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ABSTRACT 

 

In real world scheduling applications, machines might not be available during certain time 
periods due to deterministic or stochastic causes. In this article, the machine scheduling with 
availability constraints for both deterministic and stochastic cases with different environments, 
constraints and performance measures will be discussed. The existing body of research work in 
the literature will be completely reviewed and the NP-complete models will be identified. 
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1. INTRODUCTION 
 
Scheduling is the process of assigning activities to resources over time. At the end, jobs are 
sequenced based on a problem performance metric. A variety of constraints such as activity 
duration, release and due dates, precedence constraints, and resource availability might affect 
scheduling. 
 
In this article, the effects of resource unavailability on scheduling will be analyzed. Most efforts in 
the area of scheduling adopt the assumption that machines are continuously available. While this 
assumption might be justified in some cases, in real world situation, continuous availability of a 
machine is not usually possible. The machine might not be available due to a deterministic or 
random cause. This limited availability of machines might result from preschedules, preventive 
maintenance, or the overlap of two consecutive time horizons in the rolling time horizon planning 
algorithm. The rolling horizons are used mainly, because most of the real world problems of 
production planning are dynamic. On the other hand, the input data are being frequently updated. 
The period in which a machine is not available has been sometimes named a hole for convenience 
(Kubiak et al. 2002). 
 
In section 2, the characteristics and notations of machine scheduling problem under availability 
constraints will be defined for both deterministic and stochastic cases. In section 3, the existing 
literature will be reviewed for both cases and finally in section 4, the concluding remarks are 
presented. 
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2. PROBLEM CHARACTERISTICS 
 
In production scheduling, orders are fixed in terms of starting and finishing times. When new orders 
arrive, since there are already orders from the past assigned to machines for processing during 
various time intervals, they have to be processed using the remaining free processing intervals. The 
time intervals occupied by the jobs from the previous periods can be thought of as machine 
unavailable periods for the new jobs to be scheduled. The shift pattern of the facility is another 
cause for machine unavailability. Workers are obviously needed to operate machines and they 
cannot be continuously available. They can only work for a certain period of time, for example 
eight hours a day. According to the number of workers and the demand for the product, the facility 
can be in operation for a particular period of time in a day. The remaining time can be thought of as 
unavailable period for the machines. This constraint may be relaxed by increasing the number of 
shifts. Still another cause for machine unavailability at the beginning of the planning horizon occurs 
when the machine has to complete the unfinished jobs of the previous planning period. Preventive 
maintenance is also a reason for machine unavailability. These are examples for which 
unavailability is initiated by a deterministic cause in the sense that processing times, release and due 
dates of the jobs and the time and duration of the unavailability period are known at time zero. 
 
Although deterministic models are easier to analyze, they have some drawbacks. Deterministic 
models assume that there are n jobs (events) to be scheduled and that after scheduling these jobs on 
the resources, the problem is solved. In real world, there might be n jobs in the system at any time, 
with new jobs being added continuously. Sequencing n jobs has to be done without a perfect 
knowledge of the near future and the schedule has to cope with unexpected events. One unexpected 
event might be the entrance of a job with a high priority. This is caused by the operating systems in 
which subprograms with higher priority interfere with the current ongoing program. Another event 
which is mostly considered in the models is the breakdown of machines. There may also be delays 
due to material, changes in release and tail dates, tool unavailability, and fluctuations in processing 
times. All of these events complicate the scheduling problem in most cases. The problem becomes a 
stochastic scheduling problem when the job processing times, their release dates and the starting 
and ending times (or duration) of the unavailability periods are not known in advance. 
 
In sub-sections 3.1 and 3.2, the problem characteristics will be presented. Besides, the following 
notation will be used throughout the article: 
 
 j job index; j = 1, 2, …, n (= number of jobs), 
 i machine or resource index; i = 1, 2, …, m (= number of machines), 
 Jj job j, 
 Mi machine or resource i (in identical processors it is replaced by Pi), 
 tij processing time of Jj on Mi; the subscript i is dropped for single machine and parallel 

machine environments (it is also shown by pij);  
 rj release date (ready time or head) of the Jj,  
 qj latency duration or tail of operation (or job) j, 
 dj due date (deadline) of Jj, 
 wj weight of job j, 
 Cj completion time of job j, 
 k number of holes (unavailability periods), 
 si

k starting time of kth unavailability period on Mi; in case there is only one hole, the 
superscript k is dropped;  
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 ei
k ending time of the kth unavailability period on Mi; in case there is only one hole, the 

superscript k is dropped; 
 Sij setup time of the resource i on Jj, 
 nj number of operations of job j, 
 Bi beginning time of the availability interval of Mi; the subscript i is dropped for single 

machine; 
 Fi finishing time of the availability interval of Mi; subscript i is dropped for single 

machine;  
 tj′ availability change time point of a certain machine; 0 = t1′ < t2′ < … < tj′ < … < tQ′, 
 m(tj′) number of machines being available during time interval [tj′, tj+1′),  
 Cmax makespan = max{Cj; j = 1, 2, …, n},  
 Lmax maximum lateness = max{Cj – dj; j = 1, 2, …, n},  
 tmax max{tj; j = 1, …, n},  
 t1,max max{t1j; j = 1, …, n},  
 Uj 1 if job j is tardy (Cj > dj) and 0 otherwise, 
 Tmax maximum tardiness = max{Uj; j = 1, …, n},  
 MS1 ∑ =

n
j jt1 , 

 MS2 ∑ = +n
j jj tt1 21 )( , 

 κ fraction of the semi-processed part that needs to be reprocessed after the machine has 
become available (0 ≤ κ ≤ 1);  

 Xj processing requirement of Jj, a random variable, 
 Ak uptime (a random variable representing the time between (k - 1) and kth unavailability 

periods), 
 Bk downtime duration (a random variable representing the kth unavailability period), 
 E[X] expectation of random variable X. 
 
Throughout this paper the notation used by Pinedo (2001) and Blażewicz et al. (1996) will be 
adopted with some extensions and modifications. In their notation (α| β |γ), α = α1α2,α3,α4 denotes 
the machine (processor) environment, β denotes the problem characteristics and γ denotes the 
performance measure. Parameter α1 ∈ {∅, Pm, PF, F, J, O, FF, FJ} characterizes the processor 
environment where  
 
 ∅ single machine, 
 Pm parallel machine system (flexible single machine): I or P (identical processors), Q 

(uniform processors), R (unrelated processors), 
 PF permutation flow shop environment, 
 F flow shop dedicated machines system, 
 J job shop dedicated machines system, 
 O open shop dedicated machines system, 
 FF flexible flow shop (multi-processor flow shop, or hybrid flow shop) environment, 
 FJ flexible job shop processor environment. 
 
Parameter α2 denotes the number of machines or stages in the system (∅ if it is arbitrary). 
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Different patterns of machine availability are “often” discussed for the case of “parallel machine” 
systems. These are constant, zigzag, decreasing, increasing, and staircase. According to these cases, 
parameter α3 ∈ {∅, NC, NCzz, NCinc, NCdec, NCinczz, NCdeczz, NCsc} denotes the machine availability 
for which the following explanations are in order: 
 
(1) If all machines are continuously available, the pattern will be called constant (α3=Ø). 
(2) If there are only n or n - 1 machines available in each interval, then the pattern is called 

zigzag (α3 = NCzz). 
(3) A pattern will be called increasing (decreasing) if for all j ∈ IN: m(tj′) ≥ max1 ≤ u ≤ j − 1{m(tu′)} 

(m(tj) ≤ min1 ≤ u ≤ j − 1{m(tu′)}), i.e., the number of machines available in interval [tj′ - 1, tj′) is 
not larger (smaller) than this number in interval [tj′, tj′ + 1) (α3 = NCinc (NCdec)). 

(4) A pattern will be called increasing (decreasing) zigzag if for all j ∈ IN: m(tj′) ≥ 
max1≤u≤j−1{m(tu′) - 1} (m(tj′) ≤ min1 ≤ u ≤ j − 1{m(tu′) + 1}) (α3 = NCinczz (NCdeczz). 

(5) A pattern will be called staircase if for all intervals the availability of Mi implies the 
availability of Mi − 1 (α3 = NCsc). Patterns (1)-(4) are special cases of (5). 

(6) A pattern is called arbitrary if none of the conditions (1)-(5) applies (α3 = NC). Patterns 
defined in (1)-(5) are special cases of the one in (6). Some authors use NCwin instead of NC. 

 
An unavailability period that allows an operation to be interrupted and resumed after a period is 
called “crossable” while an unavailability period that prevents the interruption of any operation, 
even if the operation is resumable, is called “non-crossable”. We distinguish three cases: all 
unavailability periods are crossable, denoted by cr; all unavailability periods are non-crossable, 
denoted by ncr; some unavailability periods are crossable and some non-crossable, denoted by 
cr/ncr (α4 ∈ {cr, ncr, cr/ncr, Ø}). 
 
Most of the models with availability constraints are derived without considering α3 condition and 
are applicable under conditions (2)-(6). In the literature, there are 4 cases relevant to this subject 
matter. When a job cannot be finished before the next down period of a machine and the job has to 
restart, then the job is called nonresumable (nr). If a job has to partially restart after the machine has 
become available, then it is called semiresumable (sr). If a task can continue to be processed on the 
same machine after the machine has become available, then the job is called resumable (rs). In this 
case, some authors say that pre-emption is allowed. If some operations are resumable and some 
others non-resumable, availability constraint will be denoted by rs/nr. β belong to {n = b, pmtn, 
ppmtn , prec, rj, chains, tree, no-wait, rs, sr, nr, rs/nr, (Mk

i), dj, Sij, tj = p, Ø}; b and p are constant 
definite numbers and Mk

i shows that there are k holes on Mi, and if i isn’t defined by a constant 
number, it means k unavailability periods exist on all processors. When there is only one hole, the 
superscript k is dropped. Some authors use hk,j instead of Mk

i. The pmtn (prmp), ppmtn and prec 
indicate the preemption, partial pre-emption and general precedence in operations, respectively. 
 
3. LITERATURE REVIEW 
 
This work intends to collect all published cases (work issues) in the literature up to this date; hence, 
all models and problems - which have been cited or published with any cases, environments, 
constraints, characteristics and performance measures - are cited here. Note that if a single machine 
problem or model is NP-complete its extension to PF, F, J, O, FF and/or FJ environment will also 
be NP-complete and this rule is valid for other similar extensions. Furthermore, if a problem or 
model is NP-hard in deterministic case, it will be more complicated in stochastic case. Moreover, a 
problem will be NP with availability constraints if it is NP without those constraints. 
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3.1. Deterministic Case 
 
In deterministic models, the time and the duration of the unavailability period is known in advance. 
It is assumed that Mi is unavailable during the period from si to ei (0 ≤ si ≤ ei) when there is at most 
one unavailability period. If there is more than one unavailability period, then the kth unavailability 
period on Mi will be started and finished at time si

k and ei
k, respectively. In the case of preventive 

maintenance, generally at most one unavailability period is assumed; because it is unlikely that we 
have more than one preventive maintenance period on the shop floor during the scheduling horizon. 
Also, at most one unavailability period is assumed for the special case where the machine may not 
be available at the beginning of the planning horizon (si = 0) because of the uncompleted jobs 
scheduled in the previous planning period. In the shift pattern of the facility, the number of 
unavailability periods may be more than one in the planning horizon. 
 
Each job has a known processing requirement of tij time units. Each machine may process only one 
job and each job may be processed by only one machine at a time. The aim will be to find a feasible 
schedule for n jobs, if one exists, such that all jobs can be processed within the given intervals of the 
machine availability while optimizing a performance criterion. The performance measures studied 
in the literature include minimizing the makespan, flow time, lateness, Lmax, Tmax, ∑Cj, weighted sum 
of completion times (∑wjCj), number of tardy jobs (∑Uj), weighted sum of the number of tardy jobs 
(∑wjUj) and greatest completion time of an operation (max1 ≤ j ≤ n(Cj + qj)) as well as maximizing 
node (resource) availability and minimum completion time. The last objective is used for balancing 
machines utilization levels. 
 
Machine scheduling problems with availability constraints have been studied in the literature in the 
single machine, parallel machines, flow shop, job shop, open shop, flexible flow shop and flexible 
job shop environments. Some problems can be solved optimally by extending the classical 
algorithms used for the problems where the machines are continuously available. Most problems are 
NP-hard. For problems in class-NP dynamic programming (DP) algorithms have been proposed for 
finding optimal solution(s) and/or heuristics with error bound analysis. To show the efficiency of 
the proposed algorithms three types of error bounds are used. Let fH be the objective function value 
obtained by applying some proposed heuristic H for the problem and f* be the objective function 
value of the optimal schedule. Then A = fH - f* is the absolute error, RH = (fH - f*)/f* is the relative 
error and fH / f* is the performance ratio (Türkcan 1999).  
 
3.1.1. Single machine problems 
 
3.1.1.1. Nonresumable availability constraints 
 
Lee (1996) showed that the problem 1| nr |Cmax is NP-hard when single (or multiple) period(s) of 
unavailability (maintenance) occurs. The Longest Processing Time (LPT) algorithm has a relative 
tight error bound of 1/3. Adiri et al. (1989) and Lee and Liman (1992) have studied the problem 
1|nr|∑Cj. They have shown that the problem is NP-hard. Lee and Liman (1992) have shown that the 
SPT algorithm has a worst case relative error bound of 2/7 which is tight. Lee (1996) has shown that 
the problems 1| nr |Lmax, 1| nr |∑Uj and 1| nr |∑wjCj are also NP-hard. When the problem 1|nr|Lmax is 
solved by EDD rule, the error bound is tmax and when the Moore-Hodgson’s algorithm (1968), MH, 
is used to solve the problem 1| nr |∑Uj, the error bound is 1. For the problem 1|nr|∑wjCj, the 
performance ratio of SWPT might be arbitrarily large even while ∀j: wj = tj. 
 
The problem 1| nr |max(Cj + qj) was initially solved by Leon and Wu (1992) by a branch and bound 
(B&B) algorithm that can solve problems with up to 50 operations. Later, Balas et al. (1998) 
considered the single machine problem with delayed precedence constraints and deadlines. 
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For batch production on a single machine, Wang and Cheng (2006) proposed a heuristic with a 
worst-case error bound of 1/2 and showed that this bound is tight. Of course, they considered both 
production and job delivery at the same time where the objective is to minimize the arrival time of 
the last delivery batch to the distribution center (this metric is equivalent to Cmax). They also 
assumed that one vehicle with at most K-job capacity is available to deliver the jobs in a fixed 
transportation time to a distribution center. 
 
Gawiejnowicz (2007) has presented an algorithm to minimize Cmax for sequencing n deteriorating 
jobs on a single machine time-dependent scheduling with non-availability periods (TDSNP) 
problem and k holes (disjoint periods); 1 ≤ k < n and s1 > 0. In this problem, tj = αj.t, where αj > 0 is 
deterioration rate and t > 0 is time (t is applied instead of the starting process time of Jj). He has 
proved that if k = 1, TDSNP problem is NP-complete in the ordinary sense; else (k > 1), TDSNP 
problem is NP-complete in the strong sense. 
 
Chen (2007) has considered a periodic maintenance scheduling problem on a single machine in a 
textile company. A periodic maintenance schedule consists of several maintenance periods and each 
maintenance period is scheduled after a periodic time interval. For simplicity, the processing times 
and due dates can take only integral values. He has developed a near optimal heuristic and an 
optimal B&B algorithm to minimize the performance measure Tmax. The computational results show 
that the proposed heuristic is highly accurate and efficient (quick). 
 
3.1.1.2. Resumable availability constraints 
 
Lee (1996) studied the single machine problem for different performance measures. He showed that 
the makespan for a single machine problem with resumable availability constraint (1| rs |Cmax) is 
minimized by an arbitrary sequence. The minimization of flow time with resumable availability 
constraint on a single machine problem (1| rs |∑Cj) is solved optimally by the Shortest Processing 
Time (SPT) algorithm. In SPT, jobs are scheduled in a non-decreasing order of their processing 
times. 1| rs |Lmax can be solved optimally by the Earliest Due Date (EDD) algorithm, where the jobs 
are scheduled in a nondecreasing order of their due dates. He showed that the MH algorithm can be 
modified to solve the problem 1| rs |∑Uj optimally in O(n.logn) time. 
 
We know that the problem 1| |∑wjCj can be solved optimally by the Shortest Weighted Processing 
Time (SWPT) rule; but when availability constraint is added, Lee (1996) has shown that the 
problem 1| rs |∑wjCj becomes NP-hard, even if wj = tj for all j. A DP algorithm of O(n.tmax.s1) - 
which solves the problem with single unavailability period optimally - is provided by Lee (1996). 
Heuristics with error bound analysis have also been proposed for this problem. The error bound of 
SWPT rule is wj(e1 - s1). The performance of SWPT algorithm might be arbitrarily large even while 
wj = tj for all j. Lee (1996) proposed a heuristic to solve this problem when wj = tj with a relative 
error bound of 1. 
 
Wu and Lee (2003) submitted an algorithm to minimize Cmax for scheduling linear deteriorating jobs 
on a single machine for a for a TDSNP problem with 1 availability constraint. 
The model 1,α1| rj, β1(Mk

1) |max(Cj + qj) with β1 ∈ {rs, nr, rs/nr} is strongly NP-hard since the same 
model without unavailability periods is strongly NP-hard. Canon et al. (2003) solved the problem 
1|rs|max1 ≤ j ≤ n(Cj + qj) by a simple adapting Carlier’s B&B algorithm (1982). Problems with up to 
500 jobs are solved in less than 1 minute in the worst case and in less than 1 second on the average 
by this method. The problem 1,cr/ncr|rs|max(Cj + qj) can be efficiently solved by embedding a B&B 
method for 1| rs |max(Cj + qj) in the solution method of 1| nr |max(Cj + qj) (Mauguière et al. 2005). 
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For minimizing the arrival time of the last delivery batch to the distribution center (~ Cmax) in batch 
production on a single machine, Wang and Cheng (2006) provided a polynomial algorithm to solve 
the problem optimally. 
 
3.1.1.3. Resumable/ Nonresumable availability constraints 
 
For the problem 1,cr| rs/nr |max(Cj + qj), a B&B algorithm was proposed by Mauguière et al. 
(2003a), which makes it possible to solve most of instances with up to 100 operations, though some 
smaller instances seem to be intractable for the procedure. 

Mauguière et al. (2003b) solved the problem 1,cr/ncr| rj, rs/nr(Mk
1), dj |max(Cj + qj) by B&B 

procedure. Another solution method has been proposed by Mauguière et al. (2005). They also 
solved the strongly NP-hard problem 1| ppmtn, rj, dj, qj |max(Cj + lj) by means of an approximation 
algorithm which is a modification of Schrage’s algorithm (Schrage 1971). In this problem the 
latency duration for job j, lj, is equal to max {qj, K – dj}, where K is a constant number. The “rs”, 
“cr/ncr| rs”, “nr”, “cr| rs/nr” and “ppmtn” problems are subsets of “cr/ncr| rs/nr” problem and so, 
1,cr/ncr|rj,rs/nr, dj |max(Cj + qj) is too complicated and hard, but tests have shown that the algorithm 
proposed by Mauguière et al.’s algorithm (2005) solves it in favorite time and accuracy. 
 
3.1.2. Parallel machine problems 
 
3.1.2.1. Nonresumable availability constraints 
 
Mosheiov (1994) studied the problem Pm| nr |∑Cj where Mi is available in time interval [Bi, Fi] and 
showed that SPT is asymptotically optimal as the number of jobs goes to infinity. Lee (1996) has 
shown that the problem Pm2| nr |∑wjCj is also NP-hard. When wj = 1 for all j and M1 is available all 
the time, he provides a DP algorithm of O(n.MS1.s2) to solve the problem optimally. Moreover, Lee 
and Liman (1993) have studied the same problem where machine P1 is available all the time and the 
“identical” machine P2 is available from time 0 to a fixed point in time and have shown that the 
problem is NP-hard. They provided a DP algorithm and proposed a modified SPT based heuristic 
with a worst case error bound of 1/2. The modified SPT rule has the following form: 

Step 1: Assign the shortest task to P1. 

 
Step 2: Assign the remaining tasks in SPT order alternately to both machines until no other tasks 

can be assigned to P2 without violating F2. 
 
Step 3: Assign the remaining tasks to P1. 
 
Figure 1 illustrates how that bound can be reached asymptotically (when ε tends toward 0). The 
modified SPT rule leads to a large idle time for machine P1. 

 
P2 J2  unavailability 
P1 J1 J3 J4  

                                                    0      ε             10 + ε           20 + ε 
 

∑Cj = 30 + 4ε, optimum is 20 + 5ε (t1 = t2 = ε, t3 = t4 = 10) 
 

Figure 1- Example for the modified SPT rule from Lee and Liman (1993).  
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Ullman (1975) was the first who studied the problem I,NC| |Cmax. Lee (1996) has shown that this 
problem is strongly NP-hard (3-partition is a special case). The List Scheduling (LS) algorithm has 
an error bound of m and the LPT algorithm has a tight error bound of (m + 1)/2. If machines have 
different beginning times Bi, the LPT rule will lead to a relative error of RLPT ≤ 1/2 − 1/(2m) or of 
RMLPT ≤ 1/3 if the rule is appropriately modified (see Lee 1991). Both bounds are tight. Note that a 
LPT algorithm leads to a relative error of RLPT ≤ 1/3−1/(3m) for continuously available machines 
(see Graham 1969). The modification uses dummy tasks to simulate the different machine starting 
times Bi. For each machine Pi, a task Tj with processing time tj = Bi is inserted. The dummy tasks are 
merged into the original tasks set and then all tasks are scheduled according to the LPT rule under 
an additional restriction that only one dummy task is assigned to each machine. After finishing the 
schedule, all dummy tasks are moved to the head of machines followed by the remaining tasks 
assigned to each Pi. The LPT rule runs in O(n.logn) and MLPT in O((n + m)log(n + m) + (n + m)m) 
time. Kellerer (1998) presented a dual approximation algorithm using a bin packing approach which 
leads to a tight bound of 1/4 (see Sanlaville and Schmidt 1998). Also for m = 1 the problem remains 
NP-complete as demonstrated by Lee (1996). 
 
Unit Execution Time and Arbitrary Precedence Constraints  
 
Unit execution time (UET) scheduling is for cases that all jobs (tasks) have equal operation time 
which can be assumed to be equal to 1. This is important in application for two reasons: first, it 
contains several frontier problems when looking at complexity issues, and second, it models a 
restrictive version of preemption, when interrupting a task is only allowed at specified [integer] 
moments. Of course, availability changes are also restricted to integer moments. 
 
The considered models are applicable to single machine problems with non-resumable availability 
constraints as well. Based on the performance metric, we divide this case into 2 sections A and B. 
 
A. Minimizing the maximum lateness 
 
Brucker et al. (1977) proved that an Earliest Due Date (EDD) rule can be applied to modified due 
dates and is optimal if the precedence graph is an in-tree. Liu and Sanlaville (1995a) proved that 
this remains true, with a similar modification scheme, for increasing zigzag availability patterns. In 
the same way, Garey and Johnson (1977) proposed an off-line modification scheme so that EDD 
builds optimal schedules on two machines, for arbitrary task graphs. This result can also be 
extended to arbitrary availability patterns as it has been shown by Liu and Sanlaville (1995b).  
 
B. Minimizing the makespan 
 
Problem with arbitrary precedence constraints is NP-complete even for a constant (continuous) 
availability pattern. If the precedence graph is an inforest, the problem is still NP-complete for a 
decreasing pattern. Dynamic programming algorithms might be used for this case.  
 
Some list algorithms are optimal for some specific availability patterns (see Sanlaville and Schmidt 
1998). The list algorithm of Coffman and Graham (1972) is optimal for two machines with arbitrary 
precedence constraints and an arbitrary pattern (see Liu and Sanlaville 1995a). If the graph is an 
interval order graph, the list algorithm will choose the first tasks with the largest set of successors 
(Most Successor First (MSF) rule) that is optimal on an arbitrary availability pattern (see Liu and 
Sanlaville 1995b). Figure 2 shows an instance where any other choice for the first task to be 
scheduled leads to a sub-optimal solution (MSF priority list is J<2-1-3-5-6-4-7> for single and 
parallel machine). Interval order graphs attracted much attention as any precedence graph might be 
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transformed to an interval order graph by adding a set of precedence relations (refer to 
Papadimitriou and Yanakakis, 1979). Hopefully, optimal schedules for interval order graphs might 
lead to satisfactory schedules for arbitrary task graphs. 
 

 
 

M1 unavailability 5 unavailability 
M2 unavailability 3 4   
M3 2 1 6 7  

                        0                           1                   2                      3                     4 = Cmax 
 

Figure 2- Use of the MSF rule for interval order graphs. 
 
Dolev and Warmuth (1985a) demonstrated that Highest Level First (HLF) schedules are optimal if 
the precedence graph is either an inforest (outforest) and the pattern is NCinczz (NCdeczz), or forms 
chains of tasks and arbitrary patterns (see Liu and Sanlaville, 1995a). Dolev and Warmuth (1985b), 
then showed that HLF policy leads to an O(n.logn) “flip-flop” algorithm for scheduling opposing 
forests to zigzag patterns with 2 or 3 machines. Opposing forests are the union of out-trees and in-
trees as hinted by Sanlaville and Schmidt (1998). 
 
3.1.2.2. Resumable availability constraints 
 
Lee (1996) has stated that the problem Pm| rs |Cmax which is harder than Pm| |Cmax, is NP-hard. Lee 
(1991) studied the problem when the unavailability period is at the beginning of the planning 
horizon and there is at most one unavailability period (si = 0, ei ≥ 0 for all i). The LPT rule has a 
tight error bound of 1/2 and the modified LPT algorithm has a tight error bound of 1/3 for it. Lee 
(1996) has provided an error bound analysis for the algorithms LPT1 and LPT2. LPT1 algorithm 
assigns jobs to the minimum loaded machine. In LPT2 algorithm, Jj is assigned to a machine such 
that its finishing time is minimized. The performance ratio of LPT1 can be arbitrarily large even for 
m = 2 when si > 0 for all i. The RLPT2 bound is (m - 1)/2m which is a tight bound. Since 1|rs|∑wjCj is 
NP-hard, Pm2| rs |∑wjCj is also NP-hard for n > 2. This problem is studied by Kaspi and Montreuil 
(1988). When the unavailability period occurs at the beginning of the planning horizon, SPT gives 
the optimal schedule. Lee (1996) provided a Dynamic Programming approach of O(n.MS1.s2.tmax) 
which solves the problem optimally. Lin et al. (1998) studied the parallel machine problem when 
the unavailability period is at the beginning of the planning horizon and there is at most one 
unavailability period. The objective is the maximization of the “minimum completion time”. They 
showed that LPT has a worst case error bound of (2m – 1)/(3m – 2). 
 
Schmidt (1984) studied the problem Pm| prmp, rs |Cmax and gave the conditions for the existence of 
a feasible preemptive schedule when all machines are available in an arbitrary number of time 
intervals. Such a feasible schedule can be constructed in O(n + m.logm) time. He showed that the 
number of induced preemptions is proportional to the total number of processing intervals of all 
processors. Later, Schmidt (1988) considered a more generalized problem which takes into account 
different release and due dates and can be solved in O(n.m.logm) time. For this model, if all 
machines are only available in one and the same time interval (B, F) and tasks are independent, 

1 2 3

654

7



Study of Scheduling Problems with Machine Availability Constraint 369 

McNaughton (1959) has shown that there is a feasible preemptive schedule iff maxj{tj}≤(F-B) and 
∑j tj≤m(F-B). He gave an algorithm of O(n) with at most m − 1 preemptions to construct this 
schedule. 
 
Lawler and Martel (1989) solved the problem Q2| pmtn, rs |∑wjUj. They used dynamic 
programming to propose pseudo-polynomial algorithms (O(∑jwj.n2) or O(n2.tmax)). Nothing, 
however, was say about the effort needed to compute processing capacity in one interval. 
 
For the problem I| pmtn, rs |Lmax, Sanlaville (1995) suggested a nearly on-line priority algorithm 
with an absolute error of A ≤ (m - 1/m)tmax if the availability of machines follows a constant pattern, 
and of A ≤ tmax if the machine availability refers to an increasing zigzag pattern. The priority is 
calculated according to the Smallest Laxity First (SLF) rule, where laxity (or slack time) is the 
difference between the task’s due date and its remaining processing time. The SLF algorithm 
executes in O(n2.tmax) and it is optimal in the case of a zigzag pattern and no release dates. Also for 
I| pmtn, rj , rs , dj |Lmax, if the number of changes of machine availabilities during any time interval 
is linear in length of the interval, an algorithm can be implemented in O(n3.tmax

3(logn + logtmax)) (see 
Sanlaville 1995).This algorithm needs the knowledge of all the data at time 0 and hence is off-line. 
When no release dates are given but due dates have to be considered, Lmax can be minimized using 
the approach suggested by Schmidt (1988) in O(n.m.logn) time. He has showed that the number of 
induced pre-emptions is proportional to the total number of processing intervals and deadlines. 
 
Liu and Sanlaville (1995a) studied the parallel machine problem with resumable availability 
constraints considering the precedence constraints. Problems with chains and arbitrary pattern of 
unavailability can be solved in polynomial time by the Longest Remaining Path (LRP) rule for 
minimizing the makespan (Pm,NC| prmp, chains |Cmax). In case of two parallel machines and 
arbitrary patterns of availability, LRP solves problems with arbitrary task precedence relations 
(Pm2,NC| prmp, prec |Cmax) in time complexity and number of preemptions of O(n2). 
 
Liu and Sanlaville (1995a) showed that results on minimization of Cmax for inforest precedence 
graphs and increasing zigzag patterns can be extended to minimization of Lmax, using SLF rule on 
modified due dates (the modified due date is given by d′j = min{dj, ds(j) + ts(j)}, where index s(j) is 
related to successor job of the Jj when it exists). In the same way, minimizing Lmax on two machines 
with availability constraints is achieved using SLF with a different modification scheme. 
 
Albers and Schmidt (1999, 2001, 2004) investigated an online version of a basic problem 
P,NC|pmtn |Cmax and presented an online algorithm that constructs schedules with an optimal 
makespan if a lookahead period of one unit is given, i.e., the algorithm always knows the next point 
in time when the set of available machines changes. Also, they gave an online algorithm without 
lookahead that constructs nearly optimal schedules. They showed that no online algorithms can 
construct optimal schedules and online algorithms can achieve a bounded competitive ratio if there 
are time intervals during which no machines are available. Schmidt (2000a) also presented a paper 
on performance guarantee of two simple priority rules for offline and online production scheduling 
with limited machine availability. 
 
The problem of scheduling n preemptive jobs on m machines with identical speed under machine 
availability and “eligibility” constraints for minimizing Lmax has been considered by Sheen and Liao 
(2007). Network flow technique is used to formulate this scheduling problem into a series of 
maximum flow problems. They have proposed a polynomial time two-phase binary search 
algorithm to verify the feasibility of the problem and to solve the scheduling problem optimally if a 
feasible schedule exists. Finally, they show that if x is the total number of availability intervals on 
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all machines, and UB and LB are upper and lower bounds found for optimal Lmax by their proposed 
algorithm, respectively; the time complexity of the algorithm will be O((n +(2n + 2x))3log(UB - LB)). 
 
Blażewicz et al. (2000, 2003) investigate preemtable tasks and multiprocessor tasks on parallel 
processors with limited availability and show that this problem becomes NP-hard in the strong 
sense in case of trees and identical processors. If tasks form chains and also they are processed by 
identical processors with a staircase pattern (NCsc) of availability, the problem can be solved in low-
order polynomial time for criterion Cmax and a linear programming approach is required for criterion 
Lmax. The network flow and linear programming approaches are proposed for independent tasks 
scheduled on uniform (Q) and unrelated (R) processors with arbitrary patterns of availability for 
schedule length and maximum lateness criteria, respectively. 
 
Leangsuksun et al. (2005) proposed concepts of integrating high availability cluster mechanism 
with a secure cluster infrastructure. In high-availability problems, the resource (computer or node) 
availability is very important to optimize overall performance. Apon and Wilbur (2003) designed an 
advanced multi processor network (AmpNet) with a high availability in mind. 
 
In batch production on two parallel machines while only one processor has an unavailable interval, 
Wang and Cheng (2006) proposed a heuristic to minimize the arrival time of the last delivery batch 
to the distribution center with a worst-case error bound of 2/3. 
 
Blażewicz et al. (1996) edited a book about this field that can be regarded for detailed studying. 
 
3.1.3. Flow shop and permutation flow shop problems 
 
As demonstrated in Kubiak et al. (2002) and Aggoune and Portmann (2006), the problem F| rj, nr |Z 
in which Z is one of the performance measures mentioned in this paper for m ≥ 2 is strongly NP-
complete; hence, most researchers have just presented algorithms for 2 machines. 
 
3.1.3.1. Nonresumable availability constraints 
 
As stated in section 3.1.1.1, based on the work of Adiri et al.’s work (1989), the problem F| nr |∑Cj 
(and so, F| nr(Mk

i) |∑wjCj) is NP-complete, because the problem 1| nr |∑Cj just by one unavailability 
period is NP-complete. The SPT rule leads to a tight relative error non-greater than 2/7 for this 
problem. For fixed m, the SPT rule is asymptotic optimal if there is not more than one interval of 
non-availability for each machine (refer to Sanlaville and Schmidt 1998). 
 
Allahverdi (1996) considered a two-machine flow shop problem and showed that if only the first 
machine breaks down, the LPT policy will minimize the maximum lateness; while if only the 
second machine breaks down, the SPT policy must be used. 
 
Cheng and Wang (1999) studied the problem F2| nr(Mi

2) |Cmax with two consecutive availability 
constraints. They developed a heuristic and showed that it has a worst-case error bound of 2/3. 
 
Lee (1999) studied the two-machine flow shop problem with nonresumable availability constraints. 
He proposed a heuristic with a relative error bound of 1 when the availability constraint is imposed 
on machine 1. When the availability constraint is imposed on machine 2, Johnson’s Algorithm, JA, 
(Johnson 1954) has a tight relative error bound of 1. Braun et al. (2002) surveyed the problem of 
minimizing the makespan in the two-machine n-job flow-shop scheduling with k1 non-availability 
intervals on each of the two machines. This problem is binary NP-hard even if there is only one 
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non-availability interval either on the first machine or on the second machine. Aggoune and 
Portmann (2006) proved that the problem F,NCwin| n = 2 |Cmax is polynomial and its complexity by 
using their graphic method is at most equal to O(k.m4). 
 
Ng and Kovalyov (2003) studied a two-machine flowshop scheduling problem with an assumption 
that one of the two machines is not available in a specified time period. The problem is known to be 
NP-hard. Pseudo-polynomial dynamic programming algorithms and heuristics with worst case error 
bounds are given in the literature to solve the problem. Those are different for cases the 
unavailability interval is for the first or the second machine. The existence of a fully polynomial 
time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this 
paper, it has been shown that the two cases of the problem under study are equivalent to similar 
partition type problems; then, authors derived a generic FPTAS for the latter problem with O(n5/ 4) 
time complexity. Espinouse et al. (1999) solved the two-machine no-wait flow-shop problem for 
minimizing maximum completion time by assuming each machine has one hole. Wang and Cheng 
(2001) provided 5/3-approximation algorithms for this problem with an unavailable interval. Cheng 
and Liu (2003a, 2003b) surveyed the approximation methods for this problem, too. Since the 
problem with an unavailable interval is NP-hard and the problem with two separate unavailable 
intervals has no polynomial time approximations with constant performance bounds unless P = NP 
(see Espinouse et al. 1999), they have presented a polynomial time approximation scheme for the 
problem when the unavailable interval is imposed on only one machine, or the unavailable intervals 
overlap on the two machines. 
 
Aggoune (2004b) presented a heuristic based on the genetic algorithm and taboo search for the 
problem F| nr |Cmax. Afterwards, Aggoune and Portmann (2006) proposed a new heuristic algorithm 
for this problem based on the development of Aggoune’ heuristic for 2-job (Aggoune 2004a). It 
consists of a procedure that schedules jobs two by two following an input sequence, combined with 
a tabu search (TS). Aggoune and Portmann’s algorithm is more exact than Aggoune’s algorithm 
(2004b), but their algorithm needs more time to access the schedule. The problem F,NCwin| |Cmax is 
NP-hard in the strong sense. It has been shown by Kubiak et al. (2002) that it is impossible to find a 
heuristic with performance guarantee for the makespan minimization in a two-machine flow shop, if 
more than one unavailability period is considered on each machine. 
 
3.1.3.2. Semiresumable availability constraints 
 
Lee (1999) has shown that the two-machine flow shop with semi-resumable availability constraints 
imposed on both machines is NP-hard even if s1 = s2 = s and e1 = e2 = t. He provided a pseudo-
polynomial DP algorithm of O(n.MS2

2.s1. t1,max) for the problem F2| sr(M1) |Cmax. The JA has a tight 
relative error bound of 1 for this problem. Indeed, the JA has a tight relative error of max{1/2, κ} 
and it is optimal when s1 = s2 = 0 and has a relative error bound of κ when s1 = s2 = s and e1 = e2 = t. 
 
3.1.3.3. Resumable availability constraints 
 
Lee (1977) studied the two-machine flow shop model with availability constraints imposed on only 
one machine. He showed that the problems F2| rs(M1) |Cmax and F2| rs(M2) |Cmax are both NP-hard in 
the ordinary sense. He also provided a DP algorithm of O(n.MS2

2.s1.t1,max) to solve the problem 
F2|rs(M1)|Cmax optimally. The JA - which solves F2| |Cmax optimally - has a relative error bound of 1 
and a heuristic was proposed by him with a relative error bound of 1/2 based upon the JA for the 
above model. The JA has a relative error bound of 1/2 for the problem F2| rs(M2) |Cmax. He 
proposed a heuristic to solve this problem with a relative error bound of 1/3. In addition, he 
proposed heuristics with one hole on either M1 or M2 with relative errors 3/2 and 4/3, respectively! 
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Lee (1999) studied this problem again. He proved if s1 = s2 = s and e1 = e2 = t, then the JA will solve 
the problem optimally. He showed that the problem is NP-hard when s1 ≠ s2 and e1 - s1 = e2-s2. In 
this case, the relative error bound of JA might be arbitrarily large. Breit (2004) studied this problem, 
too. He presented an improved algorithm with a relative worst-case error bound of 5/4 while the 
best “fast” approximation algorithm for this problem guarantees a relative worst-case error bound of 
4/3. The tight worst-case bound for the problem F2| rs(M2) |Cmax must be ¼. Kubiak et al. (1997) 
proposed a B&B algorithm for a 2-machine problem, too. 
 
The above results suggest that if there is to exist 1 hole in F2| rs(Mi) |Cmax, it will be better for 
heuristics that it occurs on M2; but Kubiak et al. (2002) showed it isn’t generable when at least two 
holes are allowed to occur, unless P = NP. In other words, they proposed a simple heuristic based 
on JA that guarantees a relative error of 2 in O(n.logn) time if all holes occur on M1; but, such holes 
on M2 make polynomial time heuristics with constant relative error impossible, unless P = NP. The 
optimum sequence between each 2 holes is Johnson’s sequence. They developed a branch and 
bound heuristic based on the above property for F2| rs(Mk

i) |Cmax, too. In addition, their tests show 
that there is no significant difference among computational times for sample examples if holes are 
allowed to occur at least on one of the two machines. There is no polynomial time heuristics with a 
relative constant error for F2| rs(M2

i) |Cmax. The problem F2| rs(Mi) |Cmax ≤ y is usually NP-
Complete (see Blazewicz et al. 2001). Schmidt (2000b) proposed a parallel B&B algorithm for this 
problem. For more details, we refer to the survey of Schmidt (2000b), where existing methods for 
solving scheduling problems under availability constraints as well as complexity results are 
reviewed. 
 
Cheng and Wang (2000) showed that the worst-case error bound 1/2 of the heuristic provided by 
Lee (1997) for the problem F2| rs(M1) |Cmax is tight and then, they developed an improved heuristic 
with a worst-case error bound of 1/3. Wang and Cheng (2007a) have propounded 2 heuristics for 
the problem F2| rs(Mi), Sij |Cmax and show that their worst case error bounds are no longer than 2/3. 
 
Wang and Cheng (2007b) have studied the problem PF2| rs(M1), Sij |Cmax and presented a 
polynomial-time approximation scheme for it. 
 
3.1.4. Job shop problems  
 
3.1.4.1. Nonresumable availability constraints 
 
The single machine algorithm of Balas et al. (1998) is used in a Shifting Bottleneck Procedure to 
solve the job-shop scheduling problem with deadlines. This algorithm can also be used to give an 
approximation algorithm for the problem J| nr, dj |max(Cj + qj) (see Carlier 1982). The problem 
J|nr|Cmax was solved exactly by Aggoune (2002) using a B&B algorithm with lower bound based on 
a two-job-shop problem with heads and tails and unavailability periods. 
 
Aggoune (2004a) extended Akers’ geometric approach to J| nr(Mk

i), n = 2 |Cmax and named his 
method temporized geometric approach (TGA) that is polynomial and its complexity is at most 
equal to O(k.u4), where u = max{n1, n2}. 
 
3.1.4.2. Resumable availability constraints 
 
Mauguière et al. (2003a) proposed a B&B algorithm for the problem J| rs(Mk

i) |Cmax. Computational 
results show that solving the problem J| rs |Cmax is a little more difficult than the problem without 
unavailability periods. 
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Aggoune (2004a) extended his nonresumable “TGA” to J| rs(Mk
i), n = 2 |Cmax that is polynomial and 

its complexity is at most equal to O(ku4); u = max{n1, n2}. 
 
3.1.4.3. Resumable/ Nonresumable availability constraints 
 
Mauguière et al. (2003b) proposed a B&B algorithm for the problem J,cr| rs/nr(Mk

i) |Cmax. They 
have extended their job-shop algorithms to J,cr/ncr| rj, rs/nr(Mk

i) |Cmax afterward (Mauguière et al. 
2005). 
 
3.1.5. Open shop problems  
 
3.1.5.1. Nonresumable availability constraints  
 
Breit et al. (2001a, 2001b) studied a two-machine open shop scheduling problem without 
preemption, in which one machine is not available for processing during a given time interval. The 
objective is to minimize the makespan. They showed that the problem is NP-hard and presented an 
approximation algorithm with a worst-case ratio of 4/3. 
 
3.1.5.2. Resumable availability constraints 
 
Lorigeon et al. (2002) studied O2| rs |Cmax. This problem is NP-hard. They developed a dynamic 
programming algorithm with pseudo-polynomial time to solve the problem optimally when a 
machine isn’t available at time si > 0. Then, they proposed a mixed integer linear programming 
formulation that allows solving instances with up to 500 jobs optimally in less than five minutes 
with CPLEX solver. Moreover, they showed that any heuristic algorithm has a worst-case error 
bound of one for this problem. Kubzin et al. (2005) considered the problem O2| rs |Cmax, as well. 
They presented two polynomial-time approximation schemes: one of which handles the problem 
with one non-availability interval on each machine and the other for the problem with several 
unavailability intervals on one of the machines. Problems with a more general structure of the 
unavailability intervals cannot be approximated in polynomial time within a constant factor, unless 
P = NP. 
 
3.1.6. Flexible flow shop 
 
Allaoui and Artiba (2006) surveyed the two-stage hybrid flow shop non-resumable scheduling 
problem to minimize Cmax with only one machine on the first stage and m machines on the second 
stage. They considered that each machine is subject to at most one unavailability period and 
discussed the complexity of the problem and proposed a B&B model for its solution. Finally, they 
have calculated the worst-case performances of three heuristics: LIST algorithm, LPT algorithm and 
H-heuristic. 
 
Jungwattanakit et al. (2007) have formulated a 0-1 mixed integer program for minimizing the 
convex combinations of Cmax and ∑Uj in FF problem scheduling with n independent jobs, unrelated 
parallel machines in each stage, release dates, due dates, sequence- and machine-dependent setup 
times, which is often present in the textile industry. They assumed that only one unavailability 
period may occur for each machine in zero time (si = 0 ≤ ei) and the preemption of jobs isn’t 
permitted (the problem is non-resumable). Since this problem is NP-hard in the strong sense, they 
have developed heuristic algorithms to solve it approximately. Initially, several basic existing 
dispatching rules and well-known constructive heuristics for flow shop makespan scheduling 
problems were extended to solve the problem under consideration. To improve the solutions, 
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polynomial heuristic improvement methods based on the shifting of the jobs were then applied. 
Finally, genetic algorithms were suggested to tackle this problem. 
 
3.1.7. Flexible job shop (FJ) 
 
Levitin (2000) provided some details about the flexible job-shop sequencing and scheduling 
problems. A genetic algorithm-based approach was developed by Chan et al. (2006) for assigning 
operations to machines and sequencing jobs on machines to optimize the system objectives in FJ 
resource-constrained problem iteratively. 
 
Dehnar Saidy and Taghavi-Fard (2008) propounded an exact geometric algorithm for the problem 
FJ,cr/ncr| n = 2, rs/nr/sr(Mi

k), rj, mi ≤ 2, Sij |γ, where mi is the number of identical processors in each 
stage (work center) and γ is one of the performance measures based on the completion time. The 
operations of jobs can be nonresumable, resumable or semi-resumable (in general case). It is 
assumed that setup time is sequence-independent. Their algorithm can be applied to more simple 
models, too. This problem is general and strongly NP-hard. 
 
3.2. Stochastic Case 
 
In stochastic models, the processing times, the release dates, the starting time and the duration of the 
unavailability period are not known beforetime; but, it is assumed that the distributions of the 
processing times, due dates (deadlines), repair time and time at which breakdown occurs are known 
at time 0. The processing time of a job becomes known only when the Jj is completed. The uptime 
(Ak) and downtime (Bk) of machines and the processing requirement of the job j (Xj) are assumed to 
be independent identically distributed random variables. 
 
We consider two sub-cases for the stochastic case: non-resumable and resumable problems. While 
distribution functions of the uptimes, downtimes and repair time of machines, jobs and the 
processing times are often the same before, during, and after the interruption(s), but other 
distribution functions may be different from the original period for the case of some special types of 
breakdowns. 
 
In general, the breakdown process introduces serious complications. In the literature, single 
machine problems are often encountered. The performance measures used in the literature are the 
expected values of the weighted sum of completion times, the flow time, the weighted sum of number 
of tardy jobs, the maximum expected lateness, the expected maximum lateness, the availability of 
heterogeneous systems with average response time of multi-class tasks, the weighted discounted 
reward, the truncated cost, the number of tardy jobs under stochastic order, the maximum holding 
cost, and the “expected cost” where the cost function is proportionate to the completion time of Jj. 
 
When preemption is allowed, the decision of which part should be processed is given at time t 
according to the state of the system. When preemption is not allowed, mostly the sequence of jobs 
won’t be changed if a breakdown occurs. Heuristics that are used for problems when machines are 
continuously available are also used for the problems in which breakdowns occur. In some studies 
the conditions under which optimal strategies exist are provided. 
 
3.2.1. Non-resumable availability constraints 
 
Adiri et al. (1989) studied the single machine problem with nonresumable availability constraint in 
which the machine is subject to breakdowns. The objective was the minimization of the expected 
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flow time. If the breakdown distribution function over the time is concave, then SPT will 
asymptotically minimize the expected flow time. For the case of multiple breakdowns, SPT 
minimizes the expected flow time when the breakdown times are exponentially distributed. 
 
Birge et al. (1990) studied the single machine problem with multiple breakdowns. They considered 
a simple recourse in their analytical models, in which a permutation schedule - that is fixed a priori - 
is always maintained and also, certain completion times may be pushed back as a result of one or 
more breakdowns. The simple recourse has been studied with the objective of minimizing 
E[∑fj(Cj)], where fj(t) is a nondecreasing real-valued cost function of time t. For the case where we 
intend to minimize E[∑wjCj], a strong bound on the difference between the optimal policy and the 
SWPT policy has been provided. Li and Cao (1995) studied a more generalized version of the 
problem. The single machine is subject to several types of breakdowns according to different 
probabilities. After the machine breakdown occurs, the jobs’ processing times, uptime and the 
repair time of the machine might be different from the original period. There have been a number of 
attempts to arrive at the optimal nonpreemptive policies that minimize E[∑wjCj], E[∑wjUj] with 
constant due dates, and E[∑wjCj] with random due dates. For the single-machine problem, Lee and 
Lin (2001) assumed that the unavailable time is unknown but with a probabilistic distribution. They 
have studied the rate-modifying maintenance problems with objective functions such as: expected 
makespan, total expected completion time, maximum expected lateness, and expected maximum 
lateness. 
 
A dominance relation for minimizing the makespan with probability 1 was established by 
Allahverdi (1995) for two-machine flowshop scheduling problem with set-up times and random 
machine breakdowns. Furthermore, it has been shown that Yoshida and Hitomi's algorithm (1979), 
YHA, which solves the deterministic problem PF2| Sij |Cmax optimally in O(n.logn) time, 
stochastically minimizes the makespan when random breakdowns are present. Allahverdi (1997) 
published another paper in which he considered the removal times into this latter problem. 
Allahverdi and Mittenthal (1998) investigated two-machine flow shop scheduling problem with 
dual criteria (expected makespan and mean flow time) subject to random breakdown.  
 
3.2.2. Resumable availability constraints 
 
Glazebrook (1987) studied the problem 1| prmp, rs |E[∑f(Cj)], where f(t) is a linear or discounted 
cost function of the time t. For the case of geometric uptimes, conditions were given under which 
breakdowns have no effects on optimal allocation strategies. Two different procedures were given 
which yield an upper bound on the loss incurred when a processing strategy is adopted under the 
assumption of no breakdowns or when breakdowns occur in fact. Birge et al. (1990) studied the 
simple recourse with the multiple breakdowns and the objective of minimizing E[∑fj(Cj)], where 
fj(t) is a non-decreasing real-valued cost function of time t. Li and Cao (1995) studied a more 
generalized version of the problem as mentioned in the section 3.2.1. Pinedo (2001) provided the 
results for the problem 1| prmp, rs |E[∑wjCj]. He has shown that shortest weighted expected 
processing time (SWEPT) algorithm solves the single machine problem with multiple breakdowns 
in order to minimize E[∑wjCj] when uptimes are independent exponential random variables and 
downtimes are independently and identically distributed geometric random variables. Birge and 
Glazebrook (1988) studied the single machine problem (1| prmp, rs |E[∑wjCj]) with multiple 
breakdowns, too. The state of the system at time t is determined by machine’s condition (up or 
down), the time that machine has been in that condition and the set of completed jobs cumulative 
processing time up to time t for all unfinished jobs. The decision is made at time t to determine 
which uncompleted job to process during [t, t + 1). The objective is to minimize the expected 
weighted flow time (E[∑wjCj]). The error and the relative error bounds were provided for the 
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algorithm which selects the uncompleted job with the largest Gittins’ index to be processed. In 
addition to the nonresumable case, Lee and Lin (2001) studied the rate-modifying maintenance 
single machine scheduling problems for resumable case with the same assumptions and 
performance measures. 
 
For minimization of E[Cmax], Schopf and Berman (1999) defined a stochastic scheduling policy 
based on time-balancing for data parallel applications whose execution behavior can be represented 
as a normal distribution. 
 
Cai et al. (2005) studied the problem of finding a dynamically optimal policy to process n jobs on a 
single machine subject to stochastic preemptive-repeat-breakdowns (nonresumable operations). 
Their study allows: 1) the uptimes and downtimes of machines to follow general probability 
distributions, not necessarily independent of each other; 2) the breakdown process to depend upon 
the job being processed; and 3) the processing times of jobs to be random variables following 
arbitrary distributions. They considered two possible cases for the processing time of a job 
interrupted by a breakdown: a) it is resampled according to its probability distribution or b) it is the 
same random variable as that before the breakdown. For the problem with resampled processing 
times, it has been deduced the optimal dynamic policies for criteria including: weighted discounted 
reward, weighted flowtime, truncated cost, number of tardy jobs under stochastic order, and 
maximum holding cost. For the problem with the same random processing time, a set of Gittins 
indices were derived that give the optimal dynamic policies under the criteria of the weighted 
discounted reward and the weighted flowtime. 
 
Xie and Qin (2006) proposed an algorithm for stochastic scheduling with availability constraints in 
“heterogeneous cluster” to improve the availability of heterogeneous systems while reducing 
average response time of multi-class tasks. A heterogeneous cluster consists of an array of 
diverse computers, called computing nodes, which are connected by a high-performance 
network. To date heterogeneous clusters have been emerging as popular computing 
platforms for computationally intensive applications with diverse computing needs. 
Processors operate at different speeds and are not continuously available for processing, in 
heterogeneous clusters. Indeed, heterogeneous cluster scheduling is a parallel system 
scheduling problem with high performance object. Examples of such constraints can be found 
in many areas. For instance, computational nodes in heterogeneous clusters need to be maintained 
periodically to prevent malfunctions (Lau and Zhang 2004). The “queue systems” can be considered 
in this area, as well. 
 
4. CONCLUSION 
 
Machine scheduling with availability constraint becomes increasingly more important as a better 
understanding of their importance in various applications is formed. The cause of the machine 
unavailability might be either deterministic or stochastic. In this paper, the related problems 
characteristics and literature were presented for both deterministic and stochastic cases with any 
famous performance metric, job (or operation) resumability and holes cross-ability in the single 
machine, Pm, PF, F, J, O, FF and FJ environments. This paper can be a good reference for those 
who are interested in doing research about the jobs sequencing and scheduling problems under 
limited resource availability. 
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We have summarized the known polynomial (P) and pseudo-P models in Table 1. It is clear that the 
results of Table 1 are applicable to simpler problems with equivalent performance measures, as 
well. 
 

Table 1- P and pseudo-P summary (the complexity is stable with the conditions within parentheses). 
 

Model P and pseudo-P criteria 
1,NC| pmtn | 

1,NC| pmtn(M1), wj = tj | 
I2,NC| prec, tj = 1 | 
I2,NC| pmtn, prec | 

I2,NC| pmtn, rj | 
Q2,NC| pmtn | 

I,NCzz| tree, tj = 1 
I,NCzz| pmtn, tree 

I,NCsc| chains, pmtn | 
I,NC| 

I,NC| tj = 1 
I,NC| pmtn 

I,NC| pmtn, rj | 
F2,NC| ppmtn(M1) | 

F2,NC| ppmtn(Mk
i), s1 = s2, e1 = e2 | 

F2,NC| no-wait(Mi) | 
J,NC| n = 2 

O2,NC| pmtn(Mk
1 or Mk

2) | 
O2,NC| pmtn(Mi) | 

PF2,NC| pmtn (M1), Sij | 

∑Cj, Cmax, Lmax, ∑Uj 
∑wjCj 

Cmax, Lmax 
Cmax, Lmax 
∑wjCj 
∑wjUj 

Cmax, Lmax (in tree) 
Cmax, Lmax (in tree) 

Cmax 
∑Cj (different beginning times) 

Cmax (interval order or chains), Lmax (in-tree) 
Cmax (chains), Lmax (eligibility) 

Cmax, Lmax 
Cmax 
Cmax 
∑Cj 

Cmax (pmtn) 
Cmax 
Cmax 
Cmax 

 
Most of the heuristics with error bound analysis have been gathered in this article. Some of the 
classical algorithms (for unlimited availability, such as: SPT, SWPT, SWEPT, LRP, JA) are used 
for the same limited availability models. In some cases those heuristics produce optimal solution(s). 
 
We have summarized the known polynomial (P) and pseudo-P models in Table 1. It is clear that the 
results of Table 1 are applicable to more simple problems and equivalent performance measures, as 
well. Most of the problems are NP-hard. Of course, majority of the problems of the FJ environment 
are strongly NP-hard. Some optimal procedures are provided for problems in class P. The DP 
approaches are intended for solving the NP-hard problems. 
 
Günter Schmidt has been likely the most active author in this filed and McNaughton the first. 
 
If availability constraints come from unexpected breakdowns, fully online algorithms will be 
needed; but in case of preemptive scheduling, many results of optimality concern the best nearly on-
line algorithms. It is an open question to look for the optimality results from fully on-line algorithms 
and specific availability patterns, or at least to compute performance bounds.  
 
The recent research efforts and papers are considering penalties after the interruption of an 
operation to enable one to investigate scheduling problems with some setup constraints (namely 
semi-resumable job sequencing with some extensions). A direction for authors is to assume that one 
operation cannot be interrupted on any time, but only at given instants. Furthermore, we suggest 
that authors work on more complicated problems such as sequencing n jobs on m resources in the FJ 
or O environment. 
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