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Abstract
In this paper, a hybrid meta-heuristic approagirigposed to optimize the mathematical
model of a system with mixed repairable and nomiraple components. In this
system, repairable and non-repairable componeetg@inected in series. Redundant
components and preventive maintenance strategeespplied for non-repairable and
repairable components, respectively. The problenfoisnulated as a bi-objective
mathematical programming model aiming to reactadeoff between system reliability
and cost. By hybridizing a standard multi-objectfire fly (MOFA) and differential
evolution (DE) algorithms, a powerful and efficieqtproach called MOF-DE algorithm
which has inherited the advantages of the two #lgos is introduced to solve this
problem. In order to achieve the best performantéM@F-DE, response surface
methodology (RSM) is used to set proper valuestligr algorithm parameters. To
evaluate the performance of the proposed algorithariopus numerical examples are
tested and results are compared with methods l8&AHI, MOPSO and standard
MOFA. From the experiments, it is concluded tha performance of the MOF-DE
algorithm is better than other methods at findingnpising solutions. Finally,
sensitivity analysis is carried out to investigaédhavior of the proposed algorithm.

Keywords: Meta-heuristics, Reliability, Firefly algorithm (BADifferential evolution
(DE), Multi-objective Optimization, Preventive Ma@mance

1- Introduction
Reliability is a criterion for measuring perfante of a system, and the larger and more complex a

system the greater the cost due to poor and ubkelierformance. Compensating for this cost can
sometimes be impossible; therefore, the optimimatiiability problem has been considered by many
researchers. There are three approaches to indteaseliability of a system, 1) optimizing the ®ms
component reliability by adjusting the process paeters, 2) the use of redundant components insserie
parallel or a combination, and 3) taking preventivaintenanceaction(Rigdon, 2008).Since the
components of a system are repairable or non-ipeir the two types of problems in the field of
reliability optimization are defined as redundaatipcation problems (RAP) and reliability centered
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maintenance (RCM). Most studies consider just drieeoproblems and provide a method to solve it. Fo
examples; Heungseob and Pansoo developed stochemstals to design and analyze the time-dependent
reliability of non-repairable systems with hetenogeus components using a structured Markov chain
(Heungseob & Pansoo, 2017). To analyze and comipereage and block replacement policies, a
numerical analysis technique was proposed by (Re&hahit-Kadi, Rahimi, & Jamshidi, 2016). In real
world, a system may compose of many components witlertain values of reliabilities. Soltani et al
have used a robust optimization approach to sdieeré¢dundancy allocation problem (RAP) in series
parallel systems with component mixing where uraety exists in components’ reliabilities.(Soltani,
Safari, & Sadjadi, 2015). Salmasnia et al (Saln@shineri, & Niaki, 2016)had proposed a method based
on the robust loss function approach to solve #mwumndancy allocation problem. Few studies have
examined both problems (RAP and RCM) simultaneoudigwever, in the real world systems are
generally composed of both repairable and non-raplei components (Zoulfaghari, Hamadani, &
Abouei Ardakan, 2014). In this study, a matheméatizadel of a system consisting of repairable ana-no
repairable components is developed. The time ofhieg inherent availability for all components is
considered to be less than the mission time sdadoititly function reaches a constant. Omitting this
limitation allows the mathematical model developgdVohammad Zadeh Doghahe and Sadjadi (2015)
(MohammadZadeh Dogahe & Sadjadi, 2015) to be usethis study. In their model cold and hot
strategies are considered for redundant components.

A wide range of optimization problems in varidigdds of engineering that we face today, are demp
and nonlinear. Hence, understanding and applyifegtdfe methods with reasonable cost and time, that
provides the opportunity to find solutions with gloquality, is important. The high computational tcos
and time in exact and approximate mathematical ogstland sometimes their disability in solving these
problems, has led to the emergence of new metl8idse nature is a good sample for optimization and
evolution, these methods are inspired by natureasa@dalled meta-heuristic methods. These metheds a
classified into three groups: Meta-heuristics basedene transfer, Meta-heuristics based on inierec
among individual insects and Meta-heuristics baseHdiological aspects of alive beings (Ruiz-Van&ye
Diaz-Parra, 2011). For example Genetic Algorithralihgs to the first category, Ant Colony, Honey
Bees and Firefly Algorithms are the second categoy Simulated Annealing, Tabu Search and Particle
Swarm Optimization Algorithms fall into the thirdtegory. Although these methods does not guarantee
an optimal answer, but based on evidence and exmeriin dealing with computational time and cost,
they are evaluated efficient and considering tlpeiwer and efficiency are widely applied in many
optimizations fields.

Since in order to increase system reliabilitgstc volume, weight and system down time due to
maintenance also increase, in most recent stuitiegroblem is considered as two or multi-objectige
that conflicting objectives such as system relihitotal cost, system downtime, volume and weigts
optimized simultaneously. These problems are caitegh as NP-Hard Problems (Chern, 1992) and to
solve them, Meta-heuristics method has been usethgxely. For example, Suman (Suman, 2003) has
used simulated annealing algorithm and Zhao etZzhbhd, Liu, & Dao, 2007)have used ant colony
algorithm to solve multi-objective reliability prtdms. In another study, Non-dominated Genetic
algorithm (NSGA) has been used for identifying Rarsolutions set of multi-objective redundancy
allocation problem (MORAP) and by using two appilues; pseudo-ranking scheme and data mining
clustering; the best solutions have been selecfedebision maker (Taboadaa, Baheranwalaa, & Coit,
2007). Also Kumar et al (Kumar, Izui, Yoshimura,Nishiwaki, 2009)has used two well-known genetic
algorithms known strength Pareto evolutionary genalgorithm (SPEA2) and NSGA-II to optimize
multi-level RAP. A penalty based cuckoo search (&l§prithm was presented to solve the reliability e
redundancy allocation problems (RRAP) with nonlinessource constraints by Garg (Garg, 2015).He et
al had developed basic artificial fish swarm altfoni by adding selection and crossover operators to
solve large-scalereliability-redundancy allocatmoblem(RRAP). (He, Hu, Ren, & Zhang, 2015)

In some studies, multi-objective problem is coreerto a single-objective problem using weighted or
penalty function technique and then are solved.nguat al(Huang, Qu, & Zuo, 2009) argue that
converting multi-objective problems to the singlejextive problems, reduce the number of optimal

60



solutions, therefore provided a multi-objectiveioyzation algorithm combined with niched Pareto GA
and a method of constraint handling, that solventinéti-objective problems without the need of pénal
parameter in three steps: 1) searching forfeasihitens2) choose the non-dominated solutionsand3)
maintaining the diversity of solutions. Liang and [Liang & Lo, 2010) in their study optimized
MORAP problem with the use of multi-objective vdnlia neighborhood search algorithm and a new
selection strategy based on the balance betweemsity and diversity. Also, another study of twagst
approach is used to solve MORAP (Li, Liao, & C@d09). Such that at the first step, multiple ohyject
evolutionary algorithm (MOEA) method to determihe tPareto set is applied and similar solutionsgusin
self-organizing map (SOM) are classified. In theosal step, the effectiveness of solutions in each
category is compared by data enveloping analyssA|D

Fire fly algorithm as a meta-heuristic optimiaatmethod was introduced in 2008 (Yang, 2010). The
algorithm was first presented for single-objectaral continues problems and in 2013 was developed to
multi-objective Firefly algorithm (Yang, 2013). Sadi et al. (2013) have used multi-objective firefly
algorithm to solve the manufacturing cell formatiproblem. Noting that the solution space of the
algorithm is continuous and problem variables anary, sigmoid function is used to convert continsio
to binary solutions. This algorithm is called deter firefly algorithm (DFA). Another study has used
DFA on multi-objective flow shop scheduling problémarichelvam, Prabaharan, & Yang, 2014). Li and
Ye(Li & Ye, 2012) have used MOFA for optimizing jphaction scheduling system with two objective of
make span and machines vacancy rate target funciandomi et al. (2011) have used FA for mixed
continuous and discrete structural optimizationbprms. RAP problem was solved using Firefly
algorithm that was modified by combining with chiasequences. They showed the advantages of FA by
comparing the results (Dos Santos Coelho, de ArdBatnert, & Mariani, 2011). Other studies over the
past five years using the FA algorithm have begieveed by Yang and He (2013).

Also some studies in recent years have beenucted to compare FA algorithm with other Meta-
heuristic algorithms, for example, Goel et al hased two algorithm inspired by particle intelligerfor
unconstrained problems optimization. They compated performance of bat algorithm and fire fly
algorithm and showed that FA has better resulta & (Goel, Gupta, & Goel, 2013). Chai-ead et al
used fire fly and bees algorithms to solve noisg-hieear optimization problems and demonstrated tha
in these problems FA will provide better resulth#Eead, Aungkulanon, & Luangpaiboon, 2011). Also
using neural network and FA the process of cutijlags with water jet has been modeled and optimized
(Amirabadi, Khalili, Foorginejad, & Ashoori, 2013).

This paper aims at using the new firefly impmbwgorithm to solve a bi-objective reliability frlem
of a combined system of repairable and non- relpi@raomponents using redundancy and maintenance
strategies. Our work is presented in five sectidriee first part is a review of the literature anasip
research. The second part presents the developdtemmatical model of the reliability problem, and
section three provides the conventional methodoloigynulti-objective firefly algorithms and the idea
derived from differential evolution (DE) algorithim described. In Section four numerical examplésgus
the proposed algorithm are solved and the restéts@npared with basic MOFA, non-dominated sorting
genetic algorithm (NSGA-Il) and multi objective pale swarm optimization (MOPSO). Finally, the
conclusions are presented.
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Nomenclature

Indices and Parameters: For repairable components:

1
i

i: indices for components of non-repairable subsystem c/: repair cost for component

ief{l,2,...,E} c?: replacement cost of componént

i: indices for components of repairable subsystem A;: failure rate of componehéfter repair
e{l,2,...,M} _ _ 2;: failure rate of componefst time zero and after
j: component type in non-repairable subsystem each replacement

je{,2,...,51 Amaxi: Maximum allowed failure rate for componént
S;: number of available types for componént nirate of increase in failure rate for repairable
t: time counter te{l,2,...,mT} component

T: system mission time A: failure rate of componeitat periodt

m: number of inspections during each time unit
Decision variables:

For non- repairable components: x;: number of components with type j used as
B,: available budget to purchase redundant .o4,ndant
components

V, W: maximum allowed volume and weight
w;;: weight of typg of component

vii: volume of typg of component

c;j- purchasing cost for tygeof component
Jij: failure rate of typg of component

v+ if repair is performed on subsystein periodt
equals 1; otherwise 0

v+ if componentiis replaced in period equals 1;
otherwise 0

2- Mathematical Formulation
In most research the system under study incladksr repairable or non-repairable componentsirbu
real world systems usually consist simultaneousligath repairable and non-repairable components. A
new mixed integer nonlinear model of a system Wwitth repairable and non-repairable components was
introduced by Mohammad Zadeh Doghahe and Sadj@dbj2 Our model was formulated according to
their model and the following assumptions.
* M + E subsystems consist of E non-repairable arrépdirable subsystem connected in series.
» In order to increase system reliability parallelurdant components are applied to non-repairable
parts and preventive maintenance actions are apjaiespairable parts.
« Parameters related to non-repairable componentading component failure rate, purchase
price, weight and volume are specific and certain.
* Redundant components strategy is active. Also, neaot components can be selected from
different types.
» A fixed amount of budget is available at time z&rgurchase redundant components. Also, the
total volume and weight of the non-repairable congmis are defined and limited.
» The repairable components failure rate increaséls min each period. The maximum allowed
failure rate for each period is known,(,,;), ifa componentfailure ratebecomes more than the
allowed value, it will be repaired or replacedtat first inspection.
* The repair and replacement cost of any componetietsrmined and failure rates are calculated
after each inspection according to equation (6).
» System mission time and the number of inspectiamsd each period are determined.

Thus, the developed mathematical model of the problith two objectives and seven constraints is
formulated as follows:
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Max R(t) = 1_[ 1- ﬁ( e hit 2 (A"t) ) X 1_[ e~ Gied” (1)

i€E j=1 ieM
Min C(6) = ZZ (ct X i + ¢ % Jie) @
Z Wi X < W (3)
] 1 i=1
Z' Z Ui}'.xi}'SV (4)
Jj=1 i=1
Yiet Ve <1 ~ vi=1,...M t=1,..,mT (5)
Aie = Mige—ny + 1) X (1= Gie + Vi) + Yie X A+ Yir X A4 vi=1,.,.M t=1,...mT (6)
Ait < AMaxi Vi = 1, ,M t = 1, ,mT (7)
E Si
szinCij SBO (8)
i=1j=1
Yit € {0’1}’ J,/it € {0,1}, xij € Z+ (9)

Equation (1) and (2) show the objectives of thebfmm, including maximizing reliability and
minimizing costs. Repairable and non-repairable mmments are connected in series so the relialoifity
the system is obtained by multiplying the relidhilbf these two sections. It is assumed that the-tio-
failure distribution function of non-repairable cpaments arérlang (4, k) (sum of working time of
components which have Exponential failure distiing) (Coit, 2001),(Azaron, Katagiri, Kato, &
Sakawa, 2005) and (Safari, 2012). Also, the rdltgiis calculated based on the distribution fuantiof

Weibull ( ) in the repairable section (Jardine & Buzacott,5)98Dieter, Pickard, & Bertsche, 2010)

and (De Castro & Cavalca, 2006). The cost funcisototal cost of components repair and replacement
during the system mission time, which should beimired.

Constraints (3 and 4) explain that the total weigihd volume of the assigned components to the non-
repairable components should not exceed allowedhtv@ind volume\{, W: maximum allowed volume
and weight Equation (5) states that components of the raplgrsection can be repaired or replaced
only at inspection points and the constraints aidipn (6) determine the failure rate of each conemd

in each period according to the type of actionl@egment, repair or no action). Failure rate isdéased

by n; if no repair or replacement action is taken ondtaponent at period t, and is changed i@nd

il'], if the component is repaired and replaced at gericespectively. Constraint (7) determines thpeup

limit of acceptable failure rate of each comporiard period. Constraint (8) ensures that the totat to
purchase redundant components in the non-repaisggiion does not exceed the available budget and
constraints, and (9) shows the range of problersidecvariables.

3- Multi-Objective Fire Fly Algorithm

In this section, first the methodology of basialti-objective fire fly algorithm (MOFA) is discged
then the improved algorithm, inheriting the supetjoof both algorithms MOFA and differential
evolution (DE), is offered.

3-1- Methodology

Swarm Intelligence is a new field of researdt golves complex problems in reality by inspirgugial
behavior models of particles. By complex problenes mean problems that are seeking a minimum or
maximum value of one or more objective functionsiD-dimensional space. Using traditional and exact
methods to solve these problems requires high ctatipnal cost and time. Thus, swarm intelligence
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algorithms were introduced to solve these problefwese algorithms find time and cost effective
solutions near the optimal solution. The fireflg@alithm is one of these methods.
The firefly algorithm was introduced by Xin-She Ygm (2007). This algorithm was inspired by the
flashing behavior of fireflies to attract each athereflies produce cold light with wavelengthserir 510
to 670 nanometers. The two main functions of flasheéhese insects are mating and attracting prighes.
fireflies also use flashing lights as a defensdreggredators. Yang introduced the firefly algomit by
considering the following rules:

v Fire flies attract each other regardless of thei s

v'With increasing distance, attractiveness will dasee

v The brightness of fire flies are defined accordimghe objective function.
Brightness (I) of each firefly at place x is definad (x) « f (x) and attractivenesg)(is defined with
respect to distance of firefiyfrom firefly j(r;;). In addition, the light intensity decreases witktahce

from the light source, generally shown in the foofii (r) = IS/T2 wherer is the distance from the
source and is intensity at the source. In order to avoid glagty at r = 0 this equation, based on the
Gaussian form, is approximated to equafiaherd,, is the original light intensity andis the fixed light
absorption coefficienty is a parameter describing the variation of theaeativeness and its value has a
great impact on the speed of convergence and thepéiformance. Attractiveness of a firefly, as
mentioned, is proportional to light intensity, stractiveness is calculated as equation (10):

B(r) =Boe™ (m=1) 10

Wherep,is attractiveness at= 0. The distance between fireflyand fireflyj atx; andx;, respectively,
based on the Cartesian distance is obtained asviall

d
rij = |lx — x| = Z(xi,k - xj,k)z 11
=1

Wherex;  is the k-th component ofx; in spatial coordinate. Regarding the type of tmebjem,
calculating distances can be defined differentiguétion (12) presents how the movement of firéfly
towards firefly j(more attractive) is calculated:

2
Xiv1 = x; + Boe VT (x; — x;) + ape; (12)

The second term of equation (12) is movementaulse of attraction and the third term is random
movement wherex, is a randomization parameter apdis the vector of random numbers with a
Gaussian or uniform distribution.

Yang has shown that this algorithm is more ¢iffecand more successful than other algorithms sisch
PSO and GA(Yang X. , Multiobjective Firefly Algdnin for Continuous Optimization, 2013).This
method was first designed for continuous probleloug, more recent studies have shown that it is also
very efficient in discrete problems(Sayadi, Hafem&db, & Jalali Naini, 2013). Simplicity in
understanding and implementation of the FA is tieaatage of this algorithm compared to other simila
algorithms. Below are some notes that represertig¢havior of FA (Yang, 2010) in special cases refkr
to:

v If B, = 0 random walk biased is converted to simple rand@kw

v Wheny — 0, it means that the attractiveness is constantvetyedistance and here FA becomes a
special case of the PSO algorithm.

v Wheny — o, that means the attractiveness is almost zerotlisdis similar to random search
method.

64



v Whenn - « (number of fireflies), and > 1 (number of iterations), then the algorithm FA will
close to the global optima.

v' Large values fomindicate rapid decrease of light intensity withrasing distance.

3-2- Efficient Hybrid MOF-DE Algorithm

The mathematical model in this study is formulateda bi-objective problem; therefore a multi-
objective firefly algorithm (MOFA) is applied. FAag developed into MOFA by Yang (Yang, 2013). In
his algorithm, the standard MOFA will be a randomidknvaround the best point if no new non-dominated
solutions are found after any iteration, meanfig = gt + a.ef where gt will be the best solution
found. In this way, new solutions are generatechgriias tried to present a more powerful approach fo
multi-objective optimization problems by developiMgFA.

We have used a differential evolution algoritfidA) to empower standard MOFA and to propose an
efficient hybrid MOF-DE algorithm. Our proposed @lighm uses crossover, mutation and selection
operators derived from DEA when MOFA is unsuccdssfiinding a new non-dominated solution in a
given iteration. The difference between the MOF{&posed algorithm and standard MOFA is that the
MOF-DE algorithm gives all solutions the same cleaotbeing selected to generate new solutions and
the optimal level is not a priority in the selectioperation. The advantage of this idea is that the
probability of getting trapped in a local optimum fieduced and with full random movements the
possibility of searching a wide range of solutigace is provided. Figure 1 shows the flowcharthef t
MOF-DE algorithm.
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Define objective function f; (x), f>(x), ..., fi ()
v

Generateinitial population of fireflies x; (i = 1:n)

v

Formulate light intensity |
v

Define absorption coefficient y; randomization parametera,, maximum
generation, crossover rate Cr(0,1) and mutation rate F (0,1)

t < Max
Generation

A\ 4

Sdlect 3fireflies randomly

v

Apply mutation operator X,,,,, =

— X, + F * (X, + X3)
i,j = 1:npop
¢ \ 4
Evaluate their approximations PF; and PF; to Apply Crossover base on Binomial
the Pareto front Crossover

PF; dominates No New position replaced with old one
PF;
Update and pass hon dominated
solution to next generation
Movefirefly i towardsj using (Eq.
12) A 4
¢ Updatet=t+1
New position replaced with old one L
Post results
End

Figure 1. Flow chart of the multi-objective firefly algorithm

Simplicity, speed of convergence, accuracy, rolassrand a small number of parameters are some
advantages of DEA that have attracted the attemfignany researchers (Das & Nagaratnam Suganthan,
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2011).This algorithm searches for the optimal glasdutions in four main stages, as presentedgaré
2.

v ]
Initialization Differ ence vector .
—_— ; e —_—
of Vectors based mutation Sres=sner Eelesien

Figure 2. DE Algorithm stages

First, the initial solution vector in D-dimensiorsgdace is randomly generated. In our proposeditigor

the initial solutions of DE are selected among sbhitions generated by MOFA. In the second stage,
three vectors are selected randomly from the ctipepulation; the difference between two vectors is
computed and then multiplied by F, a random nunibethe interval (0, 1) known as the control
parameter. The result is added to a third vectgualion (13) expresses this process.

X (13)

In order to enhance diversity of the solutioasoss over operation is utilized in the third stéwo
common methods that are used in the crossover toger@e exponential and binomial. The binomial
method is employed as a cross over operator inpoyposed MOF-DE algorithm. At this point, the
mutant solutions are combined with a target vechmsen among the existing solutions and new salutio
vectors are generated. Crossover rate (Cr) iswded as the control parameter similar to F. WeCset
based on the RSM result as explained in the netiose The last step is to determine whether tive ore
the pervious solution is chosen. If the new sofutiominates the previous one, it replaces it; etlser
the pervious solution is retained in the populationd other solutions are generated according to the
mentioned procedure.

Since the variables of our problem are binary aelger and MOFA and DE algorithms find solutions in
continuous space, round and sigmoid functions seel tio convert real number to the integer and pinar
solutions. In the next section some numerical examare employed, after setting algorithm pararseter
to compare the proposed algorithm (MOF-DE)with biasic multi-objective firefly algorithm (MOFA),
non-dominated sorting genetic algorithm (NSGA-Ifjdamulti objective particle swarm optimization
(MOPSO).

4- Numerical examples

In this section at first, the effective parametensalgorithms performance are first adjusted wiith t
help of RSM and then using some numerical examiblesproposed algorithm is compared to basic
MOFA, NSGA-Il and MOPSO algorithms. All algorithnase coded in MATLAB and the test problems
have been solved on a PC with 4 GB RAM/1.80 GHz CPU

4- 1- Tuning the Parameters

Identifying key algorithm parameters and settimgir proper values greatly affects the perforneaotc
the algorithms. Table 1 reviews how parameters wetén the literature. Response surface methoglolog
(RSM) was employed to determine the optimum valoe dur proposed algorithm. RSM is a
mathematical and statistical technique that exasthe relationship between one (or more) response
variables and the set of parameters (input vasabldluencing them. Using this method, the levafls
parameters that optimize the response variables wdentified (Najafi, Akhavan Niaki, & Shahsavar,
20009).

The main parameters of the MOF-DE algorithmramnber of population (Npop), maximum iteration
(Maxit), randomization parametex(), fixed light absorption coefficieny) and crossover rate (Cr). The
upper and lower values for each parameter as wetha appropriate design of experiments should be
determined before using the RSM. Central comp@site Box-Behnken are two common designs. Table
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2 shows the range of the input parameters that wpeeified based on the literature review. Design
Expert 7 software was used to run RSM. A centratpasite design (CCD) with 8 center points and face-
centered design was applied for the experimentetAo$ 50 test problems were run to generalize the
statistical results according to the design.

Table 1. FA parameters value in previous studies

Parameter Interval Range Efézcr:a?,?o':A Coelho Marichelva Goel Amirabadi Chai-ead Gandom
Distribute
uniformly/
Xo Generate Not Uniform Uniform Neural
(Initial pop) fireflies far significant distribution distribution network
from each
other
Npop [2, 200] Yes 15 10, 20, 50 10, 20, 40 27 40 n<50
Maxit [10, 3000] Yes 200 - 10 20 15
* uz)-y(t
—-1)x 0.01 L**
< [0,1] Yes [ 0,05,1 0.2 0.2 [0,1] o, 0.9¢
—a(t-1)]
Not
Bo [0, 1] significant 1 0,05,1 0 1 1 1
Yes *pgy(t L
y [0,1007] (speed ofthe —1) x[1 0.5,0.75,1 1 1 [0.01,100] 0 5‘/Z
convergence) —y(t—1)] ’ /Lz
Gﬁﬁﬁiﬁ: or Not [rand — rand - 1/,] Gaussian  [rand—  [rand—  [rand —
€ Lo 1 rand — trib it 1 1 1
i distribution significant /] 2! distribution /5] /5] /5]
*1<p,u, <4 ** | : length of design variables (uppexund- lower bound)

Table 2. Range of the parameters

Parameter Low High
Npop 10 100
Maxit 50 200
<, 0.1 0.9
y 1 3

Cr 0.5 0.9

Next the response variables should be determikgdnentioned in the literature, there are tweetia
to evaluate algorithm performance: i) Convergercéhe Pareto set and ii) Diversity of the produced
Pareto optimal set. Several metrics have been peapto measure these two criteria (Yu & Gen, 2010).
For example, the number of non-dominated solut{dH$S) is a convergence metric, and diversification
metric (DM) and maximum spread metric (MS) areeci#t of measuring diversity that are calculated in
equations (14) and (15).

N 1/2
DM = [Z max(|lx; = i) -
i=1 1
- Ly,
s (maxM £ —min!N| £i)? (15)
- Emax _ Fmin
m=1 m m

Where, ||x; — ;|| is the Euclidean distance between the non- doesihablutionx; and the non-
dominated solutiony;(Khalili-Damghani, Abtahi, & Tavana, 2013). Lettdvsand N denote number of
objective functions and number of the Pareto smhsti respectivelyy, is the m-th objective function
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value for i-th number of the Pareto solution, &t/ E™™is the maximum/ minimum value of the m-th
objective function.

In addition to the above metrics, computation tig@PU time) and the ranges of reliability and
cost(difference between the maximum and minimurgesferated solutions for objective functions), are
also key measures to evaluate algorithm performadeee NNS, CPU and solutions quality (SQ) are
considered as response variables for comparingrdift designs. SQ is the weighted average of the DM
MS, reliability (f*) and costf?) measures that are calculated as follows:

Wy X RDIDM + wy X RDIMS + w3 X RDIfl + Wy X RDIfZ
a w; +wy + w3+ wy
Wherewy, .., w,the weight of each metric and RDI are is the re¢atieviation index that is calculated in
equation (17). RDI is used to normalize raw datierrunning the algorithm on a variety of desigihe

obtained results are normalized using this indexhis studyw; values are considered 1, 1, 2, and 2,
respectively.

(16)

Designg,; — Best
RD] = | 9MNsol soll % 100 a7
|Worstg, — Bestgyl
Designg,; is the solution obtained for each design #&wdt,,, and Worst,,are the best and worst
solutions obtained among all designs, respectiRBi=0 indicates the best state and RDI=100 ind&at
the worst state. Some results of the RSM are preden Table 3.

Table 3. Results of the RSM experiments

Input variable Response variabl

Run Order Npop Maxit «, y Cr Time NNS SQ
1 10 20C 01 3 0.¢ 0.06482! 56 67.4156!
2 10 5C 0¢ 1 O0Ff 0.00177. 76 57.3531i
3 10 12k 0t 2 0.7 0.02629! 76 60.7357
4 55 12t 0t 2 0F 2.35811. 4C 15.7817:
5 10C 20C 01 1 O0.¢ 13.7950! 56 13.8711
6 10 20C 0¢ 3 0£f 0.0528t 64 49.31¢
7 55 12t 0t 2 0.7 2.44854. 56 49.9910!
8 55 12t 0t 1 0.7 2.43116! 32 22.6496.
9 10C 5C 0¢ 1 0.¢ 3.37559 68 49.1636!
10 55 12E 0 2 0.7 2.53493: 8 34.843:

After performing the experiments, analysis ofiaace (ANOVA) is used to fit an adequate model to
the experimental data and finally optimum valuestie algorithm parameters are identified according
the desired response values. Contour and surfate gisplay how a response variable relates to two
factors based on a model equation. For instanee¢dhtour plot in Figure 3-aindicates that the bijh
NNS is obtained when the Npop level is medium (aB&uto 65) and Maxit level is about 160. This area
appears in the green part of the plot. The surfdoe (Figure 3-b) also shows that the highest SQ is
obtained when the Npop level is medium and alphd level is high. Figure 3-c and Table 4 present the
optimum values for the algorithm parameters thavigie the highest desirability.
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Figure 3. Counter and surface plots, a) NNS vs. Npop and BxiSQ vs. Npop and Alpha,), c) Desirability vs.
Maxit and Npop

Table 4. Optimum value for parameters of M-DE and other algorithn

MOF-DE Value MOFA Value NSGA-II Value MOPSO Value
*Npop 60 Npop 50 Npop 10C Npop 50
*Maxit. 170 Maxit. 200 Maxit 20C Maxit 200
*oc, 0.9 o 0.25 **Mr 0.2 Alpha 0.1
*y 1 Bo 1 ***Cr 0.c R CL 2
*Cr 0.9 y 1 *RE O, 2

Bo 1 € [rand — 1/2]
€ [rand — 1/2]

* Resulted from RSM

** Mutation rate

***Cross over rate
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Figure 4. Comparing obtained results by proposed algoritht®k-DE) and standard MOFA

4-2- Evaluating Proposed Algorithm

In this section using a number of test probleting, proposed algorithm (MOF-DE) is compared with
three well-known algorithms, standard MOFA, NSGAaHd MOPSO. Table 4 shows the values of the
input parameters for each algorithms as determinyethe results of RSM and previous studies. First
10numerical examples are selected and run 30 tithes,average values of measures are calculated and
utilized to compare MOFA-DE with the standard MORgorithm. Figure 4 shows the proposed
algorithm uses more computational time than staht#®FA, but by comparing measures of NNS, DM,
MS, and also the objective function, we see thattdvides better results.

Next, a numerical example of the model preseirtexction 2, with input from Tables (5-7), is\sd
by the proposed approach with the three mentiongdrithms. We also used some data from
MohammadZadeh Dogahe & Sadjadi (2015).
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Table5. Component data for non-repairable section

Choice 1j=1) Choice 2jE€2) Choice 3jE3) Choice 4j€e4)
Aij K v Aij K y S Aij K v Aij k' v
| | | | | | | | | | | | | | |
1 00053 2 3 3 1 o.goo 1 4 4 1 0'804 2 2 2 2 0'208 3 5 5 2
2 00081 3 8 8 2 o.goo 1 é 10 1 o.g04 2 9 9 1 .
3 0013 3 7 7 2 0'811 3 5 5 3 0'212 3 6 6 1 0'204 2 4 4 a4
4 00074 2 5 5 3 0'212 3 6 6 4 0'306 2 4 4 5 B
5 00061 1 4 4 2 0'204 2 3 3 2 0'208 3 5 5 3 .
6 00043 3 5 5 3 0'205 3 4 4 3 0'202 2 5 5 2 o.goo 1 4 4 2
7 001056 3 7 7 4 0'204 2 8 8 4 0'803 2 9 9 5 .
8 00106 3 4 4 3 0'801 1 7 7 5 o.glo 3 6 6 6 .
9 00026 2 8 8 2 0'(1’00 1 9 9 3 0'804 1 7 7 a4 0'800 1 8 8 3
(1) 00141 3 6 6 4 0'306 2 5 5 4 0'801 1 6 6 5 .
i 00039 2 5 5 3 0'203 2 6 6 4 0'803 2 6 6 5 .
% 00023 1 4 4 2 0'307 2 5 5 3 O'gB 3 6 6 4 0'811 3 7 7 5
% 00021 2 5 5 2 o.gos 3 5 5 3 0'206 3 6 6 2 .
1 00110 3 4 6 4 0008 4 5 7 4 0003 » 6 6 5 0004 5 5 o ¢
4 3 5 3
Table 6. Component data for repairable section
Parameters i 1 2 3 4 5 6 7 8 9 10 11

Ao 00004 00004 00004 00004 00004 00004 00004008 000041 000041  0.00041

by 00005 00005 0.0005 0.0005 00005 0.0005 0.000800068 0.00058 0.00058  0.00058

1 00004 00004 0.004 00004 00004 0.004 0.0004008 0.000416 0.000416 0.000416

a 25 25 25 25 25 25 25 26 26 26 24

cil 3 3 3 3 3 3 3 3 3 3

c? 4 3 5 6 3.6 7 6 4 35 3 45

The system considered was comprised of 14 npainable (in 3 or 4 types) and 11 repairable
components connected in series. Table 5 includes afafailure rate, Erlang distribution parameters,
purchasing cost and operational cost, volume, agighw for each non-repairable component. Table 6
indicates data of failure rate, Weibull distributiparameters, and repair and replacement costs for
repairable components. In addition, Table 7 presepper bounds for some problem parameters.

Table 7. Upper bound of parameters
Parameter T M Amaxi B, w \ ;

Value 5 3 0.003 100 180 150 0.001
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Time NNS
90

9
70 7
50 5
30 3
MOFA MOF-DE NSGA-II MOPSO MOFA MOF-DE NSGA-II MOPSO
DM MS
50 0.15
40 ot Q/o\o/o
30 0.05
20 0
MOFA MOF-DE NSGAII MOPSO MOFA MOF-DE NSGA-II MOPSO
Cost Reliability
1795 0.997
1780 0.991
1765 0.985
1750 0.979
MOFA MOF-DE NSGA-II MOPSO MOFA MOF-DE NSGA-II MOPSO

Figureb. Obtained results for metrics and objectivesStandard MOFA, MOF-DENSGA-II and MOPSO

The example was run 50 times with each algorithththe resultsre presented in Figure 5. As can
seen, standard MOFA consumed less time than thes atborithms (Fig. -a). Regarding the NNS ai
the diversity of solutions (DM) the proposed altfum (MOF-DE) has the best performance compare
other methods, alsamong the Pareto solutions, the lowest cost artekigeliability is in MO-DE. On
the subject of measures MS, NS-Il and MOFA Pareto showed more uniform distributamong othe
responses.

The results of the MOBE algorithm are summarized in Tal8. The first four columns represethe
number and type of the redundant componentthe non-repairable sectioRor example the first ro
(i = 1) indicates thaa redundant component of the second and fourthis neede (j = 2,4). The last
columns of Table 8 present the selected maintenpoligesthat have been taken at each pein the
repairable section kere 0 means no preventive action is required am pleriod,and 1 and 2 indicates
repair and replacement, respecti. For example, for the first componemgpail should be done at
time:it = 4 and 14 andreplacement ¢ = 7,10 and 13.
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Table 8. Selected maintenance actions and redundancy canfmabtained from MOF-DE

Non-repairable components Repairable Components

; ] 1 2 3 4 ; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 0 1 1 o o o0 1 0o 0 2 0 O 2 0 0 2 1 0
2 1 1 1 0 2 o o o0 1 o0 2 0 O 1 0 0 2 0 0 2
3 1 1 1 0 3 o 0 2 o0 0 1 0 2 O 0 1 0 0 2 0
4 1 0 1 0 4 o o o0 1 o0 O0O 1 o0 o 2 0 2 0 0 1
5 1 0 1 0 5 o 2 2 2 0 0 2 0 O 1 1 1 0 0 1
6 0 0 1 0 6 o 1 0 o0 1 o0 0 2 O 0 1 0 0 2 1
7 1 1 0 0 7 o 1 0 o0 2 2 0 O0 1 0 0 2 2 0 0
8 1 0 1 0 8 o 1 0 o0 2 0 O 2 O 0 2 0 0 1 0
9 0 1 0 1 9 o 1 0 o0 2 0 O 1 O 0 2 0 0 1 0
10 1 0 0 0 10 o0 1 1 0o O 2 0 0 1 0 0 1 0 0 1
11 1 0 1 0 11 o 1 2 0 2 1 1 0 O 1 0 0 2 0 0
12 1 1 0 1

13 1 2 1 0

14 0 1 0 1

4- 3- Sensitivity Analysis

In addition to the parameters indicated in tablaifferent values ofm, equation (10),may also be
effective in the MOFA, while in all previous studien = 2. The parametem determine the relation
between the light intensity at each point and tiseadce to the light source. If the light sourca igoint,
light intensity decreases in proportion to the mseesquare of the distance from the source, thense
m = 2 and if it isanarea light souroe = 1. These are some facts in the real world; howewethe
virtual world they can be dismissed. Thus, by aitjgsthe values 0, 1, 2, 10and 100for the parameter
the proposed algorithm performance can be reviewédr running the MOF-DE algorithm20times, the
average value of some performance measures wasatelt. Table 9 shows the results.

It can be concluded from Table 9 that theredisignificant difference for time, MS, and meanueabf
reliability and cost at different values of paraemet; however, whemn is equal to zero, NNS and DM
are significantly different. This difference candmealyzed whem = 0 which indicates the fireflies are
not limited to closer brighter ones and resulta imider search space, therefore more Pareto sadutian
be found (NNS) and diversity also increases (DM).other measures show, high diversity does not
guarantee the optimal solution with higher qual@pmparison of two other valuesrof m = 2 showed
the better performance of the proposed algorithm

Table 9. Obtained results from different amounts of m by MDE

m 0 1 2 10 100
Time 100.6613 96.94699 100 101.4665 100.4711
NNS 18.8 9.4 12.2 11.8 10.6

DM 118.2076 78.07391 89.2 82.00488 87.5629
MS 0.126716 0.094055 0.091 0.101962 0.113238
Cost 4143.35 4175.088 4109 4117.573 4175.893
Reliability 0.947647 0.945185 0.953734 0.937291 0.947365

5- Conclusion

In this paper, an effective hybrid approach wasd to optimize a reliability problem in a system
composed of repairable and non-repairable compsnénthis system, two parts of repairable and non-
repairable components are connected in seriestoaindrease the reliability redundant componentseewe
used in the first part and preventive maintenantors were taken in the second part. A problenh wit
the two objectives of increasing overall systeniabglity and reducing maintenance costs taking into
account the constraints of weight, volume andahltiudget was formulated. The DE approach was used
to develop a standard MOFA and MOF-DE algorithme Tnoposed algorithm has benefited from the
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advantages of extensive search of the solutionesfmamd in DEA and that standard MOFA doesn't find
any new Pareto solution in the iteration of segmaitesses. Numbers of test problems were emplayed f
evaluating the performance of the proposed algorithith three famous algorithms, standard MOFA,
NSGA-Il and MOPSO.
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