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ABSTRACT 
 

In order to achieve the maximum flexibility in adaptation to ever changing customer’s 
expectations in customer relationship management, appropriate measures of customer behavior 
should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior 
intention to repurchase or visit again are suitable means taking into account the heterogeneity 
across customers. In the case of a subscription-based service provider, this paper discusses three 
types of adjusted control charts considering grouped data on attribute usage measures are 
available at each subscription period. With appreciating the characterizing effect of customer’s 
overall satisfaction on his future behavior, regression based models and probability mixture 
models are used to account for heterogeneity in customers’ mean usage rate. Besides adjusted 
Shewhart and CUSUM control charts for Bernoulli and Poisson distributed usage indicators, the 
likelihood ratio test based on mixture probability models are investigated in term of detect 
ability of the shifts in usage behavior through a comparative simulation study.  

 

Keywords: customer usage behavior, attribute control charts, mixture probability model, 
CUSUM control chart. 

 
1. INTRODUCTION 
 
Customer relationship management (CRM) requires that appropriate measures of customer behavior 
to be monitored regularly to provide a diagnostic mechanism which helps marketing managers 
adapt corporate policies to the permanent changes of customer expectations. Control charts as the 
most widely used tool among statistical process control (SPC) tools provide suitable means for this 
purpose considering the stochastic nature of the measures of usage behavior. However, there are 
considerable differences between units inspected in industrial manufacturing processes where the 
SPC tools are originated from and customers, the subjects of usage monitoring. Unlike in standard 
industrial applications, usage data may be markedly non-homogenous. Hence, traditional SPC 
charts which are developed under the assumption of identically distributed data should be modified 
to be applicable for monitoring customer behavior. Taking customer’s underlying pre-usage 
intention into account allows customers to be treated distinctly depending on their different usage 
rates when a monitoring scheme is to be devised. 
 
There are several ways to derive predictive models containing customer’s behavioral information. 
For this purpose, it is required to determine features affecting customer usage rate. According to a 
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broad consensus in marketing research literature, overall satisfaction can be used as an important 
factor affecting customer’s future behavior. Fornell et al. (1996) employ structural equation 
modeling to develop a causal model that describes customer’s future behavior based on his/her 
overall satisfaction. There are several examples from telephone service industry and the 
manufacturing sector, which clearly show that customer retention depends strongly on satisfaction 
level as it may be concluded explicitly that the high level of satisfaction is required to achieve a 
high loyalty (Gryna, 1999). Xerox reports that totally satisfied customers are six times more likely 
to repurchase its products than are its “merely satisfied” customers (Jones and Sasser, 1995). 
Overall satisfaction will be used in this research as the main explanatory variable to develop models 
predicting customers’ future usage behavior. 
 
Considering the growing rate of online service providers, there are numerous types of services 
supplied according to a subscription for a given period of time. Internet service providers, online 
content providers, different kinds of telecommunication services, satellite television providers are 
among the subscription-based services. Customers of such firms purchase a monthly, quarterly, an 
annual, or an “annual billed monthly” subscription. Whether a customer renews his/her subscription 
as well as the number of purchases or visits made during a given time interval are the main criteria 
characterizing the frequency of usage for this sort of service providers. From a probabilistic point of 
view, Bernoulli distribution is a well-known model to represent the binary outcome of the former 
while the Poisson distribution is an appropriate random model for the latter. 
 
In industrial quality control, the quality characteristics following aforementioned discrete 
distributions are classified as attribute quality characteristics (Montgomery, 2005). More 
specifically, based on Shewhart’s theory, p and u are widely-used control charts of SPC to monitor 
the variation of the quality measures following binomial and Poisson distributions, respectively. 
Identically distributed observations resulted from a homogeneous population is an important 
assumption to employ Shewhart control charts. However, heterogeneity of customers is an inherent 
feature of usage behavior. Therefore some modifications of conventional control charts are required 
to meet the purpose of monitoring non-homogenous Bernoulli and Poisson distributed measures of 
usage behavior. Several types of control charts are proposed and compared in this research to 
monitor non-homogenous usage behavior. Present study has been inspired by recent researches 
under the subject of risk-adjusted control charts used for surveillance of surgical outcomes in the 
field of healthcare quality control. A brief introduction of this idea is presented in the next section. 
 
The remainder of this paper is organized as follows. The next section provides a brief survey of 
pertinent studies in the area of SPC. Monitoring schemes of usage behavior are proposed and 
discussed in section three. Section four presents a comparison study of the proposed control charts. 
Lastly, section five provides concluding remarks and final discussions on the application of the 
proposed methods.  
 
2. CONTROL CHARTING HETEROGENEOUS ATTRIBUTES  
 
There are different approaches proposed in this paper to deal with heterogeneous usage rate of 
customers. The first approach involves a modified version of traditional Shewhart charts used for 
monitoring attribute data. The control charts presented in this paper are developed on the basis of 
adjustment for individual buyer’s/visitor’s particular characteristics. To avoid ambiguity, the 
modified versions of p and u charts are hereafter called case-adjusted p chart and case-adjusted u 
chart, respectively. 
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Although Shewhart charts do not possess good efficiency to detect small shifts in process 
parameters, there are more sensitive control charts like cumulative sum (CUSUM) and 
exponentially weighted moving average (EWMA) which are capable of detecting small to moderate 
sustained shifts more efficiently as is of great importance to marketing managers to detect creeping 
trends in usage rate as quickly as possible. As the second approach to monitoring usage rate, case-
adjusted CUSUM charts for Bernoulli and Poisson random variables are used in this research. 
Although CUSUM charts are often used for individual observations, they are employed here for 
sample statistics. It should be noticed that CUSUM is designed based on a predetermined size of the 
parameter shift. This issue will be discussed later in detail. 
 
As the third approach, mixture probability models “i.e.,” beta-binomial and gamma-Poisson models 
are used to incorporate the heterogeneity of customers into the monitoring statistics. A point of note 
is that usage rate is considered independent of time in this study. Hence, dynamic usage behavior 
which allows the usage rate to be described as a function of time or of previously recorded usage 
behavior is not investigated in the proposed methods. 
 
2-1. Overview of existent approaches 
 
Consider the following equation as the general form of the adjustment model for customer i. 
 

)();( 1 βuβ ⋅′= −
ii gXE  (1) 

 
where iX  is the response variable representing customer usage behavior. iu  denotes corresponding 
vector of regressors indicating factors/covariates characterizing specification of each customer and 
β  is the vector of model coefficients. Function )(⋅g  may take the form of logit and log link 
functions to predict respectively the mean of the Bernoulli and Poisson distributed response 
variables. These are logistic regression and Poisson regression models respectively, two special 
cases of the broad family of the generalized linear models (GLM). Accordingly the left hand side of 
equation (1) may be formulated as )]exp(1[1 βu ⋅′−+ i  when the mean of the Bernoulli distribution 

is to be predicted and it takes the form )exp( βu ⋅′i  when the mean of the Poisson distribution is to 
be specified (Myers et al., 2002). 
 
This kind of adjustment, based on the regression models, is also used in the area of public health 
surveillance for monitoring surgical outcomes by Steiner et al. (1999, 2000) and Sego (2006) where 
the surgical risk assigned to each patient is estimated pre-operatively conditional on some risk 
factors. Indeed, the so called risk-adjusted control charts that have been outlined in most recent 
papers in the area of healthcare quality monitoring are adopted in this research for monitoring 
customer usage behavior. 
 
Steiner et al. (2000) use a risk-adjusted CUSUM chart for binary surgical outcomes. Since each 
patient has a different prior surgical risk depending upon his own characteristics, the variation 
among patients must be taken into account when the probability of a surgical failure is examined. 
Cook et al. (2003) employ risk-adjusted p chart to monitor in-hospital mortality rate for an intensive 
care unit. An overview of various risk-adjusted control charts applied to outcomes from Bernoulli 
and Poisson distributions is offered by Grigg and Farewell (2004). Sego (2006) provides an 
interesting discussion on the risk-adjusted monitoring of clinical outcomes. Following the definition 
of the risk adjustment procedure (Sego, 2006), the process of incorporating the customer’s 
information that is known prior to purchase, into a control chart will be called the case adjustment. 



274 Samimi and Aghaie 

Woodall (2006) addresses the similarity between risk-adjustment for attribute charts through 
logistic regression and regression adjustment for variable charts in industrial quality control. For 
instance, Hawkins (1993) and Wade and Woodall (1993) employ multiple and simple linear 
regression to account for variation in quality of products as they pass through successive stages of 
the process under monitoring. This approach is of paramount interest for monitoring cascade 
processes wherein the variables of downstream process stages are affected by the variables of the 
upstream stages (Hawkins, 1993, Hauck et al., 1999). Recent applications of regression adjustment 
in developing SPC charts for multiple stage processes with attribute quality characteristics includes 
Skinner et al. (2003) and Jearkpaporn et al. (2007). GLM is used in these studies to adjust the mean 
of the several process output variables for a number of input variables. 
 
2-2. Representing heterogeneity via mixture probability models 
 
Mixture probability models have been widely used in marketing literature for customer-base 
analysis to represent non-homogenous purchase behaviors of customers. Schmittlein et al. (1987) is 
among the first studies which describes repeat-buying behavior in a situation where customers buy 
at a steady rate for a period of time, and then become inactive. Time to ‘dropout’ is modeled using 
the Pareto (exponential-gamma mixture) timing model and while the customer is still active, his 
repeat-buying behavior is modeled using the negative binomial distribution (NBD) counting model 
(Poisson purchasing at the individual level with gamma heterogeneity). Nadarajah and Kotz (2009) 
give a detailed presentation on this kind of probability models. Although the Pareto/NBD is counted 
as a powerful model for customer-base analysis, its empirical application can be challenging, 
especially because of the intensive computational effort required to estimate model parameters. A 
simpler model called beta-geometric/NBD (BG/NBD) is proposed by Fader et al. (2005). This 
model seems to be more useful than its predecessor because it can provide similar results and in 
addition, it does not possess difficulty to be implemented (Fader and Hardie, 2005). As another 
instance among the many, a remarkable study by Moe and Fader (2004) models cross-section 
variation in usage behavior using an exponential-gamma mixture distribution modified in such a 
way that can capture the non-stationarity of an individual’s visit frequency over time. 
 
In addition to the modified Shewhart and CUSUM control charts, mixture probability models are 
used in this research for adjustment purposes in monitoring customers’ usage behavior. To this end, 
beta and gamma distributions are employed to represent respectively the heterogeneity of the 
Bernoulli and Poisson distributed response variables. The next section discusses different 
approaches in detail. 
 
3. CASE ADJUSTED MONITORING SCHEMES 
 
3-1. Case-adjusted Shewhart charts  
 
Two different settings of usage behavior are discussed here. First consider the situation where 
customers use optionally the proposed services for a given period of time. Generally, subscription-
based services like telecommunication service suppliers, online content providers, or insurance 
services can be sorted in this group. If a customer does not renew his subscription for the next 
period he may be deemed a churned customer. Considering the inherent variability of usage 
probability among customers, the goal is to design a control chart which monitors churn rate and 
provides warning signal in case of a significant change. Mathematically, customer usage from a 
single service at each period may be modeled as a Bernoulli random variable whose parameter 
indicates the usage probability that depends on customer characteristics. Case-adjusted p chart 
which takes into account the heterogeneity across customers is the first proposed method here to 



Using Regression based Control Limits and Probability… 275 

monitor customers’ usage probability. Control limits of the case-adjusted p chart are calculated as 
follows (Cook et al., 2003): 
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where ip0  shows the hypothesized usage probability for customer i , ( ni ,...,1= ) and can be 
estimated using logistic regression on customer overall satisfaction score of the last subscription 
period. It is assumed that the parameters of the regression model can be obtained retrospectively 
using information on customers’ usage behavior from a base time interval. The effect of estimation 
error is not investigated in this research. n  denotes the sample size and K  represents the 
coefficient of control limits that can be determined according to a pre-specified probability of error 
type I. 
 
Now consider the second situation wherein the number of customer visits or purchases during a 
given time period is the main indicator of usage behavior. It is assumed that a Poisson random 
variable can adequately represent customer usage behavior. In contrast to the previous situation, a 
case-adjusted u chart is used here to monitor customers’ purchase/visit rate. Through analogy with 
the case-adjusted p chart, control limits of this chart can be computed as follows.  
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where i0λ  which can be predicted by Poisson regression shows the mean usage rate for customer i . 
As before, customer satisfaction score of the last usage period is considered as the main predictor of 
usage behavior for the next period. Regression coefficients may be estimated using information of a 
base period. n  and K  are defined as done for equation (2). 
 
3-2. Case-adjusted CUSUM charts  
 
CUSUM chart is preferred to the Shewhart chart when detecting small shifts of model parameters is 
of interest (Montgomery, 2005). Control statistic drawn on the CUSUM chart is computed as 
follows: 
 

( ) 1,2,...t    ,CC ttt =+= − ω1,0max  (4) 
 
and 00 =C . tω  indicates the weight assigned to the observation at time t. To calculate the weight, 
both in-control value and presumed out-of-control value of the model parameter are required. 
Moustakides (1986) proves that the optimal choice for CUSUM weights, tω , is the log likelihood 
ratio of the random variable to be monitored. 
 
It should be noticed that CUSUM charts are employed here for both Bernoulli and Poisson random 
variables when group observations are periodically collected. For example, consider a cell phone 
service provider who records the number of customers that renew their subscription at the end of 
each subscription period. As another example, the number of clients who pay their monthly 
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installments is usually available for a bank. Hence the CUSUM statistic is computed as a composite 
score for the customers of a sample. 
 
Since heterogeneity of customers constitutes the main assumption of this study, CUSUM control 
charts proposed here for Bernoulli and Poisson distributed usage indicators are called respectively, 
case-adjusted Bernoulli CUSUM and case-adjusted Poisson CUSUM. 
 
Consider again the situation of a subscription-based service provider with binary valued 
observations indicating whether each customer renews his subscription for the next period. In this 
case the log likelihood ratio statistic, tω , for the time period t may be calculated as follows. 
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where iQ  denotes the shifted usage probability for customer i, ( ni ,...,1= ). It is customary to 
express the interested shift in the probability of a binary outcome in term of a change in odds ratio 
(Sego, 2006). The following equation presents a change of size δ  in odds ratio for customer i.  
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Or in other words,   
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Thus, equation (5) may be revised as follows. 
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In effect, the CUSUM chart is used to test sequentially the null hypothesis of 1:0 =δH  versus the 

alternative hypothesis *: δδ =AH  where *δ  indicates shift of interest in customers’ odds ratio of 
usage. 
 
Now consider the second situation where a measure of usage such as the number of visits during a 
given period is to be monitored. This measure is assumed to follow Poisson distribution. In this 
case, the weight at time t can be computed as shown below. 
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where ii 01 λλδ = and i1λ denotes the shifted usage rate. Although detection of decrease in usage 
rate is of paramount importance in customer churn management, it should be noticed that CUSUM 
chart could be exploited to detect both increasing and decreasing changes. In this paper, two 
CUSUM charts, one for detecting decrease and the other for detecting increase of the parameter are 
employed simultaneously. Let the CUSUM statistic in equation (4) be represented by a superscript 
of plus sign as +

tX  which is to be used to detect increase of odds ratio. Another statistic denoted by 
−

tX  and computed as follows is used to detect decrease of odds ratio. 
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As an obvious conclusion, +

tX accumulates positive scores and −
tX accumulates negative scores 

over consecutive monitoring periods. As soon as one of these two statistics exceed predetermined 
limits denoted by +h and −h , it is inferred that some assignable causes have already affected usage 
behavior. In other words the situation wherein either ++ > hX t or −− < hX t occur is an indication 
of the change in customers’ usage rate that requires commensurate root-cause analysis. Usually 

+h and −h  are determined in such a way that a given size of average run length (ARL) is obtained. 
ARL, a popular measure to assess the performance of a control chart, indicates the average number 
of points plotted on the chart until an out-of-control signal appears. The CUSUM chart possesses 
the interesting feature of change point detection which may be very helpful to identify proper root 
causes of the problem (Montgomery, 2005). 
 
3-3. Control charts using mixture probability models 
 
To the best of our knowledge, it seems there is no research so far which uses mixture probability 
models for monitoring purposes along with an adjustment procedure. Indeed, the third approach 
proposed here incorporates employing mixture probability models to capture heterogeneity of usage 
behavior. In the case of a subscription-based service provider, suppose that the probability of 
customer subscription renewal for the next period is denoted by ip0 , ( ni ,...,1= ). Naturally 
different customers have various degrees of purchase intention. Some customers possess higher 
interest while the others possess lower tendency to repurchase the product or renew their 
subscription. To represent this heterogeneity, it is assumed that the parameter ip0  follows beta 
distribution. Therefore a Bernoulli distribution is employed to provide a probabilistic model for the 
binary outcome of customer action at each period and a beta distribution is used to capture the 
heterogeneity in the underlying purchase probability. These two distributions are given respectively 
by the following mass and density functions. 
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where α  and β  denote parameters of the beta distribution. Integration of these two probability 
distributions leads to the following mixture model called beta-binomial model. 
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Some detailed discussions on such mixture probability models can be found in Johnson et al. 
(2005). Parameters α and β  can be estimated through maximum likelihood estimation (MLE) 
method. For this purpose, likelihood function to be maximized with respect to the parameters can be 
obtained in the form of the product of individual likelihood functions shown in equation (12). 
Eventually, the log likelihood function may be derived as follows.  
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The log likelihood function should be maximized to obtain estimates of the parameters α  and β . 
Therefore, the original problem of detecting changes in odds ratio may be recast as testing the null 
hypothesis 000 ,: ββαα ==H  versus its general alternative. Considering maximum likelihood 
estimates of parameters α  and β ,  generalized likelihood ratio (GLR) test method can be used as a 
suitable approach to provide required monitoring statistic. The derivation of GLR statistic is 
discussed in this section. 
 
Similar to two previous subsections, the second problem incorporates monitoring the number of 
purchases/visits made by customers during a given time interval. As stated before, Poisson 
distribution with parameter iλ , ( ni ,...,1= ), is used to model the number of purchases/visits made 

by customer i. Since customers have different usage rates, a gamma distribution with parameters 1b  
and 2b  is considered to represent heterogeneity of iλ  across customers. Functions presented below 
indicate respectively the Poisson probability mass function and the gamma density function. 
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As the result of integrating functions given in equation (14), the mixture gamma-Poisson model is 
obtained in the following form. 
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The likelihood function consolidated over all independent observations can be computed as the 
product of individual likelihood functions resulted in equation (15). Subsequently, the log 
likelihood function to be maximized to obtain estimates of 1b  and 2b  may be written as follows. 
 



Using Regression based Control Limits and Probability… 279 

[ ] ∑∑
=

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+
×

×Γ
+Γ

==
n

i
bx

x

i

i
n

i
i i

i

b
b

xb
xb

xbbLbbLL
1 1

1

2

2

1
2121 2)1(!)(

)(
ln),(ln),(  (16) 

 
In this case the null hypothesis 0220110 ,: bbbbH == , will construct the hypothesis on customers’ 
usage rate. 
 
Based on the discussion on how to extract maximum likelihood estimates of the model parameters, 
the method to derive monitoring statistic is explained. The proposed method called generalized 
likelihood ratio (GLR) test, is applicable for both situations mentioned in this section. Let reducedL  

denote likelihood function computed while assuming that the null hypothesis holds true. Also fullL  
will indicate likelihood function computed via maximum likelihood estimates of the model 
parameters while neglecting the constraints set by the null hypothesis. According to equations (12) 
and (15) model parameters contain α  and β  for the first situation while 1b  and 2b  are the 
parameters of the second model. 
 
It can be shown that when 0H  is true and a large volume of data is provided then the statistic 

[ ]fullreduced LLln2−  is approximately distributed as 2
2χ , a chi square distribution with two degrees 

of freedom (Mood et al., 1974). Therefore, considering a specific rate of type I error, it is possible 
to determine an upper control limit. Once a value of the monitoring statistics exceeds 2

2,αχ  which 

denotes the upper-tail α  percentage point of the 2
2χ  distribution, it indicates an unnatural usage 

behavior contrary to the expected behavior specified by the null hypothesis. 
 
4. PERFORMANCE COMPARISON 
 
To compare the efficiency of the proposed methods to detect decrease or increase of usage rate, 
well-known performance criteria, “i.e.,” probability of detection and ARL are used. Two different 
situations are discussed. In the first situation, marketing manager of a subscription based service 
provider is interested in monitoring periodically the number of customers who repeat their purchase 
or the number of visitors who renew their subscription. Since there are some intrinsic differences 
among customers’ intention to buy again, it is not reasonable for monitoring purposes to employ the 
common p chart which is used conventionally with the assumption of a homogenous population. 
Instead, case-adjusted p chart, case-adjusted CUSUM chart for the binomial distribution and GLR 
method based on the beta-binomial model are used in this study. The second situation involves a 
different measure for monitoring usage behavior. In this situation, the number of purchases made by 
a customer or the number of site visits made by a visitor over a given time interval are of interest. 
Traditional SPC charts like c and u that are used for count attribute characteristics are not applicable 
in this case because of the underlying heterogeneity of usage rate across customers. Case-adjusted u 
chart, case-adjusted CUSUM chart for the Poisson distribution and GLR method based on the 
gamma-Poisson model are alternative methods whose abilities in detection of shifts in customers’ 
usage behavior are discussed and compared below. 
 
In the first case, consider that there are 200 units of data sampled periodically to monitor usage 
probability. To implement the simulation procedure it is assumed that the change occurs at 25th 
time period after start of monitoring. The information collected during first 25 periods can be used 
to estimate the model parameters. It should be noticed that a two sided CUSUM chart whose log-
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likelihood weights are computed based on increasing and decreasing shifts equal to 2 and 0.5 is 
used here. Moreover, control limits obtained through simulation are set at +h =3.5 and −h =-3.5. 
 
Table 1 indicates the probability of detection computed by simulation with 250 replications. 
According to equation (6), the multiplier δ  in Table 1 indicates the magnitude of the shift changing 
odds ratio and varying in the range of 0.25 to 6 times as much as the in-control value. To provide 
this table, it is assumed that the usage behavior of all customers is equally affected by an overall 
change. 
 
For example, consider the change of size 0.5. Case-adjusted p chart detects this change at first point 
with probability 0.480 and, furthermore it can detect this change before the second period with the 
probability 0.716. The correspondent quantities for case-adjusted CUSUM and GLR charts are 
equal to 0.552, 0.9 and 0.204, 0.328 respectively. This simple comparison indicates the 
preeminence of CUSUM chart when compared with other approaches for detecting the change. It 
should be noticed that in order to compare control charts with respect to probability of detection, it 
is necessary to equalize their false alarm rate. The false alarm rate is fixed at 1 percentage in this 
study as shown in the row corresponding to δ =1. Generally, concerning the probability of 
detection, it is concluded that case-adjusted CUSUM chart possesses the best capability to detect 
decreasing shifts in odds ratio while for increasing shifts the p chart and CUSUM chart equally 
outperform the GLR chart. 
 
ARL is another useful measure to compare control charts. The ARL is usually defined as the 
expected number of periods required before a point exceeds the control limits. Tables 4 and 5 
present this measure along with the standard deviation of run length (SDRL) for different amounts 
of shifts in odds ratio. These results indicate that CUSUM chart is preferred over other approaches 
for detection of decreasing shifts but for increasing shifts CUSUM and p chart have similar 
performance with a negligible difference. 
 
The second situation involves a hypothetical case on monitoring the usage rate. In this situation, the 
frequency of usage is assumed to follow Poisson distribution. The details of data generation are the 
same as the previous situation except for the fact that five hundred customers are sampled at each 
period. It is remarkable that for sample sizes less than 200 the asymptotic chi square distribution of 
GLR statistic discussed in subsection 3.3 cannot be reached easily. 
 
Tables 6, 7, and 8 contain probability of detection before specified time periods after shift, when the 
mean of usage rate changes from the in-control value of 0λ  to a new value of 1λ . The results are 
calculated through simulation. It is mentioned again that the shift size which is specified as δ is 
considered equally across customers. The comparison between the first columns of these three 
tables indicates that there is a slight difference between correspondent values of Tables 6 and 7. 
This implies a rather identical efficiency of case-adjusted u chart and case-adjusted CUSUM which 
are used to detect shifts in the mean of usage rate. However, studying the first column of Table 8 
indicates the observable weakness of GLR chart in contrast to the first two approaches. 
 
Average and standard deviation of run lengths are reported respectively in Tables 9 and 10. 
Examining Table 9 infers the same conclusion about the equivalent ability of the u chart and 
CUSUM chart. Regarding an increasing shift, in contrast to a decreasing shift, GLR chart detects 
the change in usage rate more slowly. From a computational point of view, the process of 
estimating the parameters which are required to run the GLR procedure is a time-intensive work.  
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Hence, it was preferred to run the simulation procedure with fewer repetitions namely 100 
iterations, to obtain the less precise results. Moreover, unlike other two charts, GLR chart could 
hardly detect a small increase in lambda. Therefore the results are reported for changes greater than 
1.08. For the shifts of sizes 1.05 and 1.075, the ARLs of the u chart are obtained as 1.266 and 1.009. 
Corresponding values for CUSUM chart are 1.258 and 1.01. Altogether, the results of this 
illustrative case indicate the superiority of the u and CUSUM charts against the GLR chart when 
customers’ usage rate follows non-homogenous Poisson distribution. In case of the second situation 
it remains to add that with reference to equations (4) and (10), the log-likelihood weights of upper-
sided CUSUM and lower-sided CUSUM are chosen as 1.05 and 0.95 here. Upper and lower control 
limits were obtained as 2.3±  through a simulation procedure to achieve approximately the 1 
percentage false alarm rate. 
 
5. CONCLUSIONS 
 
Monitoring usage behavior helps managers to have an accurate interpretation of customer behavior. 
This issue is investigated here for the case of a subscription-based service provider. It is assumed 
that grouped data are available at the end of each period. Two univariate usage measures were 
examined separately. Implementation of proposed control charts requires information consisting of 
the degree of customer’s overall satisfaction from preceding period in conjunction with the 
information about his/her usage at the current period. Whether a customer renews his subscription, 
and the number of purchases or visits made by a customer during each period determine customer 
usage at the current period. Using this information, three different approaches are employed in this 
research to design various control charts which are constructed based on the adjustment to the 
specification of each customer in the sample. 
 
With the assumption that the parameter of consequent Bernoulli and Poisson distributions are 
predicted precisely using a regression model, case-adjusted p and u charts constitutes the first 
approach. Then case-adjusted CUSUM charts are also applied. For this purpose, weights assigned to 
each customer in the sample are computed through log-likelihood ratio statistic. 
 
The third approach used in this study involved using mixture probability models. In first model a 
Bernoulli distribution is used to model customer usage with respect to the subscription renewal and 
a beta distribution is employed to represent the heterogeneity across customers. On the other hand, 
the second model uses a Poisson distribution to account for the number of visits at a given period 
while its parameter is required to follow a gamma distribution to capture the non-homogenous 
usage rate across customers. Using data of customers’ usage behavior the parameters of these two 
mixture probability models may be estimated through MLE method. Therefore, the method of 
generalized likelihood ratio (GLR) test can be employed to test the null hypothesis on the 
parameters of the mixture models. 
 
Section 4 provides a comparative study on the proposed control charts. First consider the problem 
of monitoring non-homogenous Bernoulli random variables. In this situation, case-adjusted p chart 
and case-adjusted CUSUM equivalently detect increases in odds ratio. However, when a decreasing 
change occurs in odds ratio, CUSUM chart performs slightly better than p chart. For the second 
situation, monitoring non-homogenous Poisson random variables is of interest. Simulation results 
indicate that case-adjusted u chart and case-adjusted CUSUM are both capable to detect overall 
changes in the hypothesized value of usage rate very quickly. To summarize, in both situations, 
case-adjusted Shewhart charts and case-adjusted CUSUM charts performed much better than GLR 
charts developed based on mixture probability models. Generally, from a computational point of 
view, the implementation of GLR chart was very time consuming and effort-intensive. 
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A noteworthy remark is that the impact of precision of case adjustment “i.e.,” the effect of 
estimation errors as well as choosing a set of appropriate regressors in establishing the adjustment 
equation for predicting usage model parameters are not examined in this study. Steiner et al. (2000) 
provides interesting conclusions on the consequences of estimating procedure on the efficiency of 
risk-adjusted Bernoulli CUSUM chart when a logistic regression model is employed to perform 
adjustment. Another improvement of the proposed monitoring schemes may be resulted from 
finding a suitable way to take into account the importance weight of each customer. Customer life-
time value (CLV) provides a good scoring mechanism which differentiates customers depending on 
their profitability to the organization. An approach such as demerit control chart discussed in detail 
in SQC textbooks like Montgomery (2005) seems very useful for this purpose.  
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