimizing total costs including 
the operating cost, route waste cost, penalty and unsatisfied demands costs besides total risks of 
each route are considered as the objectives. An integer non-linear programming model (INLP) 
formulation along with new simulation optimization was outlined by Duan and Liao (2014) for 
modelling inventory management of blood supply chain with ABO blood group compatibility 
with respect to their shelf lives. The model looked for minimizing the expected outdating under a 
predetermined maximum shortage level. A dynamic programming (DP) model was utilized by 
Abdulwahab and Wahab (2014) for blood platelets inventory problem. In their model, platelets 
supply and demand amounts are assumed to be stochastic. They evaluated the model by regarding 
four measures of effectiveness including platelets shortage and outdating as well as inventory 
level and reward gained in the concerned stochastic model. Jokar and Hosseini-Motlagh (2015) 
developed an MILP model for blood supply chain in emergency situations to reduce the total cost 
of considered network including blood shortage and wastage costs. The optimal number as well 
as service areas of blood facilities are determined under several disaster scenarios while the 
capacity of mobile blood facilities is assumed as a variable. Their findings imply that the optimal 
number of both permanent and mobile facilities is remarkably influenced by changes in the 
capacity of mobile blood facilities. A bi-objective mixed-integer non-linear programming 
(MINLP) model was put forward by Arvan et al. (2015) for the blood supply chain network 
design considering laboratories, blood bank centers, hospitals and donation zones. Minimizing 
operating costs and transportation costs as well as blood products expiration were considered as 
the objectives. They applied �-constraint approach to solve the proposed model in which all 
parameters are regarded to be deterministic. A stochastic MINLP model was presented by 
Gunpinar & Centeno (2015) with the sole objective seeking to minimize costs including blood 
products wastage and shortage costs. C/T ratio and release period of cross match along with two 
types of patients (i.e., the ones who demand for fresh blood and the rest with the need of blood of 
any age) are taken into consideration in their study. To handle demand uncertainty, a stochastic 
programming approach is utilized. Fahimnia et al. (2015) suggested a bi-objective two-stage 
stochastic programming (TSSP) model while regarding a set of disaster scenarios. Total cost of 
the concerned network is minimized through the first objective function. Determining the optimal 
way of blood distribution to hospitals by minimizing the average delivery time from local and 
regional blood centers to demand points in disasters was also taken into account as another 
objective. They applied the �-constraint and Lagrangian relaxation methods to solve the proposed 
bi-objective model. An MINLP model for blood collection management was proposed by Zahiri 
et al. (2015). They employed a robust possibilistic approach to handle the data uncertainty, and 
applied a case study of Babol city. The location of mobile blood facilities as well as permanent 
blood centers was to be determined in the strategic level, and donors’ allocation to blood facilities 
besides the quantity of blood, transported from blood facilities to demand zones in each period, 
was then decided in the tactical level.   
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   In Table 1, the papers are categorized while mainly considering integrated models and focusing 
on their special characteristics including planning horizon, Type of blood product, modeling 
approach, etc.  
   To the best of our knowledge, research on designing blood supply chain particularly accounting 
for blood platelet production methods in the context of integrated planning is non-existent. To fill 
this gap, this paper puts forward an integrated approach toward blood supply chain planning 
while concentrating on blood platelet production methods. To this aim, the following 
contributions differentiate our work from other existing papers in the literature of BSCs.  
1) Integrated planning for blood PLTs production under uncertainty 

2) Jointly consideration of different production methods while accounting for the respective 
product quantity  

3) Regarding blood PLTs life time after fractionation through the production methods  

4) Applying robust programming (RP) approach to cope with the data uncertainty 

   The rest of the paper is organized on these trials: The problem description and mathematical 
formulation of the proposed model are brought together in Section 2. Section 3 is dedicated to 
define the solution technique. A number of numerical examples along with several sensitivity 
analyses are performed in Section 4. Lastly, Section 5 provides concluding remarks and possible 
future research. 
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Haijema et al. (2007)   ●   ●   ●     ●   ● 

 

●  ●  

Van Dijk et al. (2009)  ●    ●       ● ●   ●  ●  ●  

Haijema et al. (2009)   ●   ●       ● ●   ●   ●   

Ghandforoush and Sen 
(2010) 

  ●   ●    ●      ●  
 

●  ●  

Nagurney et al. (2012) ●    ● ●     ●      ●   ● ●  

Duan and Liao (2014)   ● ●        ●     ●   ●  ● 

Abdulwahab and Wahab 
(2014) 

  ●   ●       ●    ● 
 

 ●  ● 

Jokar and Hosseini-Motlagh 
(2015) 

● ●  ●    ●         ● 
 

●  ●  

Arvan et al. (2015) ●   ● ● ● ● ●        ●   ●  ●  

Gunpinar & Centeno (2015)   ●  ● ●  ●         ●  ●   ● 

Fahimnia et al. (2015) ●   ●           ●  ●  ●   ● 

Zahiri et al. (2015) ● ●  ●      ●        ● ●   ● 

This article ● ● ● ●  ●  ●         ●  ●  ● 

Table 1. A taxonomic structure of the studied papers 
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2- Problem description 
    In this research, we address a blood supply chain network which is home to mobile blood facilities 
and local blood centers as collection sites, regional blood centers which are responsible for testing 
whole blood units and preparing blood platelets, and hospitals as demand points. Blood donation can 
take place in both mobile and local collection sites. The whole blood units are collected at the end of 
each period and transported from mobile blood facilities to local blood centers and from local blood 
centers to regional blood centers. After being tested to assure their health (i.e., no infectious disease, 
etc.) blood units are broken down into several products such as PLT, the most significant one 
considered in this research, by using the production methods of whole blood-derived PLTs (i.e., PRP 
and BC production methods). PLT units are then stored in the regional centers blood banks under 
specific conditions. Lastly, the units will be distributed to hospitals based on their demands. The 
model is presented with the aim of minimizing total cost of the network such as opening cost of local 
collection facilities (i.e., local blood centers), repositioning cost of mobile blood facilities, blood 
transportation cost from mobile sites to local ones and from local sites to regional centers, blood PLTs 
production cost, PLTs outdating cost as well as inventory holding cost and transportation cost from 
regional blood centers to hospitals. Noteworthy, the candidate locations for both mobile blood 
facilities and local blood centers are assumed to be given. Each group of donors represents a given 
blood supplier's point as it is practically impossible to plan for every single donor, and the center of 
each point is considered for calculating the Euclidean distance between donors and blood collection 
sites. In addition, the locations of regional blood centers are assumed to be predetermined. The 
scheme of concerned network is presented in Fig.2. Solving the proposed model, we obtain the 
following values: 

• The optimal number and location of mobile blood facilities as well as local blood centers. 
• Donors' allocation to each mobile blood facility or local blood center in each period. 
• The quantity of whole blood, collected by each mobile blood facility or local blood center in 

each period. 
• The quantity of whole blood, transported from mobile blood facilities to local blood centers in 

each period. 
• The quantity of whole blood, transported from local blood centers to regional blood centers in 

each period. 
• The quantity of blood PLTs produced by each method at each regional blood center in each 

period. 
• PLTs inventory level in regional blood centers at the end of each period.  

• The quantity of blood PLTs transported from regional blood centers to hospitals in each 
period. 

• PLTs outdates in regional blood centers in each period. 

•  

 

 

 

 

 

 

 

 

 
Fig.2. The scheme of concerned BSC 

Mobile blood facility  

Donor  Regional blood center    Hospital   Local blood facility  

Blood flow   

Locatedfacility 

Pre-determined center   
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2-1- BC method versus PRP method 
    The aforementioned production methods differ in some aspects mainly pointed out as follows: 

• BC method is the least expensive method among the others (i.e., PRP method and apheresis) for 
PLTs production (Vassallo and Murphy, 2006). 

• Whole blood units must be decomposed within 8 hours if PRP method is supposed to be used 
while this time length will be extended up to 24 hours lending itself to BC method privilege. 

The above advantage lets the product be perfectly manufactured until the day after collection. 
Furthermore, it is logistically cost-effective in the sense that it avoids multiple trips from local 
blood centers to the regional blood centers (Vassallo and Murphy, 2006). 
• BC-derived PLTs perform better in terms of storage quality in comparison to PRP-derived 

PLTs. In other words, the quality of BC-derived PLTs will be kept up to 15 days of storage by 
using a platelet additive solution. Interestingly, an in-vitro study by Bertolini et al. (1992) 
compared the viability factors of Buffy Coat-platelet concentrates (BC-PCs) stored for 15 
days in a platelet additive solution with those of platelet-rich plasma-platelet concentrates 
(PRP-PCs) stored in plasma. The result was intriguing, showing improvement in the quality 
of BC-PCs even after 15 days of storage, being favorably comparable with that of PRP-PCs 
stored for 7 days.    

• PLT counts in PRP-derived PLTs outperform the ones in BC-derived PLTs (Levin et al, 2008; 
Soleimany Ferizhandy, 2011).Due to the differences in BC and PRP methods, PLTs produced 
by PRP benefit from somewhat more concentrated solution, which means high levels of PLT 
concentration in the mixture, in comparison with the more dilute BC-PCs (Levin et al, 2008). 

However, no final and settled research exists to back evidence-based decisions considering a specific 
source of platelets (i.e., whole blood-derived platelets and apheresis-derived platelets (platelet 
pheresis)) as the preferred one (Vassallo and Murphy, 2006). Accordingly, in this paper, we discuss 
the harvest of PLTs from whole blood since the considered blood collection system only accounts for 
whole blood donation not for apheresis technology, which requires different collection considerations. 
The proposed mixed-integer linear programming model can be formulated while applying the 
following components.  

2-2- Notations 

Sets: 

Cost parameters:   

�� Opening cost of local blood center	  
�!",!$  Unit cost of moving a mobile blood facility from location%& to location%' 
(�!�)  Unit cost of transporting whole blood from mobile blood facility	% to local blood center   
(��* Unit cost of transporting whole blood from local blood center   to regional blood center 

+ 
(,*- Unit cost of transporting blood platelets from  regional blood center +to hospital ℎ 
/�0 Unit cost of producing blood platelets by production method 1 in regional blood centers 
ℎ�0 Unit cost of holding blood platelets produced by production method 1 in regional blood 

centers  
230 Unit cost of expiring blood platelets produced by production method 1in hospitals 
Technical parameters:  

4 Set of donors groups; 	(7 = 1, 2, … , 4) 
= Set of candidate locations of mobile blood facilities;	(% = 1, 2, … , =) 
> Set of  candidate locations of local blood centers; 	( = 1, 2, … , >) 
R Set of regional blood centers; 	(+ = 1, 2, … , ?) 
P Set of  platelet production methods;	(1 = 1, 2) 
@ Set of hospitals; 	(ℎ = 1,2,… ,@) 
( Set of time periods; (A = 1,2, … , () 
(′ Set of time periods; (A = 1,2, … , (′) 
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C Maximum capacity of each mobile blood facility  
C�)  Maximum capacity of local blood center	  
C*)) Maximum capacity of regional blood center	+for receiving whole blood 
10*D)  Production capacity of platelets by method 1in blood center + in period	A 
E*D Maximum inventory of PLTs for regional blood center	+in period	A 
,FD Quantity of whole blood donated by donors group 7 in period	A 
+F! Distance between donors group	7 and mobile blood facility	% 
+G Coverage radius of each mobile blood facility by which donors group	7 is served if  

+F! ≤ +G 
I!� Distance between mobile blood facility	% and local blood center	  
IG Coverage radius of each local blood center by which mobile blood facility	%is served if  

I!� ≤ IG 
JF�)  Distance between donors group	7 and local blood center	  
JG Coverage radius of each local blood center by which donors group	7 is served if  JF�) ≤

JG 
,2-0DK Total demand of hospital ℎ		for blood plateletproduced	by	production	method	1	in 

period	A′ 
I0)  Blood platelet counts produced by production method 1in regional blood centers 
N0 Blood platelet life time produced by method 1in regional blood centers 
N0)  Lead time for testing and producing platelets from whole blood by production method 1 
O Usable blood rate  
P Minimum demand satisfaction rate 
Q A reasonably large number 
 

Binary variables: 

R� Is equal to 1 if local blood center   is set up; 0, otherwise 
3F�D Is equal to 1 if donors group7 is assigned to local blood center   in period	A; 0, otherwise 
3F!D)  Is equal to 1 if donors group7 is assigned to mobile blood facility % in period	A; 0, 

otherwise 
3!�D))  Is equal to 1 if mobile blood facility % is assigned to local blood center   in period	A; 0, 

otherwise 
S!",!$,D Is equal to 1 if a mobile blood facility is located at site %&in period A − 1, and moves to 

site %'	in period A; 0, otherwise 
 

Integer variables: 

U number of mobile blood facilities required in each period 
 

Positive variables: 

VF!D Quantity of whole blood donated by donors group	7 in mobile blood facility	% in period A 
V′!�D Quantity of whole blood transported from mobile blood facility	% to regional blood 

center	  in period A 
WF�D Quantity of whole blood donated by donors group	7 in local blood center	  in period A 
W′�*D Quantity of whole blood transported from local blood center	  to regional blood center	+ 

in period A 
X0*D)  Quantity of blood platelet produced by method 1 in regional blood center	+ in period A 
40*D Inventory of blood platelet which is produced by method 1 in regional blood center	+ in 

period A 
X0*-DDK  Quantity of blood platelet produced by method 1 in regional blood center	+ in period A 

and distributed to hospital ℎ in period A′ 
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Y0*DK Quantity of blood platelet produced by method 1 and expired in regional blood center+ in 
period A′ 
 

2-3- Mathematical formulation 
   Total cost of the concerned network including establishment cost of local blood centers, cost of 
repositioning mobile blood facilities in successive periods, (whole) blood transportation cost from 
mobile sites to local ones and from local blood centers to regional blood centers, platelets production 
cost, inventory holding cost and outdating cost in regional blood centers and transportation cost from 
regional centers to hospitals, is to be minimized through objective function (1).  
 
2-3-1-Objective function 

Q7Z	[ =\��R�
�

+ \ �!",!$S!",!$,D
!",!$,D

+ \(�!�) V′!�D
!,�,D

+ \ (��*W�*D)
�,*,D

+ \ /�0X0*D)
*,0,D

+ \ ℎ�040*DDK
*,0,D,DK

+ \ 230Y0*DK
0,*,DK

+ \ (,*-X0*-DDK

*,-,0,D,DK
 

 

(1) 

2-3-2-Model constraints 

\S!",!$,D 	≤ 1										
!"

 ∀%', A 			(2) 

Constraint (2) assures that no more than one mobile blood facility can move to a specific 
candidate location from other locations in each period. 

\ S!",!$,D = U											
!"_!$

 ∀A    (3) 

Constraint (3) determines the number of mobile blood facilities opened in each period. 

\S!",!$,D 	≤ \S!,!",D`&
!!$

 ∀%&, A ≥ 2    (4) 

Each mobile facility can move to another location in the next period only if it has been founded 
before, as presented in constraint (4). 

\3F�D +\3F!D) ≤ 1
!�

 ∀7, A (5) 

Constraint (5) guarantees that each group of donors can be assigned to no more than either one 
local blood center or a mobile blood facility in each period. 

3F!D) +F! ≤ +G\S!",!,D
!"

 ∀7, %, A (6) 

Constraint (6) determines the coverage restriction of each mobile blood facility such that each 
group of donors can be served by a mobile blood facility only if located within coverage radius of 
the mobile blood facility. 

3!�D)) I!� ≤ IGR� ∀%,  , A (7) 

Each mobile blood facility can be served by a local blood center only if located within coverage 
radius of the local blood center, as defined in constraint (7). 

3!�D)) ≤\S!",!,D
!"

 ∀%,  , A (8) 

Constraint (8) assures that blood units can only be delivered from a mobile collection site to a local 
center provided that it has been established before. 

VF!D ≤ Q3F!D)  ∀7, %, A (9) 
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WF�D ≤ Q3F�D ∀7,  , A (10) 

Constraints (9) and (10) denote that blood donation may occur in both mobile and local blood sites 
only if these centers have been opened before. 

V′!�D ≤ Q3!�D))  ∀%,  , A (11) 

Constraint (11) makes sure the blood flow from mobile blood facilities to local blood centers only 
if the local centers exist. 

\VF!D ≤
F

C ∀%, A (12) 

The capacity of each mobile blood facility is restricted via constraint (12).  

\VF!D =\V′!�D
�F

 ∀%, A (13) 

Constraint (13) guarantees that total quantity of blood collected by mobile blood facilities are 
transported to local blood centers at the end of each period. 

3F�DJF�) ≤ JGR� ∀7,  , A (14) 

Constraint (14) defines the coverage restriction of each local blood facility in the sense that each 
group of donors can be served by a local blood center only if located within coverage radius of the 
local blood center. 

\bF�D +\VF!D
!

≤ ,FD
�

 ∀7, A (15) 

Constraint (15) restricts blood donation from each group of donors in each period. 

\bF�D +\V′!�D
!

≤ C�)
F

 ∀ , A (16) 

Constraint (16) limits the capacity of each local blood center in each period.  

\bF�D +\V′!�D
!

=\b′�*D
*F

 ∀ , A (17) 

Constraint (17) makes sure that total (whole) blood units collected by each local blood center are 
transported to regional blood centers at the end of each period.  

\b′�*D ≤
�,D

C*)) ∀+ (18) 

Constraint (18) limits the capacity of each regional blood center for receiving whole blood.  
 

O(\b′�*D)I0) = X0,*,DcdeK
)

�
 ∀+, 1, A (19) 

Constraint (19) determines the volume of PLTs produced by each production method in each 
period.  
X0,*,DcdeK
) ≤ 10*D)  ∀+, 1, A (20) 

Constraint (20)confines the production capacity of PLTs in each regional blood center in each 
period. 

X0,*,DcdeK
) + 40,*,DcdeK `& = 40,*,DcdeK +\X0,*,-

DcdeK ,DK

-,DK
 ∀+, 1, A (21) 

Constraint (21) is known as inventory conservation equation for each regional blood center in each 
period. 

\40,*,D
0

≤ E*D ∀+, A (22) 
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Constraint (22) restricts the inventory of PLTs for each regional blood center in each period. 

\ \X0,*,-
DcdeK ,DK

*DKfDcde`deK
≥ P(,2-0DK) ∀ℎ, 1,t' (23) 

Constraint (23) forces the model to satisfy total demand of each hospital for PLTs at least at P 
percent in each period.  

\ X0,*,-
DcdeK ,DK

-,DKgDcdehieK
≥ Y*0DK ∀+, 1,t' (24) 

Constraint (24) restricts blood PLTs expiration in regional blood centers in each period. 

R�,3F�D,3F!D) ,3!�D)) ,S!",!$,D ∈ k0,1m  (25) 

VF!D,V′!�D,WF�D,W′�*D,X0*D) ,40*D,X0*-DDK ,Y0*DK ≥ 0  (26) 

Constraints (25) and (26) define the domain of decision variables. 

3- The robust programming approach 
    Robust programming synchronizes optimality and feasibility robustness required to an optimization 
problem. The feasibility of solutions for any possible values of uncertain parameters lends itself to the 
feasibility robustness while finding (near) optimal solutions under a set of realizations is guaranteed 
by the optimality robustness (Zahiri et al., 2015). In this research, an RP approach is employed to 
capture the random nature of data. Several robust approaches can be addressed in the literature, 
applied to a number of optimization models; e.g., the one introduced by Soyster (1982) to handle data 
uncertainty by means of mathematical models, however, it used to hand rather poor solutions in terms 
of optimality due to its over-conservative models, which are not appropriate in terms of cost, in most 
cases. Later on, Ben-Tal and Nemirovski (1999), Ben-Tal and Nemirovski (2000), and Ben-Tal and 
Nemirovski (2002) put forward less conservative models while accounting for ellipsoidal 
uncertainties. A new approach arose resulting from the works of Bertsimas and Sim (BS) (2003) and 
Bertsimas and Sim (BS) (2004) to make up for the previous deficiencies in the sense that, as 
observed, all coefficients will not concurrently possess their worst-case values. 

3-1- The light robust (LR) heuristic  
   Light Robustness, an efficient approach to cope with uncertainty, is somehow the combination of a 
lightened two-stage stochastic programming approach and robust optimization, which carries 
simplicity as well as flexibility as its privileges. Applying LR, we can sometimes come up with 
comparable solutions in terms of quality with the ones acquired by either robust models or stochastic 
programming individually while benefiting from simpler model formulation along with less 
computing time (Fischetti and Monaci, 2009). To tackle infeasibility, LR employs slack variables 
having a role like what second-stage recourse variables have in stochastic programming models. 
These slacks let local violations of constraints, better to say, define solution robustness while 
absorbing variations of uncertain parameters. The slacks are then minimized via an auxiliary 
objective function. Thereto, the optimality of solutions is accounted for in the form of a constraint 
through the LR model.  
This approach will be accomplished by solving three linear programming (LP) models (i.e., the 
nominal problem and the two following models of LR).  

Step 1: Consider nominal problem (26)–(29) for which 3∗ represents an optimal solution.   

min\�!	3!
!∈o

 (27) 
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\pF!
!∈o

3!		 ≥ ,F 7 ∈ Q					 (28) 

\qF!
!∈o

3!		 ≤ ℎF 7 ∈ Q					 (29) 

3!		 ≥ 0									 % ∈ U				 (30) 
In which the number of constraints and variables are defined by |Q|and|U|, respectively.  

Step 2: Assume matricessand @takevalues, say,tF ∈ [,F , ,F + ,vF] andℎxF ∈ [ℎF − ℎyF, ℎF], respectively. 
Thus, the maximum violations of uncertain constraints7aredetermined by equations (31) and (32):  

zF∗ = {,F + ,vF| −\pF!3!∗
!∈o

 (31) 

zF∗ = \qF!3!∗
!∈o

− {ℎF − ℎyF| (32) 

In addition, the constraints for which sufficient slacks should be considered are introduced in the 
set	}, say} = k7 ∈ Q:	zF∗ > 0m and |}| ≥ 1 since the slack variable is required for at least one 
constraint, otherwise 3∗ would be feasible, thereby optimal in any realization of the uncertain 
parameter. 

The first model of LR in the form of the following LP model is solved: 

�p3	�  (33) 

\pF!3! − WF = ,F
!∈o

 	7 ∈ Q (34) 

\qF!3! + WF = ℎF
!∈o

 	7 ∈ Q (35) 

� ≤ WF
zF∗ 7 ∈ } (36) 

\�!	3! ≤ (1 + �)R∗
!∈o

  (37) 

3! ≥ 0 % ∈ U (38) 

WF ≥ 0																											 7 ∈ Q (39) 

That maximizes the minimum slack considered for any uncertain constraint. The uncertainty in 
constraints	7 can be taken into account individually by dividing the slack variable WF by zF∗ such that i 
∈ U (i.e., normalization) as can be observed in constraint (36). 
   The max-min nature of the above LP model results in several equivalent optimal solutions. Indeed, 
since only the minimum normalized slack is accounted for by the objective function, no force will be 
imposed to assign a large slack, however important to improve robustness, to the remaining 
constraints. Thus, LR presents its second LP model (41)-(49) with the aim of balancing the slacks 
among uncertain constraints.  
Step 3: The model (33)–(39) is assumed to have an optimal solution, say (3∗,W∗,�∗). Therefore, we 
can define the average of the normalized slacks as below:  

W��� = ∑ W7∗ z7∗⁄7∈}
|}|   (40) 

Additionally, the normalized slacks have the minimum value as defined in relationship (41). 
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W�F� = �7ZkWF∗ zF∗⁄ :	7 ∈ }m (41) 

The second model of LR is presented as follows: 

�7Z	\AF	
F∈�

 (42) 

\pF!3!	 −	WF =	,F
!∈o

 7 ∈ }			 (43) 

\qF!3!	 +	WF =	ℎF
!∈o

 7 ∈ }			 (44) 

\�!3!	 ≤ (1 + �)R∗
!∈o

  (45) 

WF
zF∗ + AF	 ≥ W��� 7 ∈ } (46) 

3!	 ≥ 0 % ∈ U (47) WF
zF∗ ≥ W�F� 7 ∈ } (48) 

WF ≥ 0	, AF	 ≥ 0											 7 ∈ } (49) 

In which variablesAFtake positive values in case W���is bigger than the corresponding normalized 
slack. Also, the sum of AF is to be penalized through objective function (42) to balance the normalized 
slacks among all rows. 

3-2- The robust equivalent of our original model 
    After solving the nominal model (1) - (26), the robust counterpart of our basic model would be 
introduced as follows with respect to the aforementioned steps. It is worth mentioning that, we have 
considered the amount of blood PLT demand as an uncertain (random) parameter (i.e.,,2�-0DK) such 

that,2�-0DK ∈ �,2-0DK , ,2-0DK + ,2�-0DK�, in which,2�-0DK represents the worst-case (maximum 
violation) of the nominal value of blood PLT demand (i.e., ,2-0DK). 
Thus, by defining z-0DK∗  as equation (50) and the set },the first LR counterpart for our original 
formulation would be presented as model (51)-(55) and (1)-(26). 

z-0DK∗ = P{,2-0DK + ,2�-0DK| − \ \X0,*,-
DcdeK ,DK

*DKfDcde`deK
 ∀ℎ, 1, A) (50) 

The set} is also considered as: 

} = k(ℎ, 1, A)) ∈ Q:	z-0DK∗ > 0m 
  

Therefore, we have the first LR counterpart formulated as: 

�p3	�																																																																	 (51) 

\ \X0,*,-
DcdeK ,DK

*DKfDcde`deK
= P(,2-0DK) + W-0DK ∀ℎ, 1, A) (52) 

� ≤ W-0DK
z-0DK∗  ∀ℎ, 1, A) (53) 
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\
�

 

(54) 

W-0DK ≥ 0		 ∀ℎ, 1, A) ∈ } (55) 

In which [∗ states the objective function value of the nominal formulation (1) – (26) and		� denotes 
deterioration degree in the objective function value, or better to say, conservative level decided by the 
DM. 

plus relationships (1) – (26). 

Thereto, we have the average of normalized slacks defined as: 

W��� =
∑ Wℎ1A′∗ zℎ1A′∗�	∀(ℎ,1,A′)∈}

|}|  

  (56) 

Then, the second LR counterpart (i.e., third LP model) could be modeled as follows: 

�7Z	 \ A-0DK
-,0,D∈�

  
  (57) 

W-0DK
z-0DK∗ + A-0DK ≥ W��� ∀ℎ, 1, A) ∈ } (58) 

W-0DK
z-0DK∗ ≥ W�F� ∀ℎ, 1, A) ∈ } (59) 

A-0DK ≥ 0      (60) 

In which  W�F� denotes the objective function value of the first LR counterpart (i.e., �∗). 
4- Computational experiments 
   In this section, the efficiency of the proposed model besides its solution method is evaluated by 
carrying out a series of numerical examples. To do so, both deterministic and robust models are firstly 
implemented on test problems, specified in Tab.2, under different uncertainty levels (δ) while using 
nominal data which are generated randomly by applying the uniform distributions presented in Tab. 
3.The value of parameters is logically determined with respect to the paper presented by Zahiri et al. 
(2015). Additionally, some parameters such as PLT lifetime and PLT counts from either production 
method are considered based on the objective data and the sources such as Vassallo and Murphy 
(2006), Levin et al. (2008) and Soleimany Ferizhandy (2011). 

 

Problem no. |4| |=| |>| |?| |/| |@| |(| 
#TP 1 3 3 3 2 2 3 4 
#TP 2 5 5 5 4 2 5 6 
#TP 3 10 7 7 6 2 10 8 
#TP 4 15 10 10 8 2 15 10 
        
 

Table 2. The size of test problems 
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   Then, the performance of deterministic and robust models are compared under a number of 
realizations of the uncertain parameter (i.e., demand) in continue. Realizations are generated 
randomly in the corresponding uncertainty set, as expressed in Section 5.2. Using GAMS software, 
the experiments are carried out on a laptop computer with Intel Core i5, CPU 2.5GHz and 6GB of 
RAM. 

4-1- Sensitivity analysis on demand satisfaction level (�)and uncertainty level (�) 
    In this section, we determine how the changes in the value of P and � affect the performance of 
proposed deterministic (D) and robust (R) models. To do so, each test problem is performed while 
varying the values of P and �according to Tab. 4. As can be understood from the results, for test 
problems 1 and 4, increasing demand satisfaction level from 0.6 to 0.8 makes an increase in the 
number of blood collection facilities, mobile (N) and local (Z) facilities, in both deterministic and 
robust models while test problems 2 and 3 remain almost indifferent to this change. It can be justified 
that when the value of	P increases, in test problems 1 and 4, we need to add the number of collection 
facilities, since their capacities are limited, to cover the additional service. However, test problems 2 
and 3 can still respond to the increased demand satisfaction level by the current capacity, thus they 
require no tangible changes in the number of collection facilities.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

parameters 
Corresponding random 
distribution 

parameters 
Corresponding random 
distribution 

�� ~VZ7�E+�	(1500,3000) ,FD ~VZ7�E+�	(1400,1600) 
�!",!$  ~VZ7�E+�	(0.1,0.6) +F! ~VZ7�E+�	(20,40) 
(�!�)  ~VZ7�E+�	(0.35,3.5) +G 100 
(��* ~VZ7�E+�	(0.35,3.5) I!� ~VZ7�E+�	(20,30) 
(,*- ~VZ7�E+�	(0.75,1) IG 180 
/�0 ~VZ7�E+�	(0.1,0.3) JF�)  ~VZ7�E+�	(100,200) 
I0)  ~VZ7�E+�	(0.25,0.35) JG 100 
C ~VZ7�E+�	(500,700) IG 180 
C�)  ~VZ7�E+�	(1000,2100) 10*D)  ~VZ7�E+�	(2000,2500) 
C*)) ~VZ7�E+�	(2000,2500) E*D ~VZ7�E+�	(600,800) 
,2-0DK ~VZ7�E+�	(300,600)   
    

Table 3. Random generation of nominal parameters 
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Thereto, the normalized values (i.e., dividing each value by the sum of respective column) of          

objective function of both robust and deterministic models and robust constraint violation cost are 
compared schematically in Figs. 3-6. As can be observed in the following figures, on one hand, the 
objective function (total network cost) of robust model takes higher values as the uncertainty level 
increases and it gets intensified when P reaches 0.8 while the objective function value of 
deterministic model remains constant. On the other hand, we witness a considerable decrease in 
constraint violation cost in all test problems when the value of � goes up, and it comes to zero as � 
gets the value 0.12 for all test problems 1-4 at	P = 0.8. 

O = 0.8 
P � |Z|  |N|  Total network cost under 

nominal data ($) 
 Constraint violation 

cost under nominal 
data ($) 

 CPU 
time (s) 

Problem 
no. 

D
  

R
  

 D
  

R
  

 D  R   R   

1 

0.6 0.04 1 1  1 0  9162.372 9528.867  6625.032  0:1.524 
0.08 1 1  1 0   9895.362  3760.916  0:1.375 
0.12 1 1  1 0   10261.857  896.8  0:1.329 

 0.2 1 1  1 0   10994.846  0  0:1.273 
0.8 0.04 2 2  2 2  14965.322 15563.934  8006.213  0:1.818 

0.08 2 2  2 2   16162.547  3248.398  0:2.402 
0.12 2 2  2 2   16761.160  0  0:1.803 

 0.2 2 2  2 2   17958.386  0  0:1.721 

2 

0.6 0.04 1 1  2 2  22141.788 23027.459  15100.436  0:7.964 
 0.08 1 1  2 2   23913.131  6548.878  0:12.321 
 0.12 1 1  2 2   24798.802  0  0:10.901 
 0.2 1 1  2 2   26570.145  0  0:7.974 
0.8 0.04 1 1  1 0  30271.456 31482.314  20164.912  0:8.449 
 0.08 1 2  2 2   32693.172  6348.536  0:13.154 
 0.12 1 2  2 2   33904.031  0  0:8.115 

  0.2 1 2  0 2   36325.747  0  0:6.67 

3 

0.6 0.04 2 2  3 3  37647.123 39153.008  31428.644  1:14.861 
 0.08 2 2  3 3   40658.893  12054.465  1:01.32 

 0.12 2 2  3 3   42164.778  4020  0:57.120 
 0.2 2 2  3 3   45176.548  0  1:13.359 
0.8 0.04 2 2  3 3  49877.839 51872.953  42946.734  0:59.646 

 0.08 2 2  3 3   53868.066  13925.964  1:10.776 
 0.12 2 2  3 3   55863.18  0  0:56.705 

 0.2 2 2  3 3   59853.407  0  1:20.487 

4 

0.6 0.04 2 2  4 4  70961.217 73798.824  65207.112  8:14.736 

 0.08 2 2  4 5   76821.618  24131.415  8:06:24 
 0.12 2 2  4 5   80137.22  0  7:47.215 

 0.2 2 3  4 5   85144.275  0  7:31.12 

0.8 0.04 3 3  5 5  94780.13 98571.335  86459.177  8:29.066 

 0.08 3 3  5 6   102416  31878.104  8:31.274 

 0.12 3 3  5 6   106270  0  7:55.414 
 0.2 3 4  5 7   113740  0 7:16.118 

              

Table 4. Summary of results (robust approach versus deterministic approach) 
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   As mentioned before, increasing the value of � leads to an increase in total network cost, but 
simultaneously leads to the reduction of violation cost. For test problem one, for instance, constraint 
violation cost comes to zero at		� = 0.12 and	P = 0.8 while it imposes a total cost about $16,761. As 
the problem gets larger, this cost expectedly increases until it reaches the value of $106,270 for test 
problem 4.  
   Accordingly, the DM needs to make a tradeoff between these two costs to decide on an appropriate 
conservative level (�). Depending on the DM's professional point of view, the value of � might be 
increased or lessen. In more critical situations, constraint violation cost might be even more 
highlighted and assigned higher weight by the DM, which may push the value of		� to the right (i.e., 
to increase�)  in favor of reducing violation cost rather than the objective function value.  
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Fig. 3 Objective function value versus constraint 
violation for test problem 1 under P = 0.8 

Fig. 4 Objective function value versus constraint 
violation for test problem 2 under P = 0.8 

Fig. 5 Objective function value versus constraint 
violation for test problem 3 under P = 0.8 

Fig. 6 Objective function value versus constraint 
violation for test problem 4 under P = 0.8 
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In this article, we suggest basic levels for�, determined by the intersection between the curves of 
robust constraint violation cost and robust total network cost. These levels are 0.085 for test problems 
1, 4 and 0.08 for test problems 2 and 3 which are being used in Section 4.3. 

4-2- Sensitivity analysis on different realization values and uncertainty levels  
   In this section, we put the proposed robust and deterministic models into analysis via uniformly 
generating random realizations of the uncertain parameter (i.e., demand) and under different 
uncertainty levels. The realizations are generated randomly in the respective uncertainty set, 
say�,2-0DK , ,2-0DK + ,2�-0DK�, in which ,2�-0DK represents maximum violation in demand defined as: 

,2�-,D = 0.1,2-0DK, and then are sorted ascendingly. The models are implemented while varying the 
uncertainty level and generating five realizations for each test problem, as presented in Tab. 5. As the 
results show, for all test problems, larger realization values result in increasing constraint violation 
costs. Having the value of � increased, we observe a decrease in robust violation cost, but an increase 
in the value of robust objective function while the deterministic model shows no changes in the 
values. 
   A general observation from Figures 7-10 is that although robust constraint violation cost (�C�) 
increases as the result of increasing realization values, it can be remarkably lessen by taking larger 
uncertainty levels. For test problem No1 in Figure 7, �C� decreases from $7371.813 to zero as the 
value of � changes from 0.04 to 0.12 under realization 5. In Fig. 8, we will have the minimum value 
of �C� by spending $33904.031under the fifth realization and � = 0.12. In Fig. 9, we will come up 
with no constraint violation cost of robust model when taking � = 0.12 and spending $55863.18 
under realization 5. Eventually, for test problem 4, Fig. 10,�C�comes to its minimum value by 
imposing a cost of $106270 under realization 5 and � = 0.12. 
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O = 0.8 

 

Realization 
Avg. 
CPU 
time (s) 

P = 0.8 

P
ro

bl
em

 
no

. � 1 2 3 4 5 

1 

 [� 14965.322     0:2.384 
 �C� 2537.6 4440.8 6344 10150.4 12053.6  
0.04 [� 15563.934     0:3.213 
 �C� 0 0 1662.213 5468.613 7371.813  
0.08 [� 16162.547     0:4.213 
 �C� 0 0 0 787.38 2690.58  
0.12 [� 16761.16     0:4.407 
 �C� 0 0 0 0 0  
0.2 [� 17958.386     0:2.643 
 �C� 0 0 0 0 0  

2 

 [� 30271.456     0:7.491 
 �C� 6385.6 11270.8 16156 25926.4 30811.6  
0.04 [� 31482.314     0:10.76 
 �C� 0 0 3928.105 13651.312 18536.512  
0.08 [� 32693.172     0:10.54 
 �C� 0 0 0 385.146 4850.346  
0.12 [� 33904.031     0:9.619 
 �C� 0 0 0 0 0  
0.2 [� 36325.747     0:10. 3 
 �C� 0 0 0 0 0  

3 

 [� 49877.839     1:17.54 
 �C� 14424.32 25242.56 36060.8 57697.28 68515.52  
0.04 [� 51872.953     1:04.73 
 �C� 0 0 6885.934 28522.414 39340.654  
0.08 [� 53868.066     1:00.51 
 �C� 0 0 0 0 10373.644  
0.12 [� 55863.18     1:15.74 
 �C� 0 0 0 0 0  
0.2 [� 59853.407     1:16.69 
 �C� 0 0 0 0 0  

4 

 [� 94780.13     8:41.21 
 �C� 9883.721 32171.116 55815.23 74741.62 117921  
0.04 [� 98571.335     8:46.3 
 �C� 0 0 1821.312 20115.06 61276.4  
0.08 [� 102416     9:04.15 
 �C� 0 0 0 0 8713.521  
0.12 [� 106270     9:23.61 
 �C� 0 0 0 0 0  
0.2 [� 113740     9:32.04 
 �C� 0 0 0 0 0  

 

Table 5. Objective function values (Z) and constraint violation (Cv) costs under different realizations and 
uncertainty levels (robust approach versus deterministic approach) 

  



 
 
 
 

 
 
  
 
4-3- A sensitivity analysis for the performance of robust model versus deterministic 
model  
    To evaluate the robustness of solutions obtained by the proposed robust model as well as the ones 
achieved by the deterministic MILP model, the models are solved under a set of realizations, sorted 
ascendingly. Then, the quality of solutions obtained by bo
criteria: the average and standard deviation of constraint violation cost. To be more specific, a
mentioned earlier in Section 4.1, we carry out each test problem under a specific uncertainty level 
(i.e., the intersection between robust objective function and constraint violation curves). Accordingly, 
as reported in Tab. 6, we set the value of 
4, respectively. 
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Fig. 7 Constraint violation for test problem 1 
under different realizations and uncertainty 
levels; P 8 0.8 

Fig. 9 Constraint violation for test problem 3 
under different realizations and uncertainty 
levels; P 8 0.8 

75 

 

 

A sensitivity analysis for the performance of robust model versus deterministic 

To evaluate the robustness of solutions obtained by the proposed robust model as well as the ones 
achieved by the deterministic MILP model, the models are solved under a set of realizations, sorted 

quality of solutions obtained by both models is compared by employing two 
the average and standard deviation of constraint violation cost. To be more specific, a

.1, we carry out each test problem under a specific uncertainty level 
ction between robust objective function and constraint violation curves). Accordingly, 

as reported in Tab. 6, we set the value of � to 0.085, 0.08, 0.08 and 0.085 for test problems 1, 2, 3 and 
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under different realizations and uncertainty 
levels; P 8 0.8 
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Fig. 10 Constraint violation for test problem 4 
under different realizations and uncertainty 
levels; P 8 0.8 
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CPU time (s) Constraint violation cost Total network cost under realizations Realization  � O = 0.8 

P = 0.8 

 Deterministic  Robust     Deterministic  Robust       
Problem 
no. 

2.516 3172 0 18137.322 16237.374 1  

0.085 1 

2.023 4821.44 0 19786.762 16237.374 2 

1.915 6978.4 0 21943.722 16237.374 3 

1.931 8247.2 0 23212.522 16237.374 4 

2.541 9896.64 0 24861.962 16237.374 5 

2.164 10150.4 202.226 25115.72 16439.6 6 

3.5 10784.8 836.626 25750.12 17074 7 

2.114 11672.96 1724.786 26638.28 17962.16 8 

2.289 12180.48 2232.306 27145.8 18469.68 9 

2.257 12434.24 2486.06 27399.56 18723.43 10 

 
9033.856 748.2004 23999.18 16985.57  Average 

 
3169.913 1015.511 3169.912 1015.511  Standard deviation 

8.48 8014 0 38285.46 32693.17 1 

0.08 2 

8.015 12247.84 0 42519.3 32693.17 2 

7.504 17784.4 0 48055.86 32693.17 3 

10.187 21041.2 0 51312.66 32693.17 4 

7.913 25275.04 0 55546.5 32693.17 5 

8.067 25926.4 385.146 56197.86 33078.32 6 

9.01 27554.8 1873.546 57826.26 34566.72 7 

8.904 29834.56 3957.306 60106.02 36650.48 8 

9.244 31137.28 5148.026 61408.74 37841.2 9 

8.405 31794.656 5739.288 62066.11 38432.46 10 

 23061.02 1710.331 53332.47 34403.5  Average  

 8137.36 2345.399 8137.36 2345.399  Standard deviation 

1:47.118 18030.4 0 67908.24 53868.07 1 

0.08 3 

1:06.708 27406.208 0 77284.05 53868.07 2 

1:22.055 39666.88 0 89544.72 53868.07 3 

1:15.616 46879.04 0 96756.88 53868.07 4 

1:13.328 56254.848 0 106132.7 53868.07 5 

59.177 57697.28 0 107575.1 53868.07 6 

59.853 61303.36 3318.062 111181.2 57186.13 7 

1:34.98 66351.872 8242.252 116229.7 62110.32 8 

1:49.38 69236.736 11084.11 119114.6 64952.18 9 

1:20.97 70679.168 12505.036 120557 66373.1 10 

 51350.58 3514.946 101228.4 57383.01  Average  

 18018.54 5105.87 18018.54 5105.87  Standard deviation 

8:21.04 20453.1 0 115233.2 127308.4 1 

0.085 4 

8:38.17 30694.95 0 125475.1 127308.4 2 

8: .16 3 44426.91 0 139207 127308.4 3 

9:24.61 52504.52 0 147284.7 127308.4 4 

9:34.23 63005.43 0 157785.6 127308.4 5 

10:16.1 64620.95 0 159401.1 127308.4 6 

10:32.4 68659.76 0 163439.9 127308.4 7 

11:10.37 74314.1 9715.2 169094.2 137023.6 8 

11:42.1 77545.14 14015.203 172325.3 141323.6 9 

10:37.25 79160.67 16143.12 173940.8 143451.5 10 

Table 6. Objective function values and constraint violation costs under a number of realizations (robust 
strategy versus deterministic approach) 
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Table 6. Continued (Results) 

 Deterministic  Robust     Deterministic  Robust     

Average  57538.55 3987.352 152318.7 131295.8 
Standard deviation 20127.63 6603.211 20127.63 6603.211 

 

    As the results show, for all four test problems, the proposed robust model dominates over the 
deterministic one in terms of both the average and standard deviation of constraint violation cost, and 
this could happen for any other test problems without loss of generality. For the first test problem for 
instance, the average constraint violation cost of robust model is about $748which represents a high 
gap with that of the deterministic model ($9034). Moreover, it is obvious from Figs. 11-14 that for 
realizations 1-6, the robust model ends in no constraint violation cost while the deterministic model 
carries this cost under all 10 realizations for all test problems. Additionally, test problem four holds 
this pattern till realization 7, and it terminates the analysis while imposing an average robust violation 
cost about $3987, which is too little in comparison to $57538.55 caused by the deterministic model. 
Test problem 2 ends in an average robust violation cost of $1710.331 with a high difference from that 
of the deterministic model ($23061.02). Lastly, test problem three imposes an average robust 
violation cost about $3515 with considerably less standard deviation than the deterministic approach 
with an average violation cost about $51350 and remarkably large standard deviation. To sum up, in 
all test problems robust approach overcomes the deterministic one as it burdens lower total network 
cost in comparison to that of the deterministic approach.   
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Fig. 11 Constraint violation cost for test 
problem1   

Fig. 12 Constraint violation cost for test 
problem2 

Fig. 13 Constraint violation cost for test 
problem3 

Fig. 14 Constraint violation cost for test 
problem4 
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5- Concluding remarks and future research recommendations  
    This paper proposed an MILP model for blood PLTs production under integrated planning. The 
concerned network is composed of four echelons including collection, production/screening, 
inventory control and distribution as well. Two types of methods for PLTs production, called BC and 
PRP and known as whole blood- derived production methods are taken into account in the production 
echelon. The proposed model seeks to minimize the network overall cost. The amount of demands 
from hospitals, tainted with random uncertainty, is handled by using a robust programming approach. 
The performance of proposed model along with its solution technique was tested into several 
numerical examples. Eventually, valuable insights were extracted through computational results. To 
be more specific, domination of robust strategy over deterministic approach is proved by comparing 
the results. In other words, the proposed robust model absorbs unfavorable changes resulting from 
demand realizations and outperforms the deterministic model in terms of mean and standard deviation 
of constraint violation cost and thus the total network cost. 
Future investigation on this subject could be carried on in the following directions: 
• Developing the presented model to an MOMILP model by accounting for objectives such as 

minimizing maximum unsatisfied demand and maximizing blood freshness. 

• Considering uncertainty in other parameters including blood supply, etc. besides demand amounts 
and applying other approaches (e.g., stochastic programming, or fuzzy approach when facing 
fuzzy uncertainty)  

• Applying (meta) heuristic algorithms in case the problem comes in larger size for which the exact 
solvers may not be able to obtain a solution in reasonable length of time.  
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