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Abstract 
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical 
model of a system with mixed repairable and non-repairable components. In this 
system, repairable and non-repairable components are connected in series. Redundant 
components and preventive maintenance strategies are applied for non-repairable and 
repairable components, respectively. The problem is formulated as a bi-objective 
mathematical programming model aiming to reach a tradeoff between system reliability 
and cost. By hybridizing a standard multi-objective fire fly (MOFA) and differential 
evolution (DE) algorithms, a powerful and efficient approach called MOF-DE algorithm 
which has inherited the advantages of the two algorithms is introduced to solve this 
problem. In order to achieve the best performance of MOF-DE, response surface 
methodology (RSM) is used to set proper values for the algorithm parameters. To 
evaluate the performance of the proposed algorithm, various numerical examples are 
tested and results are compared with methods like NSGA-II, MOPSO and standard 
MOFA. From the experiments, it is concluded that the performance of the MOF-DE 
algorithm is better than other methods at finding promising solutions. Finally, 
sensitivity analysis is carried out to investigate behavior of the proposed algorithm.  
 
Keywords: Meta-heuristics, Reliability, Firefly algorithm (FA), Differential evolution 
(DE), Multi-objective Optimization, Preventive Maintenance 

 

1- Introduction 
   Reliability is a criterion for measuring performance of a system, and the larger and more complex a 
system the greater the cost due to poor and unreliable performance. Compensating for this cost can 
sometimes be impossible; therefore, the optimization reliability problem has been considered by many 
researchers. There are three approaches to increase the reliability of a system, 1) optimizing the system 
component reliability by adjusting the process parameters, 2) the use of redundant components in series, 
parallel or a combination, and 3) taking preventive maintenanceaction(Rigdon, 2008).Since the 
components of a system are repairable or non-repairable, the two types of problems in the field of 
reliability optimization are defined as redundancy allocation problems (RAP) and reliability centered  
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maintenance (RCM). Most studies consider just one of the problems and provide a method to solve it. For 
examples; Heungseob and Pansoo developed stochastic models to design and analyze the time-dependent 
reliability of non-repairable systems with heterogeneous components using a structured Markov chain 
(Heungseob & Pansoo, 2017). To analyze and compare the age and block replacement policies, a 
numerical analysis technique was proposed by (Rebaiaia, Ait-Kadi, Rahimi, & Jamshidi, 2016). In real 
world, a system may compose of many components with uncertain values of reliabilities. Soltani et al 
have used a robust optimization approach to solve the redundancy allocation problem (RAP) in series 
parallel systems with component mixing where uncertainty exists in components’ reliabilities.(Soltani, 
Safari, & Sadjadi, 2015). Salmasnia et al (Salmasnia, Ameri, & Niaki, 2016)had proposed a method based 
on the robust loss function approach to solve the redundancy allocation problem. Few studies have 
examined both problems (RAP and RCM) simultaneously. However, in the real world systems are 
generally composed of both repairable and non-repairable components (Zoulfaghari, Hamadani, & 
Abouei Ardakan, 2014). In this study, a mathematical model of a system consisting of repairable and non-
repairable components is developed. The time of reaching inherent availability for all components is 
considered to be less than the mission time so availability function reaches a constant. Omitting this 
limitation allows the mathematical model developed by Mohammad Zadeh Doghahe and Sadjadi (2015) 
(MohammadZadeh Dogahe & Sadjadi, 2015) to be used in this study. In their model cold and hot 
strategies are considered for redundant components.  
   A wide range of optimization problems in various fields of engineering that we face today, are complex 
and nonlinear. Hence, understanding and applying effective methods with reasonable cost and time, that 
provides the opportunity to find solutions with good quality, is important. The high computational cost 
and time in exact and approximate mathematical methods and sometimes their disability in solving these 
problems, has led to the emergence of new methods. Since nature is a good sample for optimization and 
evolution, these methods are inspired by nature and are called meta-heuristic methods. These methods are 
classified into three groups: Meta-heuristics based on gene transfer, Meta-heuristics based on interactions 
among individual insects and Meta-heuristics based on biological aspects of alive beings (Ruiz-Vanoye & 
Díaz-Parra, 2011). For example Genetic Algorithms belongs to the first category, Ant Colony, Honey 
Bees and Firefly Algorithms are the second category and Simulated Annealing, Tabu Search and Particle 
Swarm Optimization Algorithms fall into the third category. Although these methods does not guarantee 
an optimal answer, but based on evidence and experience in dealing with computational time and cost, 
they are evaluated efficient and considering their power and efficiency are widely applied in many 
optimizations fields. 
   Since in order to increase system reliability, cost, volume, weight and system down time due to 
maintenance also increase, in most recent studies, the problem is considered as two or multi-objective so 
that conflicting objectives such as system reliability, total cost, system downtime, volume and weight are 
optimized simultaneously. These problems are categorized as NP-Hard Problems (Chern, 1992) and to 
solve them, Meta-heuristics method has been used extensively. For example, Suman (Suman, 2003) has 
used simulated annealing algorithm and Zhao et al (Zhao, Liu, & Dao, 2007)have used ant colony 
algorithm to solve multi-objective reliability problems. In another study, Non-dominated Genetic 
algorithm (NSGA) has been used for identifying Pareto solutions set of multi-objective redundancy 
allocation problem (MORAP) and by using two approaches, pseudo-ranking scheme and data mining 
clustering; the best solutions have been selected by decision maker (Taboadaa, Baheranwalaa, & Coit, 
2007). Also Kumar et al (Kumar, Izui, Yoshimura, & Nishiwaki, 2009)has used two well-known genetic 
algorithms known strength Pareto evolutionary genetic algorithm (SPEA2) and NSGA-II to optimize 
multi-level RAP. A penalty based cuckoo search (CS) algorithm was presented to solve the reliability e 
redundancy allocation problems (RRAP) with nonlinear resource constraints by Garg (Garg, 2015).He et 
al had developed basic artificial fish swarm algorithm by adding selection and crossover operators to 
solve large-scalereliability-redundancy allocation problem(RRAP). (He, Hu, Ren, & Zhang, 2015) 
In some studies, multi-objective problem is converted to a single-objective problem using weighted or 
penalty function technique and then are solved. Huang et al(Huang, Qu, & Zuo, 2009) argue that 
converting multi-objective problems to the single objective problems, reduce the number of optimal 



61 

 

solutions, therefore provided a multi-objective optimization algorithm combined with niched Pareto GA 
and a method of constraint handling, that solve the multi-objective problems without the need of penalty 
parameter in three steps: 1) searching forfeasiblesolutions2) choose the non-dominated solutionsand3) 
maintaining the diversity of solutions. Liang and Lo (Liang & Lo, 2010) in their study optimized 
MORAP problem with the use of multi-objective variable neighborhood search algorithm and a new 
selection strategy based on the balance between intensity and diversity. Also, another study of two-stage 
approach is used to solve MORAP (Li, Liao, & Coit, 2009). Such that at the first step, multiple objective 
evolutionary algorithm (MOEA) method to determine the Pareto set is applied and similar solutions using 
self-organizing map (SOM) are classified. In the second step, the effectiveness of solutions in each 
category is compared by data enveloping analysis (DEA). 
   Fire fly algorithm as a meta-heuristic optimization method was introduced in 2008 (Yang, 2010). The 
algorithm was first presented for single-objective and continues problems and in 2013 was developed to 
multi-objective Firefly algorithm (Yang, 2013). Sayadi et al. (2013) have used multi-objective firefly 
algorithm to solve the manufacturing cell formation problem. Noting that the solution space of the 
algorithm is continuous and problem variables are binary, sigmoid function is used to convert continuous 
to binary solutions. This algorithm is called discrete firefly algorithm (DFA). Another study has used 
DFA on multi-objective flow shop scheduling problem (Marichelvam, Prabaharan, & Yang, 2014). Li and 
Ye(Li & Ye, 2012) have used MOFA for optimizing production scheduling system with two objective of 
make span and machines vacancy rate target function. Gandomi et al. (2011) have used FA for mixed 
continuous and discrete structural optimization problems. RAP problem was solved using Firefly 
algorithm that was modified by combining with chaotic sequences. They showed the advantages of FA by 
comparing the results (Dos Santos Coelho, de Andrade Bernert, & Mariani, 2011). Other studies over the 
past five years using the FA algorithm have been reviewed by Yang and He (2013). 
   Also some studies in recent years have been conducted to compare FA algorithm with other Meta-
heuristic algorithms, for example, Goel et al have used two algorithm inspired by particle intelligence for 
unconstrained problems optimization. They compared the performance of bat algorithm and fire fly 
algorithm and showed that FA has better results than BA (Goel, Gupta, & Goel, 2013). Chai-ead et al 
used fire fly and bees algorithms to solve noisy non-linear optimization problems and demonstrated that 
in these problems FA will provide better results (Chai-ead, Aungkulanon, & Luangpaiboon, 2011). Also 
using neural network and FA the process of cutting glass with water jet has been modeled and optimized 
(Amirabadi, Khalili, Foorginejad, & Ashoori, 2013). 
   This paper aims at using the new firefly improved algorithm to solve a bi-objective reliability problem 
of a combined system of repairable and non- repairable components using redundancy and maintenance 
strategies. Our work is presented in five sections. The first part is a review of the literature and past 
research. The second part presents the developed mathematical model of the reliability problem, and 
section three provides the conventional methodology of multi-objective firefly algorithms and the idea 
derived from differential evolution (DE) algorithm is described. In Section four numerical examples using 
the proposed algorithm are solved and the results are compared with basic MOFA, non-dominated sorting 
genetic algorithm (NSGA-II) and multi objective particle swarm optimization (MOPSO). Finally, the 
conclusions are presented. 
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Nomenclature 
 

Indices and Parameters: 
 �: indices for components of non-repairable subsystem �	є	{1, 2, . . . , 	} �́: indices for components of repairable subsystem �	́	є	{1, 2, . . . , 
} �: component type in non-repairable subsystem �	є	{1, 2, . . . , ��} ��:  number of available types for component � �: time counter �	є	{1, 2, . . . , ��} 
T: system mission time 
m: number of inspections during each time unit 
 
For non- repairable components: ��: available budget to purchase redundant 
components 
V, W: maximum allowed volume and weight  
wij: weight of type j of component i 
vij: volume of type j of component i ���: purchasing cost for type j of component i 
λij: failure rate of type j of component i 

For repairable components: 
 ��́�: repair cost for component �́ ��́�: replacement cost of component �́ �̅�́: failure rate of component�́ after repair  �̿�́: failure rate of component�́at time zero and after 
each replacement ��� �́: maximum allowed failure rate for component �́ !�́:rate of increase in failure rate for repairable 
component �́ �" �#" : failure rate of component �́ at period t 
 
Decision variables: $%&: number of components i with type j used as 
redundant  
 '�́#: if repair is performed on subsystem�́ in period t 
equals 1; otherwise 0 '́�́#: if component �́is replaced in period t equals 1; 
otherwise 0  

 
2- Mathematical Formulation 
   In most research the system under study includes either repairable or non-repairable components, but in 
real world systems usually consist simultaneously of both repairable and non-repairable components. A 
new mixed integer nonlinear model of a system with both repairable and non-repairable components was 
introduced by Mohammad Zadeh Doghahe and Sadjadi (2015). Our model was formulated according to 
their model and the following assumptions.  

• M + E subsystems consist of E non-repairable and M repairable subsystem connected in series.  
• In order to increase system reliability parallel redundant components are applied to non-repairable 
parts and preventive maintenance actions are applied to repairable parts. 
• Parameters related to non-repairable components including component failure rate, purchase 
price, weight and volume are specific and certain. 
• Redundant components strategy is active. Also, redundant components can be selected from 
different types.  
• A fixed amount of budget is available at time zero to purchase redundant components. Also, the 
total volume and weight of the non-repairable components are defined and limited.  
• The repairable components failure rate increases with !� in each period. The maximum allowed 
failure rate for each period is known (��� �), ifa componentfailure ratebecomes more than the 
allowed value, it will be repaired or replaced at the first inspection.  
• The repair and replacement cost of any component is determined and failure rates are calculated 
after each inspection according to equation (6).  
• System mission time and the number of inspections during each period are determined. 

 
Thus, the developed mathematical model of the problem with two objectives and seven constraints is 
formulated as follows:  
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'�́# ∈ {0,1},									'́�́# ∈ {0,1},										$�� ∈ UV (9) 
 
   Equation (1) and (2) show the objectives of the problem, including maximizing reliability and 
minimizing costs. Repairable and non-repairable components are connected in series so the reliability of 
the system is obtained by multiplying the reliability of these two sections. It is assumed that the time-to-
failure distribution function of non-repairable components are 	W:(GX	*�, Y+ (sum of working time of 
components which have Exponential failure distributions) (Coit, 2001),(Azaron, Katagiri, Kato, & 
Sakawa, 2005) and (Safari, 2012). Also, the reliability is calculated based on the distribution function of O1�Z[::	 \], �3^ in the repairable section (Jardine & Buzacott, 1985), (Dieter, Pickard, & Bertsche, 2010) 

and (De Castro & Cavalca, 2006). The cost function is total cost of components repair and replacement 
during the system mission time, which should be minimized.  
Constraints (3 and 4) explain that the total weight and volume of the assigned components to the non-
repairable components should not exceed allowed weight and volume (V, W: maximum allowed volume 
and weight). Equation (5) states that components of the repairable section can be repaired or replaced 
only at inspection points and the constraints of Equation (6) determine the failure rate of each component 
in each period according to the type of action (replacement, repair or no action). Failure rate is increased 
by !�́ if no repair or replacement action is taken on the component at period t, and is changed into �̅�9"  and �̿�_́"  if the component is repaired and replaced at period t, respectively. Constraint (7) determines the upper 
limit of acceptable failure rate of each component in a period. Constraint (8) ensures that the total cost to 
purchase redundant components in the non-repairable section does not exceed the available budget and 
constraints, and (9) shows the range of problem decision variables. 
 

3- Multi-Objective Fire Fly Algorithm 
   In this section, first the methodology of basic multi-objective fire fly algorithm (MOFA) is discussed 
then the improved algorithm, inheriting the superiority of both algorithms MOFA and differential 
evolution (DE), is offered. 
 
3-1- Methodology 
   Swarm Intelligence is a new field of research that solves complex problems in reality by inspiring social 
behavior models of particles. By complex problems we mean problems that are seeking a minimum or 
maximum value of one or more objective functions in a D-dimensional space. Using traditional and exact 
methods to solve these problems requires high computational cost and time. Thus, swarm intelligence 
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algorithms were introduced to solve these problems. These algorithms find time and cost effective 
solutions near the optimal solution. The firefly algorithm is one of these methods. 
The firefly algorithm was introduced by Xin-She Yangin (2007). This algorithm was inspired by the 
flashing behavior of fireflies to attract each other. Fireflies produce cold light with wavelengths from 510 
to 670 nanometers. The two main functions of flashes in these insects are mating and attracting preys. The 
fireflies also use flashing lights as a defense against predators. Yang introduced the firefly algorithm by 
considering the following rules: 

� Fire flies attract each other regardless of their sex. 
� With increasing distance, attractiveness will decrease.  
� The brightness of fire flies are defined according to the objective function.  

Brightness (I) of each firefly at place x is defined as̀ 	*$+ ∝ 	b	*$+ and attractiveness (β) is defined with 
respect to distance of firefly i from firefly j*W��+. In addition, the light intensity decreases with distance 

from the light source, generally shown in the form of `	*W+ 	= 	 `c W	�d  where r is the distance from the 

source and ̀c is intensity at the source. In order to avoid singularity at r = 0 this equation, based on the 
Gaussian form, is approximated to equation `wherè� is the original light intensity and e is the fixed light 
absorption coefficient. e is a parameter describing the variation of the attractiveness and its value has a 
great impact on the speed of convergence and the FA performance. Attractiveness of a firefly, as 
mentioned, is proportional to light intensity, so attractiveness is calculated as equation (10): 

 
Where f�is attractiveness at r = 0. The distance between firefly i and firefly j at $� and $�, respectively, 
based on the Cartesian distance is obtained as follows:  

)11(  W�� = g$� − $�g = h67$�,< − $�,<8�i
<=�  

Where	$�,< is the Y-th component of $% in spatial coordinate. Regarding the type of the problem, 
calculating distances can be defined differently. Equation (12) presents how the movement of firefly i 
towards firefly j (more attractive) is calculated: 

(12)  $�V� = $� +f�12jk45l 7$� − $�8 + ]�m� 
   The second term of equation (12) is movement because of attraction and the third term is random 
movement where ]� is a randomization parameter and n% is the vector of random numbers with a 
Gaussian or uniform distribution.  
   Yang has shown that this algorithm is more effective and more successful than other algorithms such as 
PSO and GA(Yang X. , Multiobjective Firefly Algorithm for Continuous Optimization, 2013).This 
method was first designed for continuous problems, but more recent studies have shown that it is also 
very efficient in discrete problems(Sayadi, Hafezalkotob, & Jalali Naini, 2013). Simplicity in 
understanding and implementation of the FA is the advantage of this algorithm compared to other similar 
algorithms. Below are some notes that represent the behavior of FA (Yang, 2010) in special cases referred 
to: 
 
� If f� = 0 random walk biased is converted to simple random walk.  
� When	γ → 0, it means that the attractiveness is constant at every distance and here FA becomes a 
special case of the PSO algorithm.  
� When γ → ∞, that means the attractiveness is almost zero and this is similar to random search 
method.  

)10(  f*W+ = f�12jkq*� ≥ 1+ 
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� When G → ∞ (number of fireflies), and � ≫ 1	(number of iterations), then the algorithm FA will 
close to the global optima.  
� Large values for m indicate rapid decrease of light intensity with increasing distance. 

 
3-2- Efficient Hybrid MOF-DE Algorithm 
   The mathematical model in this study is formulated as a bi-objective problem; therefore a multi-
objective firefly algorithm (MOFA) is applied. FA was developed into MOFA by Yang (Yang, 2013). In 
his algorithm, the standard MOFA will be a random walk around the best point if no new non-dominated 
solutions are found after any iteration, meaning$�#V� = X∗# + ]#m�# where X∗# will be the best solution 
found. In this way, new solutions are generated. Yung has tried to present a more powerful approach for 
multi-objective optimization problems by developing MOFA.  
   We have used a differential evolution algorithm (DEA) to empower standard MOFA and to propose an 
efficient hybrid MOF-DE algorithm. Our proposed algorithm uses crossover, mutation and selection 
operators derived from DEA when MOFA is unsuccessful in finding a new non-dominated solution in a 
given iteration. The difference between the MOF-DE proposed algorithm and standard MOFA is that the 
MOF-DE algorithm gives all solutions the same chance of being selected to generate new solutions and 
the optimal level is not a priority in the selection operation. The advantage of this idea is that the 
probability of getting trapped in a local optimum is reduced and with full random movements the 
possibility of searching a wide range of solution space is provided. Figure 1 shows the flowchart of the 
MOF-DE algorithm. 
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   Simplicity, speed of convergence, accuracy, robustness and a small number of parameters are some 
advantages of DEA that have attracted the attention of many researchers (Das & Nagaratnam Suganthan, 

End 
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Apply mutation operator uvwx =u� + y ∗ *u� + uz+ 
Apply Crossover base on Binomial 

Crossover 

Start 

New position replaced with old one 

Define objective function b�*$+, b�*$+, … , b<*$+ 
Generate initial population of fireflies  $�*� = 1: G+ 

Formulate light intensity I 

Define absorption coefficient γ; randomization parameter]�, maximum 
generation, crossover rate Cr(0,1) and mutation rate F (0,1) 

�, � = 1: Gpop 

t < Max 
Generation 

Evaluate their approximations PFi and PFj to 
the Pareto front 

Move firefly i towards j using (Eq. 
12) 

PFj dominates 
PFi 

New position replaced with old one 

No 

No 

Select 3 fireflies randomly 

Yes 

Update t=t+1 

Update and pass non dominated 
solution to next generation 

Post results  

Figure 1. Flow chart of the multi-objective firefly algorithm 
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2011).This algorithm searches for the optimal global solutions in four main stages, as presented in figure 
2.  

Initialization 
of  Vectors

Difference vector 
based mutation

Crossover Selection

 

Figure 2. DE Algorithm stages 
 
First, the initial solution vector in D-dimensional space is randomly generated. In our proposed algorithm, 
the initial solutions of DE are selected among the solutions generated by MOFA. In the second stage, 
three vectors are selected randomly from the current population; the difference between two vectors is 
computed and then multiplied by F, a random number in the interval (0, 1) known as the control 
parameter. The result is added to a third vector. Equation (13) expresses this process. 

(13) u|
   In order to enhance diversity of the solutions, across over operation is utilized in the third step. Two 
common methods that are used in the crossover operation are exponential and binomial. The binomial 
method is employed as a cross over operator in our proposed MOF-DE algorithm. At this point, the 
mutant solutions are combined with a target vector chosen among the existing solutions and new solution 
vectors are generated. Crossover rate (Cr) is also used as the control parameter similar to F. We set Cr 
based on the RSM result as explained in the next section. The last step is to determine whether the new or 
the pervious solution is chosen. If the new solution dominates the previous one, it replaces it; otherwise 
the pervious solution is retained in the population and other solutions are generated according to the 
mentioned procedure. 
Since the variables of our problem are binary and integer and MOFA and DE algorithms find solutions in 
continuous space, round and sigmoid functions are used to convert real number to the integer and binary 
solutions. In the next section some numerical examples are employed, after setting algorithm parameters, 
to compare the proposed algorithm (MOF-DE)with the basic multi-objective firefly algorithm (MOFA), 
non-dominated sorting genetic algorithm (NSGA-II) and multi objective particle swarm optimization 
(MOPSO). 
 
4- Numerical examples 
   In this section at first, the effective parameters on algorithms performance are first adjusted with the 
help of RSM and then using some numerical examples the proposed algorithm is compared to basic 
MOFA, NSGA-II and MOPSO algorithms. All algorithms are coded in MATLAB and the test problems 
have been solved on a PC with 4 GB RAM/1.80 GHz CPU. 
 
4- 1- Tuning the Parameters 
   Identifying key algorithm parameters and setting their proper values greatly affects the performance of 
the algorithms. Table 1 reviews how parameters were set in the literature. Response surface methodology 
(RSM) was employed to determine the optimum value for our proposed algorithm. RSM is a 
mathematical and statistical technique that examines the relationship between one (or more) response 
variables and the set of parameters (input variables) influencing them. Using this method, the levels of 
parameters that optimize the response variables were identified (Najafi, Akhavan Niaki, & Shahsavar, 
2009). 
   The main parameters of the MOF-DE algorithm are number of population (Npop), maximum iteration 
(Maxit), randomization parameter (∝�), fixed light absorption coefficient (γ) and crossover rate (Cr). The 
upper and lower values for each parameter as well as the appropriate design of experiments should be 
determined before using the RSM. Central composite and Box-Behnken are two common designs. Table 
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2 shows the range of the input parameters that were specified based on the literature review. Design 
Expert 7 software was used to run RSM. A central composite design (CCD) with 8 center points and face-
centered design was applied for the experiment. A set of 50 test problems were run to generalize the 
statistical results according to the design. 
 

Table 1. FA parameters value in previous studies 

Gandom  
 

Chai-ead 
 

 
Amirabadi  

 

 
Goel  

 
Marichelva  

 
Coelho 

  

Effect on FA 
Behavior  

Interval Range Parameter 

- - 
Neural 
network  

- 
Uniform 

distribution 
Uniform 

distribution 
Not 

significant 

Distribute 
uniformly/ 
Generate 

fireflies far 
from each 

other 

X0 

(Initial pop) 

n<50 40 27 10, 20, 40 10, 20, 50 15 Yes [2, 200] Npop 

 15 20 10 - 200 Yes [10, 3000] Maxit 

0.01	L** ∝� 0.9# [0,1] 0.2 0.2 0, 0.5, 1 

∗ ��. e*�− 1+ × �1− ]	*� − 1+� Yes �0, 1� ∝� 
1 1 1 0 0, 0.5, 1 1 

Not 
significant 

[0, 1] f� 1 √�d  0.5 ��d  
[0.01,100] 1 1 0.5, 0.75, 1 

∗ ��. e*�− 1+ × �1− e*� − 1+� 
Yes 

(speed of the 
convergence) 

�0,100�� e 

�W(G� −1 2d ] 
�W(G� −1 2d ] 

�W(G� −1 2d ] 
Gaussian 

distribution �W(G� − 1 2d ] 
�W(G� −1 2d ] 

Not 
significant 

Gaussian or 
uniform 

distribution 
m� 

*1 ≤ ��, �� ≤ 4          ** L: length of design variables (upper bound- lower bound) 
 

  

Table 2. Range of the parameters 
High Low Parameter 
100 10 Npop 
200 50 Maxit 
0.9 0.1 ∝� 
3 1 e 

0.9 0.5 Cr 
 
   Next the response variables should be determined. As mentioned in the literature, there are two criteria 
to evaluate algorithm performance: i) Convergence to the Pareto set and ii) Diversity of the produced 
Pareto optimal set. Several metrics have been proposed to measure these two criteria (Yu & Gen, 2010). 
For example, the number of non-dominated solutions (NNS) is a convergence metric, and diversification 
metric (DM) and maximum spread metric (MS) are criteria of measuring diversity that are calculated in 
equations (14) and (15).  

�
 = �6�($*‖$� − '�‖+�
�=� �� �d

 (14) 


� = �6 *�($�=�|�| bJ� −��G�=�|�| bJ� +�yJJ� − yJJ�v
�

J=� �� �d
 (15) 

Where, ‖$� − '�‖ is the Euclidean distance between the non- dominated solution $� and the non-
dominated solution 	'�(Khalili-Damghani, Abtahi, & Tavana, 2013). Letters M and N denote number of 
objective functions and number of the Pareto solutions, respectively,bJ�  is the m-th objective function 
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value for i-th number of the Pareto solution, and yJJ� /	yJJ�vis the maximum/ minimum value of the m-th 
objective function. 
In addition to the above metrics, computation time (CPU time) and the ranges of reliability and 
cost(difference between the maximum and minimum of generated solutions for objective functions), are 
also key measures to evaluate algorithm performance. Here NNS, CPU and solutions quality (SQ) are 
considered as response variables for comparing different designs. SQ is the weighted average of the DM, 
MS, reliability (b�) and cost (b�) measures that are calculated as follows: 

�� = M� × ��`�� +M� × ��`�? +Mz × �� �̀� +M� × ��`�lM� +M� + Mz + M�  (16) 

Where M�, . . , M�the weight of each metric and RDI are is the relative deviation index that is calculated in 
equation (17). RDI is used to normalize raw data. After running the algorithm on a variety of designs, the 
obtained results are normalized using this index. In this study, M� values are considered 1, 1, 2, and 2, 
respectively. 

(17)  ��` = |�1��XGc�9 − �1��c�9||O�W��c�9 − �1��c�9| × 100 �1��XGc�9 is the solution obtained for each design and �1��c�9 and O�W��c�9are the best and worst 
solutions obtained among all designs, respectively. RDI=0 indicates the best state and RDI=100 indicates 
the worst state. Some results of the RSM are presented in Table 3. 
 

Table 3. Results of the RSM experiments 
  Input variables  Response variables 

Run Order  Npop Maxit ∝� e Cr  Time NNS SQ 
1  10 200 0.1 3 0.9  0.064825 56 67.41568 
2  10 50 0.9 1 0.5  0.001771 76 57.35318 
3  10 125 0.5 2 0.7  0.026299 76 60.73577 
4  55 125 0.5 2 0.5  2.358113 40 15.78178 
5  100 200 0.1 1 0.9  13.79505 56 13.87116 
6  10 200 0.9 3 0.5  0.05288 64 49.319 
7  55 125 0.5 2 0.7  2.448544 56 49.99109 
8  55 125 0.5 1 0.7  2.431169 32 22.64962 
9  100 50 0.9 1 0.9  3.375597 68 49.16369 
10  55 125 0.5 2 0.7  2.534933 8 34.8434 

 
   After performing the experiments, analysis of variance (ANOVA) is used to fit an adequate model to 
the experimental data and finally optimum values for the algorithm parameters are identified according to 
the desired response values. Contour and surface plots display how a response variable relates to two 
factors based on a model equation. For instance, the contour plot in Figure 3-aindicates that the highest 
NNS is obtained when the Npop level is medium (about 55 to 65) and Maxit level is about 160. This area 
appears in the green part of the plot. The surface plot (Figure 3-b) also shows that the highest SQ is 
obtained when the Npop level is medium and alpha (]�) level is high. Figure 3-c and Table 4 present the 
optimum values for the algorithm parameters that provide the highest desirability. 
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Figure 3. Counter and surface plots, a) NNS vs. Npop and Maxit, b) SQ vs. Npop and Alpha (
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b) 

Counter and surface plots, a) NNS vs. Npop and Maxit, b) SQ vs. Npop and Alpha (
Maxit and Npop 

Optimum value for parameters of MOF-DE and other algorithms

** Mutation rate     ***Cross over rate     ****Cognitive and social learning factors

ValueNSGA-II  Value MOFA  
100Npop  50 Npop  
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Counter and surface plots, a) NNS vs. Npop and Maxit, b) SQ vs. Npop and Alpha (]�), c) Desirability vs. 

DE and other algorithms 

***Cross over rate     ****Cognitive and social learning factors 
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Figure 4. Comparing obtained results by proposed algorithm (MOF-DE) and standard MOFA 
 
 
4-2- Evaluating Proposed Algorithm 
   In this section using a number of test problems, the proposed algorithm (MOF-DE) is compared with 
three well-known algorithms, standard MOFA, NSGA-II and MOPSO. Table 4 shows the values of the 
input parameters for each algorithms as determined by the results of RSM and previous studies.   First, 
10numerical examples are selected and run 30 times, then average values of measures are calculated and 
utilized to compare MOFA-DE with the standard MOFA algorithm.  Figure 4 shows the proposed 
algorithm uses more computational time than standard MOFA, but by comparing measures of NNS, DM, 
MS, and also the objective function, we see that it provides better results.  
   Next, a numerical example of the model presented in section 2, with input from Tables (5-7), is solved 
by the proposed approach with the three mentioned algorithms. We also used some data from 
MohammadZadeh Dogahe & Sadjadi (2015). 
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Table 5. Component data for non-repairable section 

�  Choice 1 (j=1)  Choice 2 (j=2)  Choice 3 (j=3)  Choice 4 (j=4) 
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Table 6. Component data for repairable section 
Parameters �́ 1 2 3 4 5 6 7 8 9 10 11 ��́�  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.00041 0.00041 0.00041 �̅�́  0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00058 0.00058 0.00058 �̿�́  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.000416 0.000416 0.000416 ]�́  2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.4 ��́�  3 3 3 3 3 3 3 3 3 3 3 ��́�  4 3 5 6 3.6 7 6 4 3.5 3 4.5 

 
   The system considered was comprised of 14 non-repairable (in 3 or 4 types) and 11 repairable 
components connected in series. Table 5 includes data of failure rate, Erlang distribution parameters, 
purchasing cost and operational cost, volume, and weight for each non-repairable component. Table 6 
indicates data of failure rate, Weibull distribution parameters, and repair and replacement costs for 
repairable components. In addition, Table 7 presents upper bounds for some problem parameters. 
 

Table 7. Upper bound of parameters 
Parameter T M ��� �́ �� W V !�́ 

Value 5 3 0.003 100 180 150 0.001 

 



 

 
Figure5. Obtained results for metrics and objectives by 
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Obtained results for metrics and objectives by Standard MOFA, MOF-DE, NSGA

The example was run 50 times with each algorithm and the results are presented in Figure 5. As can be 
seen, standard MOFA consumed less time than the other algorithms (Fig. 5-a). Regarding the NNS and 
the diversity of solutions (DM) the proposed algorithm (MOF-DE) has the best performance compared to 
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Table 8. Selected maintenance actions and redundancy components obtained from MOF-DE 
Non-repairable components  Repairable Components � � 1 2 3 4 

 t �́ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 0 1  1 0 0 0 1 0 0 2 0 0 2 0 0 2 1 0 
2 1 1 1 0  2 0 0 0 1 0 2 0 0 1 0 0 2 0 0 2 
3 1 1 1 0  3 0 0 2 0 0 1 0 2 0 0 1 0 0 2 0 
4 1 0 1 0  4 0 0 0 1 0 0 1 0 0 2 0 2 0 0 1 
5 1 0 1 0  5 0 2 2 2 0 0 2 0 0 1 1 1 0 0 1 
6 0 0 1 0  6 0 1 0 0 1 0 0 2 0 0 1 0 0 2 1 
7 1 1 0 0  7 0 1 0 0 2 2 0 0 1 0 0 2 2 0 0 
8 1 0 1 0  8 0 1 0 0 2 0 0 2 0 0 2 0 0 1 0 
9 0 1 0 1  9 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 
10 1 0 0 0  10 0 1 1 0 0 2 0 0 1 0 0 1 0 0 1 
11 1 0 1 0  11 0 1 2 0 2 1 1 0 0 1 0 0 2 0 0 
12 1 1 0 1                  
13 1 2 1 0            
14 0 1 0 1              

 
4- 3- Sensitivity Analysis 
   In addition to the parameters indicated in table 1, different values of m, equation (10),may also be 
effective in the MOFA, while in all previous studies m = 2. The parameter m determine the relation 
between the light intensity at each point and the distance to the light source. If the light source is a point, 
light intensity decreases in proportion to the inverse square of the distance from the source, this means � = 2 and if it isanarea light source � = 1. These are some facts in the real world; however, in the 
virtual world they can be dismissed. Thus, by adjusting the values 0, 1, 2, 10and 100for the parameter�, 
the proposed algorithm performance can be reviewed. After running the MOF-DE algorithm20times, the 
average value of some performance measures was calculated. Table 9 shows the results.  
   It can be concluded from Table 9 that there is no significant difference for time, MS, and mean value of 
reliability and cost at different values of parameter�; however, when � is equal to zero, NNS and DM 
are significantly different. This difference can be analyzed when � = 0 which indicates the fireflies are 
not limited to closer brighter ones and results in a wider search space, therefore more Pareto solutions can 
be found (NNS) and diversity also increases (DM). As other measures show, high diversity does not 
guarantee the optimal solution with higher quality. Comparison of two other values of m, � = 2 showed 
the better performance of the proposed algorithm 
 
 

Table 9. Obtained results from different amounts of m by MOF-DE � 0  1 2 10 100 

Time 100.6613  96.94699 100 101.4665 100.4711 

NNS 18.8  9.4 12.2 11.8 10.6 

DM 118.2076  78.07391 89.2 82.00488 87.5629 

MS 0.126716  0.094055 0.091 0.101962 0.113238 

Cost 4143.35  4175.088 4109 4117.573 4175.893 

Reliability 0.947647  0.945185 0.953734 0.937291 0.947365 

 
5- Conclusion 
   In this paper, an effective hybrid approach was used to optimize a reliability problem in a system 
composed of repairable and non-repairable components. In this system, two parts of repairable and non-
repairable components are connected in series, and to increase the reliability redundant components were 
used in the first part and preventive maintenance actions were taken in the second part. A problem with 
the two objectives of increasing overall system reliability and reducing maintenance costs taking into 
account the constraints of weight, volume and initial budget was formulated. The DE approach was used 
to develop a standard MOFA and MOF-DE algorithm. The proposed algorithm has benefited from the 
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advantages of extensive search of the solution space found in DEA and that standard MOFA doesn’t find 
any new Pareto solution in the iteration of search processes. Numbers of test problems were employed for 
evaluating the performance of the proposed algorithm with three famous algorithms, standard MOFA, 
NSGA-II and MOPSO. 
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