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Abstract 
Recently, a mixed integer data envelopment analysis (DEA) model has been 
proposed to find the most BCC-efficient (or the best) decision making 
unit(DMU) by Toloo (2012).This paper shows that the model may be 
infeasible in some cases, and when the model is feasible, it may fail to identify 
the most efficient DMU, correctly. We develop an improved model to find the 
most BCC-efficient DMU that removes the mentioned drawbacks. Also, an 
algorithm is proposed to find and rank other most BCC-efficient DMUs, when 
there exist more than one BCC-efficient DMUs. The capability and usefulness 
of the proposed model are indicated, using a real data set of nineteen facility 
layout designs (FLDs) and twelve flexible manufacturing systems (FMSs). 
Keywords: data envelopment analysis (DEA), most BCC-efficient DMU, 
mixed integer DEA models, ranking, facility layout design 

1- Introduction 
   Data envelopment analysis (DEA), introduced by Charnes, Cooper, and Rhodes (1978), is a 
linear programming for the assessment of relative efficiency of a set of decision making units 
(DMUs).The DMUs usually use a set of resources,referred to as input indices, and transform 
them into a set of outcomes, referred to as output indices. The CCR model is developed for 
constant returns to scale of DMUs. Banker, Charnes, and Cooper (1984), promoted it to variable 
returns to scale. 
   DEA effectively divides DMUs into two groups: efficient DMUs and inefficient DMUs. The 
efficiency score of efficient DMUs is equal to one and the efficiency score of inefficient DMUs 
is less than one. It should be noted that the efficient DMUs do not necessarily have the 
equivalent performance in real practices. In the practical applications, it is necessary to rank all 
DMUs, or find the most efficient DMU. For this purpose, different approaches have been 
proposed. Cross efficiency (Liu and Peng, 2008), super efficiency (Andersen and Petersen, 
1993), imposing restrictions on the weights and using a common set of weights (Sexton et al., 
1986; Allen, 1997), are some examples of these approaches. 
   Mentioned approaches solve at leastone linear DEA model for each DMU to find the most 
efficient DMUs. However, some researchers proposed various methods to determine the most 
efficient DMU by solving just one model, (Karsak and Ahiska, 2005;Amin and Toloo, 2007; 
Amin, 2009; Toloo and Nalchigar, 2009; Foroughi, 2011;Toloo, 2012; Wang and Jiang, 2012; 
Foroughi, 2013; Toloo, 2014a; Toloo, 2014b; Toloo, 2014c; Toloo and Ertayb, 2014; Toloo, 
2015). 
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   In a recent paper, Toloo, (2012), proposed a new integrated mixed integer programming – data 
envelopment analysis (MIP–DEA) model to find the most BCC-efficient DMU.We show that 
this model may lead to infeasibility in some cases. We also, show that when the model is 
feasible, the DMU reported as the most BCC-efficient, may be wrong (see example 3 in the 
section 4).The aims of the current paper are to develop new models to find the most BCC-
efficient DMUs and eliminate the mentioned drawbacks. In addition, we propose a new 
algorithm to find and rank the other efficient DMUs. The remainder of the paper is organized as 
follows: in section 2, the proposed model by Toloo (2012), is presented and the infeasibility 
problem of the model has been shown by an example. Section 3, presents an improved 
integrated DEA modeland a new algorithm to find and rank BCC-efficient DMUs. Numerical 
examples and conclusion are given in section 4 and 5, respectively. 

2- Infeasibility problem of Toloo’s Model 
   Recently, Toloo, (2012), proposed a new MIP–DEA model to find the most BCC-efficient 
DMU by a common set of optimal weights, as follows: 
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WhereM and N are large enough numbers.ijx is the amount of ith input consumed by DMUj, rjy  

is the amount of rth output produced by DMUj ),...,2,1&,...,2,1;,...,2,1( nimrkj === . jd is the 

deviation of DMUj from the BCC-efficiency. maxd is maximum inefficiency that should be 

minimized. *ε is the maximum non-Archimedean epsilon. He proposed the following linear 

programming (LP) to determine*ε : 
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Toloo and Nalchigar, (2009),proved that model (2) is equivalent to the following model (3): 
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Toloo, (2012),showed that the optimal value of model (3) is equal to

∑
=

=
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   He also proved that model (1), reports only one single BCC-efficient DMU with the common 
set of optimal weights. In the other words, at the optimal solution of model (1), 0=pd  for only 

one },...2,1{ kp ∈ and pjd j ≠∀≠ ,0 .It should be noted that, in model (1),DMUp is BCC-

efficient if in the optimal solution of the model, 0* =pd . The following example shows the case 

of infeasibility of model (1). 

Example 1: Consider 3 DMUs each uses two inputs to produce one output. 

Table 1: Data for 3 DMUs 
DMU No. I1 I2 O1 

1 1 1 2 
2 2 1 4 
3 1 2 4 

For this example, the maximum non-Archimedean is 
3
1

}12,12,11max{
1* =

+++
=ε . 

Now, by considering the value of 
3
1* =ε , we show that model (1) is infeasible.From the 

constraints of this model for the data presented in table 1,we have: 
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Now, by considering the constraints of E and Fwe have: 

3232 0)()( ddddFE =⇒=−=−+  

In this example for only one }3,2,1{∈p  we have 0=pd , and for the others we have 

pjd j ≠∀> ,0 , (see theorem 4 in Toloo, 2012). So, we should have 0,&0 321 >= ddd . 

Fromthe constraint D, we have 0
3
2

2 10 ≥−= uu , (note that
3
1

1 ≥u ).Now by considering

)2()( DE ×− ,we should have: 

00
3
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20
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This is inconsistent with 00 ≥u .So, model (1) is infeasible for this example. 

3- Developed improved model 
   It was shown that the proposed model of Toloo, (2012), may be infeasible. The purpose of 
model (1) is finding a set of weights such that only one DMU has the largest efficiency score 
corresponding to those weights. Hence, the model may be infeasible when there are more than 
one BCC-efficient DMU. In this section, an integrated DEA model proposed which is always 
feasible and can determine a single most BCC-efficient DMU, when such a DMU exists, and 
otherwise proposes a set of BCC-efficient DMUs as the most BCC-efficient. The model is 
formulated as follows. 
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(4) 

Where jd  is a binary variable and jβ  is considered becausejd is discrete. jjd β− is the 

deviation of DMUj from the BCC-efficiency and maxd is maximum inefficiency that should be 

minimized. Note that maximizing the minimum values of jβ is equivalent to minimizing the 

maximum values of jd jj ∀− ,β . So this model minimizes the maximum inefficiency.The 

optimal non-Archimedean epsilon is obtained by solvingthe following model (5). 
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The lemmas 1 and 2 prove that model (4) and model (5) are always feasible. 

Lemma 1: model (5) is always feasible. 

Proof: let 0 1 1 0, ,i ru v u d i rε β= = = = = = ∀ & 1,1 ≠∀== jd jj β . Clearly, ),,,,,( 0 εβ uduv  

is a feasible solution of model (5), where 

),...,,( 21 nvvvv = , ),...,,( 21 muuuu = , ),...,,( 21 kdddd = , ),...,,( 21 kββββ =  

Lemma 2: model (4) is always feasible. 

Proof:Suppose ),,,,,( *
0

*****
1 uduv βε tobe an optimal solution of model (5), in this case 

),,,,},,...,,(min{),,,,,( *
0

******
2

*
10max uduvuduvd k βββββ =  is a feasible solution of model (4). 
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Theorem 1, proves that model (4) finds a single most BCC-efficient DMU. 

Theorem 1: solving model (4) gives a single BCC-efficient DMU. 

Proof: suppose ),,,,,( *
0

*****
max uduvd β to be an optimal solution of model (4), by considering 

the constraint∑
=

−=
k

j
j kd

1

1 , there is only one },...,2,1{ kp ∈  such that 0* =pd  and pjd j ≠∀= ,1*

. According to the third type constraints of model (4) we have: 

10

1

*

1

*
0

*

1

**

1

*
0

* ≥
−

⇒≥=−−

∑

∑
∑∑

=

=

==
n

i
ipi

m

r
rprn

i
pipi

m

r
rpr

xv

uyu

xvuyu β  

We also show that at the above optimal solution, the efficiency score of other DMUs are less 
than or equal to one and this completes the proof. For DMUj )( pj ≠∀ , we have: 
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   The above expression shows that at the optimal weights the other DMUs have the efficiency 

score less than or equal to one. It should be noted that if 0** >≥ Mpβ  then DMUp is super 

efficient, since the efficiency score of DMUp is larger than one while the efficiency score of 
other DMUs is less than or equal to one. Note that theorem 1 does not say that there are only 
one BCC-efficient DMU but reports one most BCC-efficient DMU form a set of BCC-efficient 
DMUs.  
 

3-1- Finding and Ranking other efficient DMUs 

   To rank efficient DMUs in DEA, different approaches have been developed by researchers. 
Hosseinzadeh Lotfi et al., (2013), reviewed the ranking method in DEA and divided them into 
seven groups. The readers can refer to this paper for further discussion on ranking approaches. 
In this section, a new algorithm is presented to find and rank BCC-efficient DMUs. This 
algorithm is as follows: 

Step 0: Solve model (4), the DMU with the maximum maxd  is the most BCC-efficient DMU, 
say DMUp,let }{ pT = . 

Step 1: Add the constraint Tjd j ∈∀= ,1  to model (4) and resolve it. 

Step 2: If the model is infeasible there is no other most BCC-efficient DMU exist and T shows 

the set of most BCC-efficient DMUs, else suppose that at the optimal solution 0* =ld . 

Step 3: Let }{ lTT ∪=  and go to step 1. 

In this algorithm the BCC-efficient DMUs have been found, one by one until the model with 
additional constraints will be infeasible. So, in the result of using this algorithm the decision 
maker could find and rank all the most BCC-efficient DMUs. Indeed, DMUs are ranked based 
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on the optimal values of *maxd that represents the maximum distance that DMUp can have from 
the best DMUs in T. 

The proposed algorithm is necessary to show that the determined DMU by the model (4) is the 
best DMU. Also, this algorithm capable us to find the other BCC-efficient DMUs with the same 
efficiency score, similar to the example 2. The existing ranking approaches cannot be used with 
the model (4) to find and rank BCC-efficient DMUs. For example, the proposed method by 
Andersen and Petersen, (1993) to rank the efficient DMUs should be used with the traditional 
BCC-DEA model. 

4-Numerical examples 
   In this section, two numerical examples are presented to shows the capability and usefulness 
of the proposed methodology of the paper. 
Example 2: In this example, we apply model (4) to find the most BCC-efficient DMU in 
example 1.In section 2, it was shown that model (1) is infeasible for this example. Solving 

model (5) for data presented in table 1gives 333.0*
1 =ε . The following table 2 shows the results 

of the proposed algorithm step by step for data presented in table 1. 

Table 2. results of the proposed algorithm for example 2 

First 
iteration 

Step 0 
Eff. DMU1 = 0.1670, Eff. DMU2= 0.9999,Eff. DMU3= 1.0004 

3*
max 105.0 −×=d ,  0*

3 =d T={3} 

Step 1 Add the constraint d3=1 to model (4)and resolve it 

Step 2 
Eff. DMU1= 0.5011, Eff. DMU2= 1.0004, Eff. DMU3= 0.9999

3*
max 105.0 −×=d ,  0*

2 =d  

Step 3 T={2 , 3} 

Second 
iteration 

Steps 1, 2 Model (4) is infeasible with the additional restrictions of d2+d3=2 

 

   In the step 0, solving model (4) with 333.0*
1 =ε , leads to 3*

3
*
max 105.0 −×== βd and 0*

3 =d . 
This solution implies that DMU3 is most BCC-efficient DMU. Solving model (4) with 

additional restriction of 13 =d , results to 3*
2

*
max 105.0 −×== βd and 0*

2 =d . So DMU2 is also 

most BCC-efficient. Solving model (4) with an additional restriction of 1&1 32 == dd or 

223 =+ dd , leads to infeasibility. Therefore, model (4) implies that both DMU2 and DMU3 are 
BCC-efficient. 
   It may be wrong to search just one efficient DMU as a single most efficient DMU, because in 
fact there are may be different DMUs in a set of DMUs as the most efficient. The above 
example shown this fact and results both DMUs 2 and 3 as the most efficient. Also,it can be 
shown that other ranking methods as Andersen and Petersen, (1993), result to the same score for 
DMU 2 and 3 and could not discriminate between DMU2 and DMU3. We found that the only 
way to determine just one DMU as most BCC-efficient DMU is restricting the feasible region 
using weight restrictions. 
 
Example 3: This numerical example, contains a real dataof nineteen facility layout designs 
(FLDs) that be shown in table 3, originally provided by Ertay et al., (2006) and used in Toloo, 
(2012). Each FLD (or DMU) has two inputs: cost and adjacency score and four outputs: 
flexibility, hand-carry utility, quality and shape ration. 
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Model (5) is applied for data presented in Table 3 and leads to 6*
1 1026 −×=ε . To find the most 

BCC-efficient FLD solving model (4) gives 6319.0*
10

*
max == βd and 0*

10 =d . Solving model (4) 

with an additional restriction of 110 =d  gives 2187.012max == βd and 012 =d .Decreasing the 

optimal value of *
maxd  emphases that FLD10 is the most BCC-efficient DMU, and the DMU12 is 

the second most BCC-efficient DMU.It should be noted that the proposed models of Wang and 
Jiang, (2012), and Foroughi, (2011), to find the most BCC-efficient DMU, selects FLD10 as the 
most BCC-efficient DMU.The result of applying the proposed algorithm to find and rank the 
other most BCC-efficient FLDs, summarized in table 4.Note that, model (1) selects DMU14 as 
the most BCC-efficient FLD. As it can be seen from table 4, FLD14 is one of the most BCC-
efficient DMUs and it is not the only most BCC-efficient DMU. This implies that model (1) is 
unable to find the most efficient DMU, correctly. 

 

 

 

 

 

Table 3. Inputs and outputs of 19 FLDs 

DMU No. 
DEA inputs DEA outputs 

Cost ($) 
Adjacency 

score 
Shape rate Flexibility Quality 

Hand-carry 
utility 

1 20309.56 6405 0.4697 0.0113 0.041 30.89 

2 20411.22 5393 0.438 0.0337 0.0484 31.34 

3 20280.28 5294 0.4392 0.0308 0.0653 30.26 

4 20053.20 4450 0.3776 0.0245 0.0638 28.03 

5 19998.75 4370 0.3526 0.0856 0.0484 25.43 

6 20193.68 4393 0.3674 0.0717 0.0361 29.11 

7 19779.73 2862 0.2854 0.0245 0.0846 25.29 

8 19831.00 5473 0.4398 0.0113 0.0125 24.80 

9 19608.43 5161 0.2868 0.0674 0.0724 24.45 

10 20038.10 6078 0.6624 0.0856 0.0653 26.45 

11 20330.68 4516 0.3437 0.0856 0.0638 29.46 

12 20155.09 3702 0.3526 0.0856 0.0846 28.07 

13 19641.86 5726 0.269 0.0337 0.0361 24.58 

14 20575.67 4639 0.3441 0.0856 0.0638 32.20 

15 20687.50 5646 0.4326 0.0337 0.0452 33.21 

16 20779.75 5507 0.3312 0.0856 0.0653 33.60 

17 19853.38 3912 0.2847 0.0245 0.0638 31.29 

18 19853.38 5974 0.4398 0.0337 0.0179 25.12 

19 20355.00 17402 0.4421 0.0856 0.0217 30.02 

 
Table 4: Ranking of efficient FLDs 

Efficient FLDNo. Ranking *
maxd  

10 1 0.6319 
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12 2 0.2187 
15 3 0.1385 
16 4 0.1179 
7 5 0.0324 
17 6 0.0294 
14 7 0.0143 

 
 
Example 4: The data of this example, twelve flexible manufacturing systems (FMSs), are taken 
from Wang and Jiang, (2012) that are presented in table 5. The goal is finding the most BCC-
efficient FMSs. 
Input 1:  Annual operating and depreciation cost measured inunits of $100,000, 
Input 2:  Floor space requirements of each specific system measuredin thousands of square feet, 
Output 1:  Improvements in qualitative benefits, 
Output 2:  Work in process (WIP), 
Output 3:  Average number of tardy jobs, 
Output 4:  Average yield 

For this example, solving the model (3) gives 040258.0* =ε . Model (1) is infeasible with the 
*ε . Indeed, by using the Toloo (2012) model, we are unable to find the best FMS. Now,we 

apply the proposed model in this paper to find the most BCC-efficient FMS. Appling the model 

(5) for the data presented in table 5 implies 0.01781876*
1 =ε . Model (4) with the *

1ε identifies 
DMU4 as the most BCC-efficient FMS. This is also the selection made byWang and Jiang, 
(2012). 
 

Table 5. Inputs and outputs of 12FMSs 

DMU No. 
DEA inputs DEA outputs 

1 2 1 2 3 4 

1 17.02 5 42 45.3 14.2 30.1 

2 16.46 4.5 39 40.1 13 29.8 

3 11.76 6 26 39.6 13.8 24.5 

4 10.52 4 22 36 11.3 25 

5 9.5 3.8 21 34.2 12 20.4 

6 4.79 5.4 10 20.1 5 16.5 

7 6.21 6.2 14 26.5 7 19.7 

8 11.12 6 25 35.9 9 24.7 

9 3.67 8 4 17.4 0.1 18.1 

10 8.93 7 16 34.3 6.5 20.6 

11 17.74 7.1 43 45.6 14 31.1 

12 14.85 6.2 27 38.7 13.8 25.4 

 
 
 
5- Conclusion 

   In this paper, the drawbacks of the integratedDEA model to find the most BCC-efficient DMU 
introduced by Toloo, (2012), is discussed. It was shown that this model may be infeasible in 
some cases,and in the feasible cases, it cannot correctly find the most BCC-efficient DMU, (see 
example 3). To overcome the drawbacks, a new integrated DEA model presented. It was proved 
that the proposed model is always feasible and can find the most BCC-efficient DMUs.Also, we 
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argued that the most BCC-efficient DMU may not be single and in some cases there are several 
most BCC-efficient DMUs. To find and rank all most BCC-efficient DMUs, a new algorithm 
proposed. The proposed approach in this paper is applied to a real data oftwelve flexible 
manufacturing systems (FMSs) and nineteen facility layout designs (FLDs). 
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