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ABSTRACT 

 
This study explores a semi-supervised classification approach using random forest as a base 
classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs.  
Semi-supervised classification approach uses unlabeled data together with the small number of 
labelled data to create a better classifier. The results obtained by the proposed approach are 
compared with those obtained by a backpropagation neural network. Comparison indicates an 
improved performance by the semi-supervised approach over the random forest classifier as 
well as neural network approach. Highest classification accuracy of 78.20% was achieved by 
the used semi-supervised approach with random forest as base classifier in comparison to an 
accuracy of 72.4% and 74.7% obtained by random forest and back propagation neural network 
approaches respectively. Thus results suggest that the proposed approach can successfully 
classify jobs into the low and high risk categories of low-back disorders based on lifting task 
characteristics. 
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1. INTRODUCTION 
 
The term musculoskeletal disorders (MSDs) refer to conditions that involve the nerves, tendons, 
muscles, and supporting structures of the body. Work related Musculoskeletal disorders (WMSDs) 
refer to musculoskeletal disorders to which the work environment and the performance of work 
contribute significantly or that are made worse or longer lasting by work conditions. WMSDs are 
among the most prevalent lost-time injuries and illnesses in almost every industry (Bureau of Labor 
Statistics (1996); Tanaka et al. (1995)) and specifically those involving the back, are among the 
most costly occupational problems (Guo et al. (1995); Frymoyer and Cats-Baril (1991); Webster 
and Snook (1994)). They may cause a great deal of pain and suffering among afflicted workers and 
may decrease productivity and the quality of products and services. Literature review suggests a 
strong relationship between selected MSDs of the upper extremity and the low back and exposure to 
physical factors at work. Specific attention is given to analyze the weight of the evidence for the 
strength of the association between these disorders and work factors. Because the relationship 
between exposure to physical work factors and the development and prognosis of a particular 
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disorder may be modified by psychosocial factors, the literature about psychosocial factors and the 
presence of musculoskeletal symptoms or disorders is also reviewed. Understanding these 
associations and relating them to the cause of disease is critical for identifying exposures amenable 
to preventive and therapeutic interventions. A substantial body of credible epidemiologic research 
provides strong evidence of an association between MSDs and certain work-related physical factors 
when there are high levels of exposure and especially in combination with exposure to more than 
one physical factor (e.g., repetitive lifting of heavy objects in extreme or awkward postures). 
 
The modelling techniques may be used for the development of models that explicitly describe the 
risk associated with various work designs so that specific and quantitative workplace assessments 
can be made (Dempsey and Westfall (1997)). Although there are established risk factors for LBDs, 
the manner in which these factors interact to promote the risk of LBDs in industry, and ultimately 
disability, is not well understood (Zurada et al. (1997)). Many researchers have demonstrated the 
use of advanced statistical methods including logistic regression and generalized additive models 
(Dempsey et al. (1995); Marras et al. (1993)) as well as artificial neural networks (ANNs) 
(Karwowski et al. (1994); Killough et al. (1995); Zurada et al. (1997)) to predict musculoskeletal 
disorder risk associated with occupational exposures. It is found that neural networks provide 
superior predictive capability in comparison to multiple linear regression models (Killough et al. 
(1995); Zurada et al. (1997)). 
 
Recently, studies suggest that it is beneficial to use semi-supervised classification approach in 
situations where number of labeled data are sparse. The goal of semi-supervised classification is to 
use un-labeled data to improve the generalization (Seeger (2002)). Thus, the main objective of this 
study is to use a semi-supervised classification approach (Driessens et al. (2006)) that uses random 
forest as base classifier to classify industrial jobs according to the potential risk for low back 
disorders (LBDs). Such a system could be quite useful in hazard analysis and injury prevention due 
to manual handling of loads in an industrial environment. 
 
2. SEMI-SUPERVISED LEARNING 
 
Semi-supervised learning is a class of machine learning techniques that make use of both labeled 
and unlabeled data during training. Semi-supervised learning is a combination of both unsupervised 
and supervised learning approaches. Researchers in the field of machine learning suggest that use of 
a large number of unlabeled data, when used in combination with a small number of labeled data, 
can improve the classification accuracy (Zhu (2006)). A number of approaches for semi-supervised 
learning are proposed in literature. These include the use of expectation-maximization algorithm, 
self-training, co-training, transductive support vector machines, split learning, and graph-based 
methods. For further details about these approaches readers are referred to Zhu (2006). 
 
This study uses a semi-supervised approach recently proposed by Driessens et al. (2006). This 
classifier uses both labeled and unlabeled data in a two-stage set-up. In the first stage a standard 
classifier (random forest in the present study) is used with the available training data. In the second 
stage, the model generated from the training data is used to classify all the examples in the test set. 
These classified test data are then used together with the original training data in a weighted 
classification algorithm. The weights used by the classifier are meant to limit the amount of trust the 
algorithm puts in the labels generated by the model from the first step. As a default value, the 
weights of the training data are set to 1 and the weights of the pre-labeled test-data to N/M with N 
and M are the number of training and test data respectively. A parameter F is also added to the 
algorithm so as to set the weights of the test data sets equal to F× (N/M). This step makes it possible 
to vary the influence given to the unlabeled data as well as the classifier built in step1. Values of F 
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between 0 and 1 will lower the influence on the test-data and the learned model from the first step 
whereas values larger than 1 will increase their influence. 
 
3. RANDOM FOREST CLASSIFIER 
 
Random forest classifier consists of a combination of tree classifiers where each classifier is 
generated using a random vector sampled independently from the input vector, and each tree casting 
a unit vote for the most popular class to classify an input vector (Breiman, 1999). Random forest 
classifier used for this study consists of using randomly selected features or a combination of 
features at each node to grow a tree. Bagging, a method to generate a training data set by randomly 
drawing with replacement N examples, where N is the size of the original training set (Breiman, 
1996), was used for each feature/feature combination selected in the design of random forest. Each 
bootstrap training set consists about 67% of data from original training set thus about one-third of 
the data are left out from every tree grown. This left out data set is called out-of-bag (out of the 
bootstrap sample) and can be used as a test set for the tree grown on the bootstrap sample. Design of 
a decision tree required the choice of an attribute selection measure and a pruning method. Random 
forest classifier uses the Gini Index as an attribute selection measure, which measures the impurity 
of an attribute with respect to the classes. 
 
In a random forest classifier a tree is grown to the maximum depth on new training data using a 
combination of features. These full-grown trees are not pruned. This is one of the major advantages 
of random forest classifier over other decision tree methods like the one proposed by Quinlan 
(1993). As the studies suggest that the choice of the pruning methods and not the attribute selection 
measures, affect the performance of tree based classifiers (Pal and Mather (2003)). Breiman (1999) 
suggests that as the number of tree increases, the generalisation error always converges even 
without pruning the tree and overfitting is not a problem because of the Strong Law of Large 
Numbers  (Feller (1968)). Number of features used at each node to generate a tree and the number 
of trees to be grown are two user-defined parameters required for a random forest classifier.  At 
each node, only selected features are searched through for the best split. Thus, the random forest 
classifier consists of N trees, where N is the number of trees to be grown which can be any user 
defined value. To classify a new data set, each case of the data set is passed down to each of the N 
trees. The forest chooses a class having the most out of N votes, for that case.  
 
4. DATASET AND METHODOLOGY 
 
The data set collected by Marras et al. (1993) in a field study of 235 industrial jobs with low- and 
high-risk values of low-back disorders was used in this study. This consists of independent 
variables namely lift rate in number of lifts per hour (LIFTR), peak twist velocity average 
(PTVAVG), peak moment (PMOMENT), peak sagittal angle (PSUB), and peak lateral velocity 
maximum (PLVMAX) and a single dependent variable (i.e. low-back disorders) having two discrete 
levels of ‘low risk' and ‘high risk’. A detailed table of both training and test data is provided in 
Zurada et al. (1997). They used a backpropagation neural network to classify this data set according 
to the potential for low-back disorders. They used a total of 148 randomly selected data (i.e. 74 
numbers of low-risk and 74 numbers of high-risk jobs) for training the neural network. The 
remaining 87 jobs (50 low risk and 37 high-risk) were used to test the neural network. In order to 
compare the performance of the proposed approach with Zurada et al. (1997), same data set for 
training and testing was used in this study. Here class 1 refers low-risk jobs whereas class 2 
represents high-risk jobs. The proposed semi-supervised approach for LBDs classification using 
random forest as base classifier was compared with random forest as well as a backpropagation 
neural network classifier in terms of overall as well as individual class accuracies.  With random 
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forest classifier, two numbers of features at each node to generate a tree and the 50 number of trees 
was found to be working well with this data set.  
 
5. RESULTS 
 
The proposed semi-supervised approach with random forest as base classifier was able to classify a 
total number of 68 jobs out of 87 correctly (78.2%). Out of 50 low-risk and 37 high-risk jobs, a total 
of 40 low-risk and 28 high-risk jobs were correctly classified respectively (Table 1).  Comparison of 
results provided in table 1 suggests that the proposed semi-supervised classification approach 
increases classification accuracy by more than 7% in comparison to a simple random forest 
classifier.  
 
Table 1 Classification accuracies with random forest and semi-supervised random forest based classification 

approach 
 

Random forest Semi-supervised random forest 
Classifier Class 1 Class 2 Class 1 Class 2 
Class 1 34 16 40 10 
Class 2 9 28 9 28 
Class accuracies 68% 75.7% 80% 75.7% 
Overall classification 
accuracy 71.3% 78.2% 

 
An increase of 3.5% in overall classification accuracy was achieved by the semi-supervised 
classification approach in comparison to the neural network classifier, suggesting a better 
performance by the proposed approach with this data set. Further, proposed approach provides an 
improved accuracy in classifying low risk jobs as compared to the neural network approach. A 
slight decrease in accuracy is observed with the high risk jobs, which may be due to the reverse 
placement of the data as mentioned in Zurada et al. (1997). 
 
6. CONCLUSION 
 
This study discusses a semi-supervised classification approach with random forest as base classifier 
to classify low-back disorders (LBDs) risk associated with industrial jobs. Results suggests that the 
proposed approach works quite well in classifying the low-back disorder (LBDs) risk associated 
with industrial jobs in comparison to the neural network approach as proposed by Zurada et al. 
(1997) in terms of overall as well individual class classification accuracy.  
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