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ABSTRACT 

 
Discrete-event simulation based optimization is the process of finding the optimum design of a 
stochastic system when the performance measure(s) could only be estimated via simulation. 
Randomness in simulation outputs often challenges the correct selection of the optimum. We 
propose an algorithm that merges Ranking and Selection procedures with a large class of 
random search methods for continuous simulation optimization problems. Under a mild 
assumption, we prove the convergence of the algorithm in probability to a global optimum. The 
new algorithm addresses the noise in simulation outputs while benefits the proven efficiency of 
random search methods. 
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1. INTRODUCTION  
 
Simulation Optimization (SO) is the process of selecting the best system among a set of possible 
options when the performance measure(s) (objective function) and/or constraint(s) are estimated 
through simulation. SO problems have recently received considerable attention by many researches 
in simulation and optimization communities. However, application of SO methods is not limited to 
the cases where discrete event simulation is required. Indeed, wherever a costly experiment in terms 
of computation, danger, etc. evaluates the performance in an optimization problem, there is a 
potential need for SO methods (e.g. see Kabirian and Hemmati 2007 for an application in an energy 
model via fluids simulation). 
 
In contrast to deterministic problems, SO problems in general have two distinguishing properties. 
First, the closed form of the objective function is not known; this property rules out direct 
application of powerful arsenal of the mathematical programming approaches. Secondly, since the 
values of the objective function could only be estimated through simulation, it involves noise that 
can mislead the optimization process. 
 
Over the years, many approaches have been proposed in the literature for SO problems. Detailed 
review of available methods can be found in Andradóttir (1998, 2006), Olafsson and Kim (2002), 
Gosavi (2003) Olafsson (2006) and Fu et. al. (2005). When the number of design options is limited, 
statistical selection methods are usually appropriate (Kim and Nelson 2006). Metamodel based 
methods such as Response Surface Methodology fit regression or neural networks on the response 
surface locally or globally and use it to conduct new searches (Barton and Meckesheimer 2006). A 
major class of SO approaches is random search methods such as Stochastic Ruler method (Yan and 
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Mukai 1992) and Stochastic Comparison algorithms (Gong et. al. 1999). Gradient search methods 
such as Stochastic Approximation (Robins and Morono 1951 and Kiefer and Wolfowitz 1952) 
estimate the gradient of the objective function (Fu 2006) and then use gradient methods of 
mathematical programming. Metaheuristic methods such as Simulated Annealing (Krikpatrick et. 
al. 1983), Genetic Algorithm (Holland 1992), Tabu Search (Glover 1989, 1990) and Scatter Search 
(Glover 1997) are a rich set of deterministic optimization algorithms which are extensively used in 
practical SO problems and commercial software packages (Olafsson 2006). 
 
Designing a new SO algorithm or selecting an SO method among available routines involve a 
tradeoff between two conflicting criteria: efficiency vs. convergence (Andradóttir 2006). A 
convergent method can guarantee that the randomness in simulation responses does not mislead the 
optimization process and global optimum could eventually be reached. This nice property, however, 
comes at a cost because rigorous mathematical proof of convergence requires periodic simulation of 
points that have already been simulated (Olafsson 2006) or are located in close proximity of old 
simulated points. These unwelcome consequences decrease the efficiency of convergent SO 
methods (Kabirian 2006, Kabirian and Olafsson 2007a and 2007b). Available methods in the 
literature usually have tendency to one of the two criteria. For instance, many heuristic methods 
(including metaheuristics) applied to SO problems are among the efficient class that have been 
implemented in commercial SO software packages (Fu et. al. 2005); in contrast, methods such as 
Sample Path Optimization and its variants provably have very nice convergence properties 
(Robinson 1996, Shapiro 1996), though criticized to be inefficient (Deng and Ferris 2007, Azadivar 
1999). 
 
In this paper, we bridge the gap between practical appeal of a large class of heuristic methods called 
“Probabilistic Search” techniques and theoretical convergence guarantee by proposing a 
methodology to link these methods with Ranking and Selection (R&S). The remainder of the paper 
is organized as follows. We formally define Probabilistic Search algorithms in section 2. In section 
3, R&S methods are briefly introduced and a methodology for merging R&S with Probabilistic 
Search algorithms is presented. Section 4 contains numerical results. Finally, section 5 concludes 
the paper.  
 
2. PROBABILISTIC SEARCH METHODS 
 
Consider the deterministic continuous optimization problem below: 
 

)(min θ
θ

f
Θ∈

 (1) 

 
where R: →Θf  and nR⊂Θ  is the compact set of feasible points. Let Θ∈∗θ  be one of the 
possibly many global optimums of (1).  
Random Search methods are a class of iterative optimization algorithms in whose k th iteration, a 
finite number of points Θ∈)()1( ,..., kH

kk θθ  are selected via a specific sampling strategy kΨ  and 
evaluated (see Andradottir 2006 for SO version).  
 
Algorithm 1: Random Search Methods 
 
Step 0: (Initialize). Choose the initial sampling strategy 1Ψ  and let 1=k .  
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Step 1: (Sample). Select points Θ∈)()1( ,..., kH
kk θθ according to sampling strategy kΨ  

 
Step 2: (Evaluate). Compute )( )( j

kf θ  for kHj ,...,1= . 
 
Step 3: (Update). Considering the quality of the evaluated points thus far, pick and introduce 
current optimum of the search process. If termination condition(s) of the algorithm hold(s), stop the 
algorithm, otherwise choose an updated strategy 1+Ψk , let 1+= kk  and go to step 1. 
 
This class is broad enough to include many heuristic and metaheuristic methods. We narrow the 
definition a bit to what we call Probabilistic Search (PS) methods as follows: 
 
Definition 1: Let W  be a Lebesgue measure. The probabilistic search methods are a subclass of 
random search methods for problem (1) such that for any arbitrary subset Θ⊆G  with 0)( >GW , 
the followings hold: 
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Many Random Search based methods satisfy the conditions of Definition 1. Others can also be a PS 
method if, in addition to their core optimization process, a point is also selected randomly from Θ  
and evaluated in each iteration. 
 
Now, we prove that every PS algorithm almost surely visits a point with objective function within 
an arbitrary neighborhood of a global optimum if a regularity condition is met. 
 
Definition 2: Call the interval ])(),([)( ** εθθε += ffO  where 0>ε , the ε -optimum interval. 
 
Definition 3: Let { }rxxrB n ≤−∈= θθ R);(   be a ball of radius 0>r  centered at the point 

θ .  
 
Definition 4: The discrete random variable { }( ),...2,1~ =kkpNHGX  has non-homogenous 

geometric (NHG) distribution with success probability kp  in k th trial if  
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Assumption 1: A ball );( rB ∗θ  exists such that 0));(( >Θ∩∗ rBW θ  and )(θf  is continuous for 

all Θ∩∈ ∗ );( rB θθ . 
 
Lemma 1: For problem (1) under Assumption 1, there exists another ball );( rB ′∗θε  for any given 

0>ε  such that: 
 
1) );();( rBrB ∗∗ ⊆′ θθε  

2) )()( εθ Of ∈  for all Θ∩′∈ ∗ );( rB θθ ε  

3) 0));(( >Θ∩′∗ rBW θε  
 
Proof: The proof is a direct result of the continuity of f  on );( rB ∗θ . 
 
Lemma 2: Let { }( ),...2,1~ =kkpNHGX  where 0>kp  ,...2,1=∀k  and 0lim ≠

∞→ kk
p . Then 

1}Pr{ =∞<X . 
 
Proof: Using equation 2, the proof is straightforward. 
 
Theorem 1: Let )(εX be the number of iterations required by a PS method to visit a point θ  such 
that )()( εθ Of ∈  for a given 0>ε . Under Assumption 1, 1})(Pr{ =∞<εX . 
 
Proof: By Lemma 1, a );( rB ′∗θε  where 0));(( >Θ∩′∗ rBW θε  exists for the given 0>ε . Then, 

observe that { }( ),...2,1~)( =kkpNHGX ε  where ( )
⎭
⎬
⎫

⎩
⎨
⎧

Θ∩′∈=
=

∗∪
kH

j

j
kk rBp

1

)( );(Pr θθ ε . Since 

0));(( >Θ∩′∗ rBW θε , Definition 1 implies 0>kp  ,...2,1=∀k  and 0lim ≠
→∞ kk

p . Hence, 

1})(Pr{ =∞<εX  following Lemma 2. 
 
Now let us consider the SO version of problem (1): 
 

( ){ })(E)(min θθ
θ

Lf =
Θ∈

 (3) 

 
where L  is a function of decision variables and a consistent estimator of f , also E(.)  is the 
mathematical expectation operator. Indeed, we assume the closed form function )(θf  is not 
available and can only be numerically estimated by )(θL  through averaging a number of sample 
performance functions obtained via simulating design point θ . 
 
If estimated values of the objective function are used, PS methods can be applied to SO problems 
too. However, in order to prove the convergence properties of the PS methods, the number of 
simulation replications for each solution point must be controlled. The real challenge is that 
although a PS method can visit a point in any ε -optimum interval by Theorem 1, it may not be able 
to actually introduce (select) the visited point or a better one as the optimum because of the random 
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noise in objective function values. A remedy that could be used for discrete and bounded decision 
variables is to guarantee (in probability or almost surely) that each single feasible point is simulated 
with infinite simulation runs as the number of iterations of the search algorithm goes to infinity. 
Then following the laws of large numbers, asymptotic convergence to a global optimum is easy to 
establish. However, we need to deal with infinite number of points in continuous-variable problems 
and the remedy for discrete settings may not work by its own. In the subsequent sections, we 
propose merging PS methods with specific R&S procedures. This way, as we will show later, the 
asymptotic convergence is guaranteed for continuous cases. 
 
3. ANALYSIS OF HYBRID PROBABILISTIC SEARCH METHODS 
 
In this section, we propose merging PS methods with R&S methods. Then the convergence 
properties of the integrated method are studied. 
 
3.1. Indifference zone methods 
 
Since an appropriate R&S method is required for the hybrid PS method of next section, we briefly 
introduce these methods in this section. Essentially, R&S procedures are statistical selection 
methods that evaluate exhaustively all members from a fixed and finite set of possible design 
options to determine ordering (Kim and Nelson 2006). Two major classes of R&S methods are 
subset selection and Indifference Zone (IZ) methods. We focus on IZ methods in this section. 
 
Mathematically, assume there are ς  different designs, the j th of which has mean objective 

function )( jμ  such that unknown to us )()2()1( ... ςμμμ ≤≤≤  (i.e. design one is the best). In IZ 
methods which only select one design, system one is selected with at least )%1( α−  chance if 

δμμ ≥− 12  where the so called IZ parameter 0>δ  is the smallest difference the experimenter 
feels is worth detecting. Indeed, IZ methods guarantee αδμμ −≥≥− 1}oneselectPr{ 12 . 
 
For a recent presentation of available IZ methods, see Benson et. al. (2006) and Kim and Nelson 
(2006). As a typical method, Bechhofer (1954) proposed the very first method under very strong 
assumptions of normality of responses with equal variances. This method determines the number of 
required simulation replications,λ , from each of competing designs via the following formula: 
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where σ  is the known variance of simulation responses, )1(

,1

*p−
−Ν ρς  is the )1( *p−  equicoordinate 

point of the 1−ς  dimensional multivariate standard normal distribution with off-diagonal 

correlation ρ . Values for )1(
,1

*p−
−Ν ρς  may be obtained from table lookup from Bechhofer et al. (1995). 

 
3.2. Hybrid probabilistic search algorithm 
 
Since simulation responses are noisy, the number of replications (samples) in a simulation run for 
each design point proposed by a PS can significantly affect two conflicting goals: convergence 
properties and efficiency of the algorithm. Efficiency recommends less replications in a simulation 
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run, but this means more noise in the estimated values of objective function, more chance of 
wrongly announcing the best solution and consequently poor convergence. We propose a statistical 
procedure to assess the number of replications of each design point that help the algorithm 
guarantee asymptotic convergence. Whenever the PS sends a new point to simulation module for 
the first time, only a constant number of replications denoted by η  are initially used for estimation 
of the objective function; further replications are subject to necessity. We use an R&S method 
(specifically IZ technique) after a fixed number of iterations in order to determine the best point 
among already simulated points. 
 
The statistical procedure merges with PS core optimizer as the algorithm below outlines: 
 
Algorithm 2: Hybrid Probabilistic Search 
 
Step 0: Define two sequences called error rate denoted by ∞

=1}{ hhα  and IZ (parameter) denoted 

by ∞
=1}{ hhγ where 0limlim ==

∞→∞→ hhhh
γα  , 10 1 ≤≤< + hh αα  and hh γγ ≤< +10 . Define the number of 

replications between the R&S implementations and denote it by ϑ .  
 
Step 1: Choose the initial sampling strategy 1Ψ  and let algorithm iteration counter 1=k  and 
R&S implementation counter 1=h . 
 
Step 2: Denote the introduced optimum of the algorithm after iteration k  by *ˆ

kθ . Set φθ =*
1̂ . 

 
Step 3: Select new points Θ∈)()1( ,..., kH

kk θθ according to the sampling strategy kΨ  and let 

{ }kkHj k
j

kk ,...,2,1,,...,1)( =′==Ζ ′′θ . 
 
Step 4:  For kHj ,...,1= , simulate )( j

kθ  with η  replications.  
 
Step 5:  Let )( )( j

kk ′θν  be the number of simulation replications done for )( j
k′θ  by the end of 

iteration k . Set replication counter ηθν =)( )( j
kk  for kHj ,...,2,1= . Set )()( )(

1
)( j

kk
j

kk ′−′ = θνθν  

for 1,...,1 −=′ kk  and kHj ′= ,...,1 . 
 
Step 6: Denote by )( )( j

krL θ , the objective function of )( j
kθ  estimated in r th simulation 

replication. Set sample mean ∑ =
=
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Step 7: If hk ϑ≠ , then let *ˆ

kθ  be one of the possibly many design points in kΖ  for which 

)(min)ˆ( )(

Z

*
)(

j
kk LL

k
j

k
′

∈′

= θθ
θ

 and go to step 8; otherwise do: 

 
7.1. Design an R&S method and apply it to kΖ  such that a difference of hγ  or less in the 

mean objective functions of the best point in kΖ  and all other points in kΖ  is detected with 
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probability hα−1  or more. For kk ,...,1=′  and kHj ′= ,...,1 , let khj ′λ  denote the total number of 

new simulation replications consumed in the current R&S implementation for k
j

k Z)( ∈′θ  on top of 

)( )( j
kk ′θν  old simulation replications available for this point and let khj

j
kk

j
kk ′′′ += λθνθν )()( )()( . 
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7.3.  Set 1+= hh  and go to step 8. 
 
Step 8: If a termination condition holds, introduce *ˆ

kθ  as the optimum and exit the algorithm. 

Otherwise choose an updated strategy 1+Ψk , let 1+= kk  and go to step 3.  
 
Generally, any IZ procedure that uses old simulation replications along with new replications and 
guarantees selection of the best with a given probability when the true objective function of the best 
and the rest of the designs are distanced by an IZ parameter could be used in Hybrid PS algorithm. 
Boesel et. al. (2003) proposes such procedures. Bayesian methods are other alternatives in which a 
posterior probability of correct selection is guaranteed (Chick and Inoue 2001a and 2001b). 
 
However, as far as we are aware, all statistical selection of the best procedures in the literature 
(including in Boesel et. al. and Chick and Inoue 2001a and 2001b ) assume that simulation outputs 
are normally distributed. Nelson et. al. (2001) and Nelson and Goldsman (2001) study the 
robustness of normality assumption and conclude that probability of correct selection could 
approximately be retained with mild departures from normality. The main justification for normal 
assumption in many simulation studies is that interesting simulation outputs are usually averages of 
a large number of observations; hence, central limit theorem suggests normality holds 
asymptotically. In addition, we need to assume that the second moment of the objective function for 
all feasible values of decision variable is finite. 
 
3.3. Convergence of the hybrid PS methods 
 
Theorem 2: If a hybrid PS method is applied to SO problem of equation 1 under Assumption 1, the 

sequence { }∞=1
* )ˆ( kkf θ  converges in probability to )( *θf , that is { } 1)()ˆ(Prlim ** =<−

∞→
εθθ ff kk

 for 

all 0>ε . 
 
Proof: Following Theorem 1, the number of iterations before the algorithm visits a point with mean 
objective function in )(εO  would be finite with probability 1 (w.p.1); say for iterations kk ′≥  
where 1)Pr( =∞<′k , a point θ′has already been simulated such that )()( εθ Of ∈′ . Since the IZ 

sequence ∞
=1}{ hhγ  converges to zero, the number of iterations before the algorithm visits a point 

θ ′with mean objective function in )(εO and IZ parameter becomes less than )()( * θεθ ′−+ ff  is 
finite w.p.1; say these two events have happened for any iteration kk ′′≥  where 1)Pr( =∞<′′k . 
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Let ⎥⎥
⎤

⎢⎢
⎡ ′′

=′′
ϑ
kh  where ⎡ ⎤.  is round up function. Then for hh ′≥ , the R&S procedure 

implementations guarantee introduction of θ ′  or another point with objective function in )(εO  as 
the optimum with probability h′−α1  or more because at least there exist θ′  in the set of simulated 

points such that it is hff ′>′−+ γθεθ )()( *  far away from all the other simulated points outside 

)(εO . Hence: { } 1)1(lim)Pr()()ˆ(Prlim ** =−∞<′′≥<−
∞→∞→ hhkk

kff αεθθ  and 

consequently { } 1)()ˆ(Prlim ** =<−
∞→

εθθ ff kk
. 

 
4. EXAMPLE PROCEDURE 
 
In this section, we showcase the effectiveness of the Hybrid PS methods. Of course, any PS method 
could potentially be used here; but we are more interested to see how well the wedding between 
R&S methods and PS procedures work. Therefore, we select the simplest possible PS method which 
is called Naïve Random Search (NRS). The sampling strategy of NRS picks one point ( 1=kH  for 

,...2,1=k ) uniformly randomly from the compact feasible region. The method is called “Naïve” 
because it ignores the information of past searches in future sampling strategies. When applied to 
SO problems, NRS introduces the point with lowest estimated objective function as the current 
optimum. 
 
Algorithm 3: Naïve Random Search 
 
Step 1: Let 1=k . 
 
Step 2: Select one point from the feasible region uniformly randomly. Denote this point by )1(

kθ .  
 

Step 3: Simulate )1(
kθ  with η  replications and let ∑ =

=
η

η
θθ

1

)1(
)1( )()(

r
kr

k
LL  be the estimated 

objective function.  
 
Step 4: Let *ˆ

kθ  be one of the possibly many design points for which )(min)ˆ( )1(

,...,2,1

*
)1( k

kk
k LL

k
′

=′∀′

= θθ
θ

. 

 
Step 5: If termination condition(s) of the algorithm hold(s), stop the algorithm, otherwise let 

1+= kk  and go to step 2. 
 
We are interested in comparing the performance of NRS with the so called Hybrid NRS defined 
below. 
 
Definition 5: Hybrid NRS is a kind of Hybrid PS method in which the sampling strategy of each 
iteration selects one point uniformly randomly from the feasible region.  
 
In our experiments, we use the IZ procedure of Boesel et. al. (2003) as the R&S procedure required 
for the Hybrid NRS. Also, we set 2=η , 100=ϑ , 50.01 =α , 101 =γ , and for ,...2,1=h  
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hh αα 9.01 =+  , hh γγ 9.01 =+ . To accelerate the experiments, we replace simulation with a noisy 
objective function. Specifically, we use a closed form 2-dimensional objective function with a 
unique global optimum. Whenever the simulation output is required for a point, we generate a zero-
mean normal random variable with variance 10 and add it to the objective function value computed 
via the closed-form formula. Figure 1 shows the objective function of the problem we used in our 
experiment. The decision variables are both bounded between 0 and 10. The global optimum of the 
problem is (5,5) with the objective function 1. We terminated the optimization process of both 
algorithms when a budget of 1000 simulation replications was spent. Both methods were run 10000 
times in order to get robust results. For each algorithm, we computed the average of the expected 
value of the objective function of the introduced optimum after each simulation replication. Figure 
2 shows logarithmic values of these averages as the optimization process progresses. 
 

 
 

Figure 1 The objective function of the test problem 
 

0 200 400 600 800 1000
10

0

10
1

10
2

Simulation Replications

f(
In

tr
od

uc
ed

 O
pt

im
um

)

NRS

Hybrid NRS

 
 

Figure 2 The performance curves of Naïve Random Search and Hybrid Random Search methods 
 
Figure 2 suggests that when R&S procedure is applied for the first time in Hybrid NRS, 
convergence is accelerated. As we expected, the disadvantage of solely using NRS is that it may 
simulate a bad point which turn out to have a very good estimated objective function such that even 
near optimum points no longer could outperform the misleading estimated good quality of the bad 
point. In fact, R&S helps clean up the quality of the points NRS simulates. 
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5. REMARKS 
 
In this paper, a new methodology for merging R&S and a class of random search methods called 
Probabilistic Search algorithms for continuous simulation optimization was proposed. We proved 
the asymptotic convergence in probability to a global optimum under a regular assumption and 
showed the performance of the new methodology thorough a simple example. The importance of 
the analysis of this paper roots in these facts: 
 
• Discrete event Simulation based optimization methodologies are widely applicable in many 
engineering system design problems where evaluating the objective function and/or constraints are 
costly, requiring a submodel such as a simulation, an experiment, etc to run. 
 
• The new methodology presented in this paper can simultaneously benefit the observed 
efficiency of a large class of random search methods and convergence properties of statistical 
selection procedures. 
 
There are several open directions for future research. The feasible region in equation (1) was 
deterministic; however, stochastic constraints seem more realistic. Extension of the methodology 
presented here to problems with noisy constraints is an open research. We are exploring this area in 
Kabirian and Olafsson (2007c and 2008). The challenge in stochastic-constraint case is that given a 
point, we are never sure that the point is feasible or not because simulation runs are terminated in 
finite time. Unless unrealistic assumptions are considered, all we can hope in such cases is an 
asymptotic convergence based on laws of large numbers. In addition, the convergence properties of 
the methodology in finite time (not asymptotically) deserve more investigation. 
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