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ABSTRACT 
 

In this paper, we study an integrated logistic system where the optimal location of depots and 
vehicles routing are considered simultaneously. This paper presents a new mathematical model 
for a multi-objective capacitated location-routing problem with a new set of objectives 
consisting of the summation of economic costs, summation of social risks and demand 
satisfaction score. A new multi-objective adaptative simulated annealing (MOASA) is proposed 
to obtain the Pareto solution set of the presented model according to the previous studies. We 
also apply three multi-objective meta-heuristic algorithms, namely MOSA, MOTS and 
MOAMP, on the simulated data in order to compare the proposed procedure performance. The 
computational results show that our proposed MOASA outperforms the three foregoing 
algorithms. 
 

Keywords: Location-routing problem, Demand satisfaction score, Multi-objective meta-
heuristic algorithms, Pareto solution set. 

 

1. INTRODUCTION 
 
The location routing problem (LRP) is a combination of the facility location problem (FLP) and the 
vehicle routing problem (VRP) that involves three inter-related, fundamental decisions: 1) where to 
locate the facilities, 2) how to allocate customers to facilities, and 3) how to route the vehicles to 
serve customers (Perl & Daskin, 1984).These problems belong to the class of NP-hard ones (Min et 
al., 1998). Due to its complexity, exact algorithms for solving the LRP have been used very limited 
and multi-objective exact algorithms have never been used. In this paper, we propose a modified 
multi-objective meta-heuristic algorithm based on the multi-objective meta-heuristic algorithm 
using an adaptative memory procedure (MOAMP) algorithm (Caballero et al., 2007). However, we 
propose a multi-objective adaptative simulated annealing (MOASA) to solve the multi-objective 
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capacitated location-routing problem. The remainder of this paper is structured as follows.  
 
In the next section, we summarize the related literature. Section 3 defines a modified multi-
objective location-routing model. Section 4 details a brief overview of three algorithms. Section 5 
deals with the proposed algorithm. Section 6 gives a discussion about the performance metrics to 
assess the quality of algorithms. The computational experiments are presented in Section 7. Finally, 
a discussion of the results is explained in the last section.   

2. LITERATURE REVIEW 
 
The LRP addressed in this paper includes a few exact solutions and many heuristic and meta-
heuristic algorithms in order to find a near-optimal solution in a reasonable computational time; 
most of them and LRP applications are summarized in survey papers (Min et al., 1998; Nagy & 
Salhi, 2007). 
 
Min et al. (1998) showed that most early studies considered either capacitated routes or capacitated 
depots, but not both of them. Prins et al. (2006a) called “general LRP” for the case with capacities 
on both depots and routes. They developed a memetic algorithm with population management 
(MA|PM). Tuzun and Burke (1999) developed a two-phase tabu search for the LRP with 
capacitated routes and uncapacitated depots. The two-phase algorithm, introduced for the first time 
in such paper and they dedicated to routing and location. Wu et al. (2002) studied the general LRP 
with homogeneous or heterogeneous fleet types and with a limited number of vehicles. They 
designed a simulated annealing (SA) algorithm with a tabu list to avoid cycling. Lin et al. (2002) 
allow vehicles to take multiple trips. The problem is divided into three phases: 1) facility location 
phase, 2) routing phase and 3) loading phase. They used meta-heuristics for solving this type of 
problem. The applicability of these meta-heuristics is limited as it relies on evaluating how large the 
number of depot configurations is. 
 
Albareda-Sambola et al. (2005) proposed another two-phase tabu search (TS) for the general LRP 
with one single route per open depot. The method has been tested on small instances for at most 30 
customers. Yu et al. (2010) proposed the SA algorithm for solving the general LRP, which features 
a specially designed solution representation scheme for the LRP. It outperforms all other algorithms 
in terms of the computational speed and solution quality by testing it on benchmark datasets. 
Belenguer et al. (2011) proposed an exact algorithm based on a branch-and-cut algorithm for 
solving the general LRP. The algorithm is based on a zero-one linear model strengthened by new 
families of valid inequalities. It can solve just medium instances for at most 50 customers. Other 
popular meta-heuristics have been applied to the LRP as well. Table 1 summarizes related works 
about meta-heuristics for the LRP. All mentioned papers have a single objective in such a way that 
a linear combination of costs is minimized. These costs can be regarded as depot installation and 
operating; routes design; and vehicle fixed costs. Only three papers study multi-objectives. 
 

Table 1 Summary of the recent papers on meta-heuristics for a general LRP 

Reference Solution method 
Bouhafs et al. (2006) Combined simulated annealing and ant colony 
Prins et al. (2006b) Combined GRASP method with a learning process and a path relinking mechanism 
Barreto et al. (2007) Clustering-based method 
Prins et al. (2007) Cooperative Lagrangean relaxation and tabu search  
Duhamel et al. (2010) Combined GRASP method with evolutionary local search 
Prodhon(2011) Evolutionary local search 
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Lin and Kwok (2006) considered a multi-objective form of Lin et al. (2002). They applied the TS 
and SA algorithms on the real data and simulated data. Caballero et al. (2007) applied the MOAMP 
for a multi-objective LRP in a real case. All vehicles are identical and are constrained under 
capacity; however, depots do not have the capacity constraints. Tavakkoli-Moghaddam et al. (2010) 
proposed a new integrated mathematical model for a bi-objective capacitated LRP, in which 
demands could be unsatisfied. They developed a two-phase scatter search (SS) algorithm. The given 
problem divided into two phases, namely facility location and routing. These phases are tackled 
repeatedly for a set of facilities of the minimal size until the total costs justify the algorithm 
termination. 
 
In this paper, we propose a modified version of the MOAMP algorithm for the multi-objective 
general LRP that features a solution representation proposed by Yu et al. (2010) because the model 
can be solved in a single phase to have higher efficiency. It is worth to mention that two new 
objectives not considered in the previous studies are considered in a three-objective LRP model. 
 

Table 2 Multi-objective LRP 

Paper Solution method Objectives 

Lin and Kwok 
(2006) 

Two phase with Hierarchical 
structure 
Designed based on Lin et al. (2002) 

1- Minimization of total costs 
2- Minimization of work time imbalance 
3- Minimization of load imbalance 

Caballero et 
al. (2007) 

Two phase with Hierarchical 
structure 
Designed based on Albareda-
Sambola et al. (2005) 

1- Minimization of depot opening cost 
2- Minimization of routing cost 
3- Minimization of routing risk 
4- Minimization of maximum routing risk 
5- Minimization of maximum depot opening risk 

Tavakkoli-
Moghaddam 
et al. (2010) 

Two phase with Hierarchical 
structure 
Designed based on 
Lin and Kwok (2006) 

1- Minimization of total costs 
2- Maximization of  demand satisfaction  

This study 
One phase 
Designed based on 
Yu et al. (2010) 

1- Minimization of total costs 
2- Minimization of total risk 
3- Maximization of  demand satisfaction score 

 
3. PROBLEM FORMULATION 
 
The following formal mathematical model is modified model of Prins et al. (2006b). The model is 
defined on a complete, weighted and undirected network G= (V, E, C). V is a set of nodes 
comprised of a subset I of m possible depot locations and a subset J = V\I of n customers. The 
traveling cost between any two nodes i and j is given by cij and the traveling risk given by rij and the 
traveling time given by uij. Capacity Wi, opening cost Oi and opening risk ORi are associated with 
each depot site i ∈I. Each customer j∈J is characterized by a demand dj, a service or dwell time sj 
and a best score time window [aj, bj], where aj is the earliest time to begin service and bj is the latest 
time, in which we acquire the highest customer satisfaction score. A set of identical vehicles of 
capacity Q is available, which is called K. In case of using each vehicle, fixed cost F is incurred 
depending the departing depot and performs a single route. The total number of vehicles used (or 
routes performed) is a decision variable. Each route should start and terminate at the same depot, 
and its total load should not exceed the vehicle capacity. The total load of the routes assigned to a 
depot should fit the capacity of the depot. For each vehicle k∈K and each customer j∈J, continuous 
variable tkj indicates the serving start time at customer j if it is served by vehicle k. When customer j 
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is not served by vehicle k, it should be zero. For each vehicle k∈K, tk0 is the departure time from the 
depot. 
 
The single-objective of a general LRP is to determine which depots should be opened and which 
routes should be constructed to minimize the sum of depot opening costs and the travelling costs, 
including the routing and the vehicle fixed costs. 
 
The problem can be modeled as a zero-one linear programming. The following Boolean variables 
are used: yi = 1 if depot i is opened,  fij = 1 if customer j is assigned to depot i, and xjlk = 1 if edge (j, 
l) is traversed from j to l in the route performed by vehicle k ∈K. 
 

min ଵݖ ൌ෍ ௜ܱݕ௜
௜∈ூ

൅෍෍෍ܿ௜௝ݔ௜௝௞
௞∈௄௝∈௏௜∈௏

൅ ෍෍෍ܨ௜ݔ௜௝௞
௝∈௏௜∈௏௞∈௄

 (1)

min ଶݖ ൌ෍ܱܴ௜ݕ௜
௜∈ூ

൅෍෍෍ݎ௜௝ݔ௜௝௞
௞∈௄௝∈௏௜∈௏

 (2)

max ଷݖ ൌ෍෍෍ሺ
௝௞ଵݐ

௝ܽ
െ

௝௞ଷݐ
ܶ െ ௝ܾ

ሻݔ௜௝௞
௞∈௄௝∈௏௜∈௏

 (3)

s.t. 
෍෍ݔ௜௝௞

௜∈௏௞∈௄

ൌ 1, ∀݆ ∈ (4) ܬ

෍෍ݑ௜௝ݔ௜௝௞
௜∈௏௝∈௃

൑ ܶ, ∀݇ ∈ (5) ܭ

෍෍ ௝݀ݔ௜௝௞
௜∈௏௝∈௃

൑ ܳ, ∀݇ ∈ (6) ܭ

෍ ௝݀ ௜݂௝

௝∈௃

൑ ௜ܹݕ௜, ∀݅ ∈ (7) ܫ

෍ݔ௜௝௞
௝∈௏

െ෍ݔ௝௜௞
௝∈௏

ൌ 0, ∀݅ ∈ ܸ , ∀݇ ∈ (8) ܭ

෍෍ݔ௜௝௞
௝∈௃௜∈ூ

൑ 1, ∀݇ ∈ (9) ܭ

෍෍ݔ௜௝௞
௝∈ௌ௜∈ௌ

൑ |ܵ| െ 1, ∀ܵ ⊆ ܬ , ∀݇ ∈ (10) ܭ

෍ݔ௜௨௞
௨∈௃

൅ ෍ ௨௝௞ݔ
௨∈௏ሼ௝ሽ

൑ 1 ൅ ௜݂௝, ∀݅ ∈ ܫ , ∀݆ ∈ ܬ , ∀݇ ∈ (11) ܭ

௜௞ݐ ൅ ௜ݏ ൅ ௜௝ݑ െ ൫1ܯ െ ௜௝௞൯ݔ ൑ ,௝௞ݐ ∀݅ ∈ ܸ , ∀݆ ∈ ܸ , ∀݇ ∈ (12) ܭ

ሺ ௝ܽሻݖ௝௞ଵ ൏ ௝௞ଵ (13)ݐ

௝௞ଵݐ ൏ ௝ܽ (14)

ሺ ௝ܾ െ ௝ܽሻݖ௝௞ଶ ൏ ௝௞ଶ (15)ݐ

௝௞ଶݐ ൏ ሺ ௝ܾ െ ௝ܽሻݖ௝௞ଵ (16)

0 ൏ ௝௞ଷ (17)ݐ

௝௞ଷݐ ൏ ൫ܶ െ ௝ܾ൯ݖ௝௞ଶ (18)



24 Samaei, Bashiri, and Tavakkoli-Moghaddam 

 

௝௞ݐ ൌ ௝௞ଵݐ ൅ ௝௞ଶݐ ൅ ௝௞ଷ (19)ݐ

௜௝௞ݔ ∈ ሼ0,1ሽ, ∀݅ ∈ ܫ , ∀݆ ∈ ܸ , ∀݇ ∈ (20) ܭ

௜ݕ ∈ ሼ0,1ሽ, ∀݅ ∈ (21) ܫ

௜݂௝ ∈ ሼ0,1ሽ, ∀݅ ∈ ܫ , ∀݆ ∈ ܸ (22)

௝௟ݖ ∈ ሼ0,1ሽ, ∀݆ ∈ ܸ , ݈ ∈ ሼ1,2,3ሽ (23)

௝௞ݐ ൒ 0, ∀݆ ∈ ܸ , ∀݇ ∈ (24) ܭ

௝௞௟ݐ ൒ 0, ∀݆ ∈ ܸ , ∀݇ ∈ ,ܭ ݈ ∈ ሼ1,2,3ሽ (25)

 
The first objective function (1) minimizes the total cost consisting of the sum of depot opening 
costs, routing costs and vehicles using fixed costs. The second objective function (2) minimizes the 
total risk consisting of the sum of depot opening risks and the routing risks. The third objective 
function (3) maximizes the total customers’ demand satisfaction score. The score is calculated by 
equation (26) which shows in Figure 1. Constraint (4) guarantees that every customer belongs to 
one and only one route and that each customer has only one predecessor in the tour. Constraint (5) 
ensures that the length of each route does not exceed maximum allowable distance. Constraints (6) 
and (7) are capacity constraints associated with depots and routes, respectively. Constraints (8) and 
(9) guarantee the continuity of each route, and that each route terminates at the departing. 
Constraints (10) are sub-tour elimination constraints. Constraint (11) ensures that a customer must 
be assigned to a depot if there is a route connecting them. Equation (12) relates departure and 
arrival time of each vehicle. Constraints (13)-(19) compute the third objective. These constraints are 
similar to Equation (26). Constraints (20)-(22) state the Boolean nature of the decision variables and 
Constraint (23) is also Boolean variable requires to calculating third objective. Constraint (24) is 
continuous variable indicates each customer servicing start time by each vehicle. Finally, Constraint 
(25) is a continuous variable needed to compute the third objective. 
 

Demand	score ൌ

ە
ۖ
۔

ۖ
1ۓ െ

௝௞ݐ
௝ܽ

ܶ െ ௝௞ݐ
ܶ െ ௝ܾ

1

௝௞ݐ ൏ ௝ܽ

௝௞ݐ ൐ ௝ܾ

Otherwise

 (26)

 

4. MULTI-OBJECTIVE ALGORITHMS 
 
The proposed algorithm is applied to the generated multi-objective test problems and its 
performance compared with the three well-known meta-heuristics used in the LRP literature. These 
algorithms are named as multi-objective simulated annealing (MOSA), multi-objective tabu search 
(MOTS) and multi-objective meta-heuristic algorithm using an adaptative memory procedure 
(MOAMP), respectively. 

 
Figure1 Graph of the score function for customer j 

aj   bj            T 

      1 
(Best score) 
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4.1. Multi-objective simulated annealing  
 
The simulated annealing (SA) algorithm is a well-known meta-heuristic algorithm for finding the 
optimal or near-optimal solution of a given function in a large search space. Ulunguet al. (1999) 
introduced the multi-objective simulated annealing (MOSA), which has some advantages over 
evolutionary algorithms because it does not need large memory to keep the population and can find 
a small group of Pareto solutions in a shorter time. Figure 2 shows the procedure of MOSA, where 
S represents the current search solution and T is the temperature parameter that is gradually 
decreased as time goes on. A new search solution S’ is generated by the N(s) function, whose cost is 
evaluated and compared with the previous cost. When it is determined to be a good solution, the 
new state is accepted. Even when the new solution is not proper, it is accepted with an acceptance 
probability. When there is no superiority between the current and the next state, the new one is 
accepted to do search in spread search space and to escape from local optima. 
 
The general transition rules, such as the Metropolis or logistic method, cannot be applied directly to 
the multi-objective problems because they support only a scalar cost function. The transition rule 
suggested in this paper is very similar to the Metropolis method as shown in Equation (27), where 
C(i,j) is the cost criterion for transition from state i to j, and T is the annealing temperature. 
Equation (28) is the cost criterion, where ck(i) is the k-th cost value in the objective vector of the i-th 
solution. 
 

௧ܲሺ݅, ݆ሻ ൌ exp ሺെ
,ሺ݅ܥ ݆ሻ

ܶ
ሻ (27)

,ሺ݅ܥ ݆ሻ ൌ ௞݊݅ܯ ሺ	ܥ௞ሺ݆ሻ െ ௞ሺ݅ሻܥ ሻ (28)

 
 

 
Figure 2 Pseudo code of the MOSA 

4.2. Multi-objective tabu search  
 
Tabu search (TS) is a local search algorithm based meta-heuristic method, whose main idea is to 
avoid recently visited parts of the solution space and to guide the search towards new and promising 
areas (Gover & Kochenberger, 2003). 
 
The main obstacle for TS in multi-objective optimization is its inability to find multiple solutions. 
However by using the procedure mentioned in the previous section, MOTS can find a small group 

S = Initial solution 
T = Initial temperature  
Repeat 

Generate a neighbor S’ = N(S) 
IF C(S’) dominates C(S)  

  Move to S’ 
Else IF C(S) dominates C(S’)  

Move to S’ with Transition Probability 
Else (C(S) and C(S’) do not dominate each other) 

  Move to S’ 
End IF 
T = Annealing (T) 

END Repeat (until the termination are satisfied) 
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of Pareto solutions and then find more solutions by repeating the trials for detailed information 
about the Pareto frontier. 

4.3. MOAMP algorithm 
 
The multi-objective meta-heuristic algorithm using an adaptative memory procedure (MOAMP) 
introduced by Caballero et al. (2007) is for the resolution of multi-objective combinatorial 
optimization (MOCO) problems based on TS. The algorithm includes two different phases: (1) 
generating an initial set of efficient points through various tabu searches and (2) looking for 
efficient points with an intensification process around an initial set of efficient points. It is a well-
known fact that the efficient points of MOCO problems are “connected”. In other words, any 
efficient point is close enough to another efficient point. This proximate optimality is the principle 
point in the MOAMP. Figure 3 depicts a pseudo code of the MOAMP. 
 

 
Figure 3 Pseudo code of the MOAMP 

The first phase consists of linking p+1 tabu searches (i.e., the last point of one search becomes the 
initial point of the next search). The first TS starts from a random solution and attempts to find an 
optimal solution to the problem with the single objective f1(x). Let x1 be the last point visited at the 
end of this search. Then, another tabu search is applied again to find the best solution to the problem 
with the second objective f2(x) using x1 as its initial solution. This process is repeated until all the 
single-objective problems associated with the p objectives have been solved. At this point, we again 
solve the problem with the first objective f1(x) starting from xp in order to complete a cycle. This 
phase yields the p points that approximate the best solutions to the single-objective problems, in 
which they are non-dominated solutions that result from ignoring all but one objective function. 
During this phase, we also collect other non-dominated solutions (NDS).  
 
The second phase of the MOAMP explores the search space around the initial set of efficient points 
found in the first phase. In this phase N random weighting vectors λ=(λ1 , … , λp) generated and use 
these to make N tabu searches with the following objective function which should be  minimized: 

min ሻݔఒሺܨ ൌ ݔܽ݉ ቊߣ௜ ቆ
௜݂
௠௔௫ െ ௜݂ሺݔሻ

௜݂
௠௔௫ െ ௜݂

௠௜௡ቇ ; 	݅ ൌ 1,2,… , ቋ (29)݌

where 
fi

max is the maximum value of the i-th objective over NDS obtained up to now. 
fi

min is the minimum value of the i-th objective over NDS obtained up to now. 
N represents maximum number of tabu searches that could be carried out without any 

change in the NDS list. 
Finally, at the end of these (p+1)+N tabu searches, the algorithm obtain a sample of the non-

⋮	

S = Initial solution 
Repeat 

Optimize 1st objective with TS 
Optimize 2nd objective with TS 

Optimize pth objective with TS 
Optimize 1st objective with TS 
Repeat 
 Optimize Eq. (29) with TS 
END Repeat (N iterations)  

END Repeat (until no change in the NDS list) 
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dominated solutions distributed by the areas where one of the objectives is predominant, as well as 
for those areas characterized by a balance among the different objectives. The process is repeated 
until this intensification no longer offers any new NDS. 

5. PROPOSED ALGORITHM 
 
The design of the proposed algorithm is based on the MOAMP. The algorithm is a meta-heuristic 
for the resolution of MOCO problems based on SA. We call the proposed algorithm as MOASA 
(i.e., multi-objective adaptative simulated annealing) that tries to adapt the SA search procedure to 
the structure of the efficient set of a multi-objective problem.  
 
MOASA consists of linking p+2 simulated annealing searches. Like MOAMP, first search starts 
from a random solution and attempts to find the optimal solution to the problem with the single 
objective f1(x). Then, other SA algorithms are applied again to find the best solution of the p 
problems. At this point, we again solve the problem with the first objective, but using a final 
solution as an initial solution. After this cycle, a multi-objective SA algorithm is applied to explore 
the search space around the initial set of efficient points found in p+1 searches. The process is 
repeated until this intensification no longer offers any new NDS.  
 
MOASA applied N-1 less searches compare with MOAMP so it has less computational process. 
The procedure of MOASA is shown in Figure 4. 
 

 
Figure 4 Pseudo code of the MOASA 

6. PERFORMANCE METRICS 
 
In the recent years, many multi-objective optimization algorithms (MOOA) have been proposed and 
many metrics of the algorithm performances have been proposed as well.Deb (2001) classified the 
existing performance metrics into three classes for, namely convergence, diversity and both 
convergence and diversity. 
 
Zitzler et al. (2000) suggested three goals for MOOA that can be identified and measured by: 

1- The distance of the resulting NDS to the true Pareto front should be minimized. 
2- A good distribution of the obtained NDS is desirable. 
3- The size of the obtained NDS should be maximized (i.e., a wide range of values should be 

covered by NDS for each objective). 
 
To compare the performance of the algorithms, two convergence metrics and two diversity metrics 
are applied. 

⋮	

S = Initial solution 
Repeat 

Optimize 1st objective with SA 
Optimize 2nd objective with SA 

Optimize pth objective with SA 
Optimize 1st objective with SA 
Apply MOSA  

END Repeat (until no change in the NDS list) 
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6.1 Convergence metrics 
 
The convergence metrics evaluate how obtained solutions are far from the true Pareto front. Many 
metrics for measuring the convergence of a set of approximation NDS towards the Pareto front have 
been proposed. We select two well-known of them. First one is the error ratio (ER) proposed by 
Veldhuizen (1999). Let A = {e1, e2, …,en} an approximation NDS set; ei = 0 if solution i is in the 
true Pareto front, and ei = 1 otherwise. The metric uses the true Pareto front as a reference set; so we 
assume that true Pareto front is the total Pareto-optimal solutions in a combined pool of all 
approximation NDS obtained from all runs of multi-objective algorithms. This metric is given by: 
 

ܴܧ ൌ
∑ ݁௜
௡
௜ୀଵ

݊
 (30)

where n is the number of solutions in the approximation NDS. Lower values of the ER are 
preferable. 
 
The second metric is the coverage of two sets (CS) introduced by Zitzler (1999). Using the metric 
CS, two sets of NDS can be compared to each other. Let P1 and P2 be the sets of approximation 
NDS obtained from one run of Algorithms A and B, respectively, and P be the union of the sets of 
approximation NDS (i.e., P = P1∪P2) so that it includes only NDS. The function CS maps the 
ordered pair (P1, P2) into the interval [0, 1]: 
 

ሺܵܥ ଵܲ, ଶܲሻ ൌ
|ሼ݌ଶ ∈ ଶܲ/∃݌ଵ ∈ ଵܲ: ଵ݌ ≽ |ଶሽ݌

| ଶܲ|
 (31)

where P1≽P2means that the solutionP1 is dominated by the solutionP2. 
 
The value CS(P1, P2) = 1 means that all the solutions in P2 are dominated by P1. The value CS(P1, 
P2) = 0 represents the situation when none of the points in P2 are dominated by P1. Note that CS(P1, 
P2) is not necessarily equal to 1–CS(P2, P1). 

6.2 Diversity metrics 
 
The diversity metrics evaluate the scatter of solutions in the final population on the Pareto front. 
Like the convergence metrics, many metrics for measuring the diversity of a set of approximation 
NDS towards the Pareto front have been proposed. We select the spacing metric (SM) and 
maximum spread metric (MS) to evaluate the applied algorithms. Schott (1995) introduced the 
spacing metric that provides a measure of uniformity of the spread of approximation NDS. This 
metric is given by: 
 

ܯܵ ൌ ඩ
1

݊ െ 1
෍ሺ݀̅ െ ݀௜ሻଶ
௡

௜ୀଵ

 (32)

where 

݀௜ ൌ min
௝∈ே஽ௌ∧௝ஷ௜

෍ห ௞݂
௜ െ ௞݂

௝ห

௄

௞ୀଵ

 (33)

and݀̅ is the mean of all di, n is the size of obtained NDS and ௞݂
௜ is the function value of the k-
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thobjective function for solution i. The lower values of the SM are preferable. Note that the 
objective functions should be normalized. 
 
Zitzler (1999) proposed the maximum spread metric that shows the distance between the boundary 
solutions in the obtained NDS. Deb (2001) suggested that maximum spread metric can be 
misleading if the objective functions have different ranges, so the normalized MS has been 
introduced, in which each function values is normalized with their range. This metric is given by: 
 

ܵܯ ൌ ඩ1
ܭ
෍ ൥൭

max
௜∈ே஽ௌ ௞݂

௜ െ min
௜∈ே஽ௌ ௞݂

௜

௞ܨ
௠௔௫ െ ௞ܨ

௠௜௡ ൱൩

ଶ௄

௞ୀଵ

 (34)

where n is the size of the obtained NDS, K is the number of objectives, ௞݂
௜ is the function value of 

the k-th objective function, ܨ௞
௠௔௫ is the maximum value of the k-th objective in the true Pareto front 

and ܨ௞
௠௜௡ is the minimum value of the k-th objective in the true Pareto front. The values closer to 1 

are preferable. 

7. COMPUTATIONAL STUDY 
 
The proposed algorithms have been coded in Matlab 7.1 and run on a Think Pad Lenovo computer 
with a 2.2 GHz Pentium(R) Dual-Core CPU with 2.00GB of RAM. Four test problems are 
generated as shown in Table 3. For each problem, a random initial solution is constructed and all 
the algorithms are applied.  
 

Table 1 Test problems 

Test Problem Customer Depot 

1 8 2 

2 12 2 

3 15 3 

4 20 3 

7.1 Simulation results 
 
Table 4 illustrates the average values of the ER, SM and MS metrics that outcome from 10 runs for 
each algorithm and test problem. Figure5 shows the stock chart based on the CS metric. This chart 
consists of a line, in which the upper and lower ends of the line are maximum and minimum values 
while the average value is marked on the line. In this figure, each rectangle box contains four stock 
plots representing the distribution of the CS metric for a certain ordered pair of the algorithms. The 
first stock plot of the left side relates to the test problem 1 and the right side relates to the test 
problem 4. The scale is 0 at down and 1 at top. Each rectangle box relates to CS(A,B), in which A 
and B refer to the algorithm corresponding to the row and column, respectively. 
 
 
  



30 Samaei, Bashiri, and Tavakkoli-Moghaddam 

 

Table 2 Average of three performance metrics 

Test Problem 1 2 3 4 

ER MOTS 0.038 0.899 0.763 0.904 

 MOSA 0.031 0.592 0.729 0.934 

 MOAMP 0.421 0.375 0.359 0.301 

 MOASA 0.027 0.293 0.298 0.219 

SM MOTS 0.065 0.023 0.031 0.012 

 MOSA 0.048 0.022 0.037 0.011 

 MOAMP 0.035 0.026 0.013 0.006 

 MOASA 0.046 0.020 0.011 0.005 

MS MOTS 0.931 0.897 0.886 0.827 

 MOSA 0.987 0.911 0.927 0.899 

 MOAMP 1.026 0.977 1.004 0.952 

 MOASA 0.989 0.966 0.962 1.008 

 
 

 

Figure 5 Stock plots based on the CS(A, B) metric:, where Row:A and Column:B 

 
 

MOSA 

MOAMP 

MOASA 

MOTS 
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7.2 Comparative results 
 
The ER metric shows that MOASA can truly achieve the NDS than other algorithms and MOAMP 
is superior to the other two algorithms. The stock plots show that MOASA outperforms the other 
algorithms. Furthermore, it can be observed that MOAMP performs well the other two algorithms. 
Considering the two convergence metrics show us our proposed MOASA algorithm is completely 
superior to MOAMP, and MOAMP is completely superior to MOSA and MOTS. It is remarkable 
that MOSA performs better comparing to MOTS. 
 
The SM and MS metrics indicate all the algorithms find the NDS with good diversity. However, the 
results show that MOASA may be slightly superior to the other algorithms. Fig. 6 shows the 
difference value of the MS metric from a target value of one. Fig. 7 illustrates the SM values on the 
line chart and shows that there is not a significant difference between the index values between all 
the considered algorithms.    
 

 
Figure 6 MS metric: Difference with one 

 
Figure 7 SM metric for all the considered algorithmes 

8. CONCLUSION 
 
In this paper, we have studied a multi-objective location-routing problem (LRP) in a general form 
and a new mathematical formulation has been presented. Moreover, a new multi-objective 
algorithm, called MOASA, has been proposed in this paper. The comparison of the computational 
results from four hypothetical test problems with other existing optimization algorithms, namely 
MOAMP, MOSA and MOTS, shows the efficiency of the proposed MOASA algorithm for multi-
objective LRP. According to the measuring indices, we have realized that a hierarchy of the 
algorithms in a descending order of merit can be mentioned as the proposed MOASA, MOAMP, 
MOSA, and MOTS. Using the elitism strategy for the proposed MOASA algorithm in the LRP is 
recommended for future research. 
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