
Journal of Industrial and Systems Engineering
Vol. 1, No. 4, pp 345-359
Winter 2008

Generalized Cyclic Open Shop Scheduling and a Hybrid Algorithm

Mohammad Modarres1*, Mahsa Ghandehari

Industrial Engineering Department, Sharif University of Technology, Tehran, Iran

ABSTRACT

In this paper, we first introduce a generalized version of open shop scheduling (OSS), called
generalized cyclic open shop scheduling (GCOSS) and then develop a hybrid method of
metaheuristic to solve this problem. Open shop scheduling is concerned with processing n
jobs on m machines, where each job has exactly m operations and operation i of each job
has to be processed on machine i . However, in our proposed model of GCOSS, processing
each operation needs more than one machine (or other resources) simultaneously. Furthermore,
the schedule is repeated more than once. It is known that OSS is NP-hard. Therefore, for
obtaining a good solution for GCOSS, which is obviously NP-hard, a hybrid algorithm is also
developed. This method is constructed by hybridizing ant colony optimization (ACO), beam
search and linear programming (LP). To verify the accuracy of the method, we also compare
the results of this algorithm with the optimal solution for some special problems.

Key words: Open shop scheduling; Cyclic open shop scheduling; Metaheuristic; ACO, Beam
search.

1. INTRODUCTION

Open shop scheduling problem has a wide range of applications in many industries (Liaw, 2003).
However, the assumption that each job has exactly m operations and its ith operation has to be
processed on machine i does not hold for many real-world problems. Therefore, in order to make
it more realistic, we introduce a new version of OSS by relaxing these restrictive assumptions. In
this version of generalized cyclic open shop scheduling (GCOSS), it is assumed each operation
needs more than one machine or resources (such as technician or special tools) simultaneously.

OSS problems (and consequently GCOSS) are shown to be NP-Hard (Garey and Johnson, 1979).
As a matter of fact, the structure of OSS is larger than any other typical scheduling problem. Thus,
in this paper we develop an algorithm based on hybridizing ACO, linear programming and Beam
search.

To our knowledge, a similar approach to model cyclic open shop scheduling problems, even for a
single period problem, has not been applied previously in the literature, although the circular
coloring concept has been applied in other scheduling problems. The only paper in the literature,
regarding cyclic open shop scheduling is by Kubale and Nadolski (2005). They showed this
problem is NP-hard for a 3-processor system but it is polynomially solvable for a 2-processor one.

* Corresponding Author

346 Modarres and Ghandehari

They proved if a given open shop can be scheduled in 3 time units then it is polynomially solvable.
They also proved that in a compact open shop, the problem of minimizing maxC for 2-processor to
determine the existence of a legal schedule is also NP-hard.

Our paper is organized as follows. Section 2 presents the definition and the structure of the
problem. In section 3, we describe how to apply the concept of graph circular coloring to formulate
this problem. In section 4, a metaheuristic algorithm is developed to tackle this problem. We
provide an experimental evaluation in section 5.

2. GENERALIZED CYCLIC OPEN SHOP SCHEDULING PROBLEM

The generalized cyclic open shop scheduling (GCOSS) problem is defined as follows. Consider a
manufacturing system in which a number of jobs must be processed. Each job consists of several
operations. Each operation must be processed without preemption, i.e. the processing of an
operation cannot be interrupted. Like OSS, operations in each job can be processed in any order.
Each operation needs to be processed on a number of machines (or needs a set of resources)
simultaneously. The processing time of each operation is a given specified time. Each machine can
process at most one operation at a time. Similarly, each resource cannot be used by more than one
operation at a time. Operations belonging to the same job cannot be processed simultaneously. We
use the following notation to formulate this problem.

 },...,,{ 21 mMMMM = the set of different machines (or dedicated resources);
 },...,,{ 21 nJJJJ = the set of different jobs to be processed;
 jn the number of different operations of job j ;

 },...,,{ 21 jjnjjj oooO = the set of operations of job j ;

 jim the set of machines (or resources) that operation jio needs for
processing simultaneously;

 O the set of all operations ;

 j
j J

O O
∈

=∑ the total number of operations.

Each permutation of operations represents a solution to this problem. The search space can easily
be defined as the set of all permutations of all operations. Function +→ IROP : assigns the
processing time to operations.

There are several criteria to measure the cost of a solution. In this paper, we deal with makespan
minimization while the process can be repeated more than once. In fact, we search for a solution
where the makespan is minimized in a cyclic version of the problem. Adopting the other objective
functions does not change the structure of the model.

Example 2.1: in this example we represent an instance of the GCOSS with four jobs
of },,,{ 4321 JJJJJ = and the operations of },,,,,,{ 42413122211211 oooooooO = . There are three
different machines 321 ,, MMM ,and three operators 654 , MMM . Thus, the set of resources is

},,,,,{ 654321 MMMMMMM = .

Generalized cyclic open shop scheduling and a hybrid algorithm 347

Job 1J consists of operations 11o and 12o , or by our notation, },{ 12111 ooO = . Similarly,
},{ 22212 ooO = , }{ 313 oO = and },{ 42414 ooO = . Operation 11o must be processed on machine

1M under supervising operator 4M , or by our notation, },{ 4111 MMm = . Similarly,

},{},,{
},,{},,{},,{},,{

61425241

4331632252215212

MMmMMm
MMmMMmMMmMMm

==
====

Table 2.1. Processing times of operations, ijp

3. GRAPHICAL MODEL OF THE PROBLEM

An open shop scheduling (as well as a generalized cyclic open shop scheduling problem) can be
represented by a graph.

Definition 3.1: A pair of operations is called related (or incompatible) if either both belong to the
same job or if they need at least a common machine (or resource) to be processed. Let jiR

represent the set of all operations related to jio .

Graphical model of OSS. An OSS problem can be modeled as a bipartite graph. In this graph,
each edge represents an operation with a weight of jip which is equal to the processing time of
operation j on machine i .

Graphical model of GCOSS. Since in GCOSS more than one machine is needed to process an
operation, this problem cannot be modeled as a bipartite graph anymore. Thus, this problem is
modeled as a weighted graph),(EVG = , where V and E represent the set of nodes and edges,
respectively. In this graph, an operation, say jio , is represented as a node of this graph, while the

weight of this node is equal to the processing time of this operation and obviously OV = . By
definition 1, there exists an edge between a pair of nodes, if and only if the corresponding
operations are related.

It can be shown easily that the chromatic number of this weighted graph is equal to the minimal
makespan of the schedule.

If the production is repeated, in some cases the makespan can be improved by making the schedule
compact. This is called cyclic schedule. In this case, it can be shown that the minimal makespan of
the schedule is equal to the circular chromatic number of weighted graphG . The circular
chromatic number of weighted graph is defined as follows.

 j i 1 2

1 1 1

2 1 1

3 1.5 --
4 0.5 0.5

348 Modarres and Ghandehari

Definition 3.2. Consider a weighted graph of),(wG with vertex set V and edge set E , where
:w V +→ are weights of vertices. Then, the r-circular coloring of this graph is a mapping Γ of

V to open arc of an Euclidean circle C of length r, such that:

i))(xΓ and)(yΓ are disjoint if)(),(GEyx ∈ .
ii) the length of)(xΓ is at least)(xw for all vertices Vx∈ .

The circular-chromatic number),(wGcχ of weighted graph),(wG is),(wGcχ = Inf{r : there is
an r circular coloring of),(wG }.

If the weight function takes constant value 1, then),()(wGG cc χχ = , (Zhu, 1992) . It is proved

that),(wGcχ is always attainable (Deuber and Zhu, 1997).

We use the concept of graph circular coloring to formulate GCOSS. The following mathematical
model represents this problem, where , ,jit i j∀ are decision variables indicating the starting time of

operation jio and r is the makespan.

In subsequent section, a linear model which is the relaxed version of this formulation is applied to
construct our proposed algorithm of Beam-ACO.

 ,

.

.

 .

ji

ji j i ji jj ii ji j i

ji j i j i jj ii ji j i

ji j i jij i ji

Min Z r
r t i j

t t p M y o R

t t r p M y o R

t t M y o

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

=
≥ ∀

− ≥ − ∀ ∈

− ≥ − + ∀ ∈

≥ − ∀ ∈

1

{0,1} , , ,

j i

jij i j i ji ji j i

jij i

R

y y o R

y j i j i

′ ′

′ ′ ′ ′ ′ ′

′ ′

+ = ∀ ∈

′ ′∈ ∀

Where M represents a large number.

The graph of Figure 2a corresponds to the GCOSS problem of Example 2.1. Figure 2b and Figure
2c represent a single cycle and periodic schedule of this problem, respectively.

Figure 2a. Graphical representation of Example 2.1.

O11

O12

O21O22

O31

O41

O42

Generalized cyclic open shop scheduling and a hybrid algorithm 349

 time 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
Jobs

1J

2J

3J

4J

Figure 2b. Single cycle schedule of of Example 2.1.

 time 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Jobs
 1J

2J

3J

4J

Figure 2c. Periodic schedule of of Example 2.1.

4. HYBRID ALGORITHM

In this section, we introduce an algorithm developed for obtaining a good (near optimal) solution of
GCOSS problems. This algorithm is constructed by hybridizing ant colony optimization (ACO),
Beam search and a local search technique. Both ACO and beam search belong to the category of
constructive methods which obtain a complete solution by generating a sequence of partial
solutions. A partial solution is defined as a subset of a solution in which only some variables are
fixed, but not all. After assigning the value for all variables, the solution is called a complete one.
In fact, rather than moving from a solution to another one, in ACO (and also in search beam), the
number of assigned variables is increased in subsequent iterations (Blum, 2005). At each step,
partial solutions are extended by adding a component from an allowable set. This procedure is
ended when either a partial solution can not be extended any more or become a complete feasible
solution.

Before presenting the proposed algorithm, we review ant colony optimization (ACO) and beam
search briefly.

4.1. Ant colony optimization (ACO)

Ant colony optimization (ACO) is a metaheuristic to tackle hard combinatorial optimization
problems. It was first proposed in the early 1990s (Dorigo and Stutzle, 2004. This algorithm is
constructed on the basis of foraging behavior of real ants. In this algorithm, the solutions are
constructed based on a probabilistic model, called pheromone model. Pheromone model consists of
a set of parametersτ , called pheromone trail. The value of pheromone parameter is usually
associated with the set of partial solutions obtained up to now.

At each step, a number of ants, say an , construct an partial solutions probabilistically. Some of the
constructed solutions are used to update the pheromone values. These values along with another

 O31

 O21 O22

 O12 O11

 O42 O41

 O31 O31

 O22 O21 O22 O21
 O11 O12 O11 O12

 O41 O42 O41 O42

350 Modarres and Ghandehari

parameter, called heuristic information, are used to determine the transition probabilities
)(),,|(psNccP ∈∀ητ , where p

ts is the current partial solutions at step t and ()p
tN s is the set

of neighborhood of p
ts , (as will be defined later). Transition probabilities are used to select the next

component of partial solution at each step of solution construction. A quantity named convergence
factor is also computed whenever the pheromones are updated. This factor takes value 1 if the ants
determine a common trail.

Actually the pheromone model leads ants to generate high quality solutions over time. Heuristic
information is a weighting function +→ IRsN p

t)(:η and assigns a weight to each possible

extension of current partial solution p
ts . These weights reflect the benefit of extending a partial

solution. The algorithm terminates, if the stopping conditions such as a maximum CPU time hold.
For more information, the reader is referred to Dorigo and Stutzle, 2004.

4. 2. Beam search

Beam search (BS) is a classical tree search that was introduced in the context of scheduling and
since then has been applied to many other combinatorial optimization problems successfully. This
technique is an incomplete derivative of branch and bound algorithm (Ow and Morton, 1998).

The central idea behind BS is to extend the partial solution in several possible ways. At each step, a
partial solution from beam set B is extended at most in extk possible ways. Each newly obtained
partial solution is either a complete solution and is stored in the set of complete solution CB , or
again a partial solution and is stored in the set of further extensible partial solution extB . At the end
of each step, when all members of B are extended, up to bwk (called beam width) solutions are
selected from the set of extB , based on the value of their lower bounds, provided extB is not empty.
Actually, for each partial solution, a lower bound is computed for the objective function of all
complete solutions which are constructed from this partial solution.

At the first step, the set beam B consists of only one partial solution, say >=< 11os p . The reason
is that in a cyclic scheduling, the order of operations is not important. Thus, one operation is
selected arbitrarily to build a schedule. This algorithm terminates when set extB is empty.

One major difference between ACO and beam search is that in ACO the set of partial solutions is
constructed probabilistically, while beam search is a method that solutions are constructed
deterministically. We use a hybridized method to take advantage of the benefit of combining both
ways of exploring the search space.

4. 3. The algorithm

Ant colony optimization is the basic framework of the proposed algorithm. In standard ACO a
group of ants generate the partial solutions probabilistically by considering two guides, the
pheromone values and the heuristic information. However, in this method by adopting beam search
rules, a component is selected deterministically to append the solution. In fact, the probabilistic
choice of another component to append a partial solution in ACO is replaced by the deterministic
choice of beam search.

Generalized cyclic open shop scheduling and a hybrid algorithm 351

The best complete solutions are stored in two sets, bss and bestS representing the best solutions so
far and the best solutions after the previous restart, respectively.

The main algorithm is called Beam-ACO (or simply Algorithm 1). However, another supporting
algorithm, called Beam-ACO-Construction (or simply Algorithm 2), constructs the structure of the
partial solution. Actually, it represents the steps of this probabilistic beam search.

Some components of Algorithm 1 are outlined in more details as follows.

Initialize pheromone values (τ): all pheromone values are initialized to 0.5, at the start of
algorithm.

Beam-ACO-GCOSS solution construction (τ). From our notation, the set of all operations is
represented by O . Let the current partial solution be p

ts . Then, O is partitioned into two sets of
−
tO and +

tO , where { | }p
t ji ji tO o o s− = ∈ and −+ = tt OOO | . Actually, tO− represents the set of

operations which are already fixed in the sequence of this partial solution and tO+ is the set of
operations which are still free and can be appended

If t jiO R+ ∩ =∅ for an operation ji to O +∈ , then jio is not related to any other remaining
operations. In that case, the position of this operation in the sequence is not important. Actually,
this partial solution can be appended with the remaining operations in any arbitrary sequence.

Therefore, we define the set of allowed operations (neighborhood of p

ts) as follows:

() { | , }p
t ji ji t ji tN s o o O R O+ +← ∈ ∩ ≠∅

As mentioned before, the next operation in ACO is selected probabilistically. This is done by
computing transition probabilities. Thus, it has to determine pheromone values and the weighting
function that is called heuristic information. The pheromone values are computed by Algorithm 2.
However, the weighting function (heuristic information) is defined as:

()

1
(,) 1

() ()1
(,) 1p

lk t

p
es ji t p

ji ji t

p
o N s es lk t

t o s
o o N s

t o s

η

∈

+
← ∀ ∈

+∑

Where (,)p
es ji tt o s is the earliest starting time of jio with respect to the partial solution p

ts . At the

beginning, p
ts has no operation. Then, the earliest starting of ()p

tN s is 0.

The transition the probability of selecting ()p

jio N s∈ is defined as follows.

()

(min) ()
(| ,) ()

(min) ()
j i ji t

j i lk tP
lk t

jij i jio R O p
ji ji

lkj i lko R O
o N s

o
p o o N s

o

α

α

τ η
τ η

τ η

+
′ ′

+
′ ′

′ ′∈ ∩

′ ′∈ ∩
∈

← ∀ ∈
∑

352 Modarres and Ghandehari

Clearly, if the minimum of jij iτ ′ ′ is lower than that of lko , then (| ,) (,).ji lkp o p oτ η τ η≤ It means
that there is at least one operation left that probably should be scheduled before jic o= .

Let α be the adjusting factor which indicates the importance of pheromone values with respect to
the heuristic information. Ø

4. 4. Algorithm 1, Beam-ACO for GCOSS problem

 Input: an GCOSS problem instance
 , , 0bs bests S cf←< > ←∅ ←
 Initialize pheromone values)(τ
 while termination condition not satisfied do
 Ø←iterS
 for 1=j to an
 ∪← iteriter SS Beam-ACO solution construction)(τ
 end for
 Apply local search)(iterS (optional step)
 Find the set of obtained best solutions)(iterS
 Apply pheromone update),,(bsbest sSτ
 ←cf compute convergence factor ()
 if itcfcf lim_> then
 Reset pheromone values)(τ
 bestS ←∅
 end if
end while
output: bss , a set of best solutions bestS found

4. 5. Algorithm 2. Beam-ACO-Construct for structure of GCOSS solution.

Some details of Algorithm 2 are presented as follows.

Since our scheduling is a cyclic one, the first operation can be selected arbitrarily. So >=< 11 os p .
Reduce to related ((),)p

t jiN s o : this procedure is used to restrict the neighborhood set, after the first

extension of partial solution p
ts was performed. This is done as follows:

() { () | }p p

t j i t j i jiN s o N s o R′ ′ ′ ′= ∈ ∈

This effective procedure prevents the construction of permutations that have no effect on the final
solution.

Rank the partial solution p

ts using a lower bound LB(.): we compute a lower bound from the
definition of (,)p

es ji tt o s .

Generalized cyclic open shop scheduling and a hybrid algorithm 353

As we said (,)p
es ji tt o s is the earliest starting time of operation jio with respect to the partial

solution p
ts . Thus, the earliest completion time (,)p

es ji tt o s of operation jio is (,)p
es ji t jit o s p+ . The

approximate earliest completing time is constructed by extending p
ts as follows:

},max{(.) YXLB =

max { (,) ()}p

ji t
tji

p
ji to s

o R

X tec o s p o
+

∈
∈

= + ∑ , max { ()}
ji t

tji

o O
o R

Y p o−
+

∈
∈

= ∑

Similar to the partition of O into −

tO and +
tO , jiR is also partitioned into two subsets of tjiR + and

tjiR − .

Input data for bwk and extk : }10
||,1max{ Okbw = and {1, () / 2}.p

ext tk N s=

The set of best solutions ()iterS : The objective value of each solution in iterS must be determined

and then a number of the best solutions equal to
| |max{ ,1}

10
iterS

 are selected. However, To

determine the objective value (makespan) of a solution >< Oooo ,...,, 21 where

Ook ∈ , , ,k k k kt t if k k o R′ ′′≥ ≥ ∈ we use the following linear programming:

kkkkk

kkkkk

k

Rokkprtt
Rokkptt

ktr
rZMin

′′

′′

∈′∀−≥−

∈′∀≥−

∀≥

=

;,
;,

Updating pheromone :τ
((, ,))

(,
ji j i jij i

s S
jij i jij i

o o s

S
τ

τ

δ τ
τ τ ρ

′ ′ ′ ′
∈

′ ′ ′ ′

−
← +

∑
 where (, ,) 1ji j io o sδ ′ ′ = if jio is

scheduled before ' 'j io and (, ,) ,ji j io o s oδ ′ ′ = otherwise.]1,0[∈ρ is a constant called evaporation
rate.

Compute convergence factor: This numerical factor controls the algorithm. This factor is denoted
as]1,0[∈cf and is computed as follows:

max min

max min

{ , }
2(0.5)

()
ji j i i

jij i ijij i
o O o Rcf

τ τ τ τ

τ τ τ
′ ′

′ ′ ′ ′
∈ ∈

− −

← −
−

∑ ∑

We set the limit of convergence factor, _ limcf it as 0.9. The initial value of cf is set 0.

354 Modarres and Ghandehari

Upper bound maxτ and lower bound minτ : to prevent the algorithm from converging to a local
solution, as proposed by Stutzle and Hoos (2000), we set 0.01 and 0.09 as the lower and the upper
bound of .τ After applying pheromone update rule, we check to make sure the pheromone remains
within the range of min max[,]τ τ . When the pheromone values take their limited bound, then 1=cf .

The steps of Algorithm 2 are as follows.

 Input: partial solution >=< 11 os p , beam width bwk , maximum number of extensions extk

 1,},{ 1 ←←← tBsB C

p
 while ≠B do
 extB ←∅

 for Bs p
t ∈ do

 1←count
 ←)(p

tsN PreSelect))((p
tsN

 while extkcount ≤ AND ≠)(p
tsN do

 choose ()p
ji to N s∈ with transition probability (| ,)jip o τ η

 ←+
p
ts 1 extend p

ts by appending operation jio
 () () | { }p p

t t jiN s N s o←
 if ()p

tN s ≠ ∅ then
 }{ 1

p
textext sBB +∪←

 else
 }{ 1

p
tcc sBB +∪←

 end if
 if 1=count then
 ←)(p

tsN Reduce To Related ((),)p
t jiN s o

 end if
 1+← countcount
 end while
 end for
←B select the }|,{ extbw Bk highest ranked partial solutions from extB

1+← kk
end while
output: a set of feasible solutions extB

In fact, in Algorithm 2 each ant constructs a set of solutions CB . But in ACO algorithm each ant
constructs only one solution not a set of different solutions.
Apply local search)(iterS : we can apply a suitable local search procedure to every solutions

iterSs∈ .

Generalized cyclic open shop scheduling and a hybrid algorithm 355

5. EXPERIMENTAL RESULTS

To illustrate our proposed method, we present a number of GCOSS instances and obtain the
solution of these problems by applying Beam-ACO-GCOSS algorithm in this section. Two sets of
problems are solved by this algorithm. The first one is presented by random generation of
parameters. Some solutions of this set of problems are compared with the corresponding optimal
solutions, obtained analytically. The second set consists of the problems with a certain amount of
optimal objective function, as we discuss it later. In this case, we set the value ofα equal to 1.

For the first set of GCOSS instances, we propose the problems with 3, 4, 5, 6, 7, 8, 9, 10, 15
machines and from 4 to 30 jobs. Job j has jn non-preemptive operations, while an operation, say

jio has to be performed on jim machines (or use some other resources). Any processing order of

jobs is allowed and the order of the operations of every job is totally free.

Given n (the number of jobs) and m (the number of machines), the other parameters of the
problems are generated randomly, drawn from discrete uniform distributions as follows.

jO , the number of operations of job j : ⎣ ⎦]2/,1[mU , where ⎣ ⎦ }max{int xegerx ≤=

jim , the required number of machines (or other resources) to perform operation, jio :

⎣ ⎦ }]1,2/max{,1[mU

jim , the set of machines related to operation jio : }|{ MMM kk ∈

],1[: mUk

ijp , the processing time of operation:]99,1[U

We use Matlab7.1 for programming Beam-ACO-GCOSS algorithm. For generating random
numbers we call, state, one of the generators using by Matlab7.1 and set “rand” to specified state,
S, for each problem. Table 5.1 represents the generated instances as well as their solutions.

S: the number of initialized string (represented by its number of jobs, number of machines and
number of initialized random string);
No jobs: The number of jobs;
No machines: The number of machines;
No operations: The total number of operations;
OV: value of objective function obtained by Beam-ACO-GCOSS;
LB: The number of vertices of maximum complete subgraph of),(wG ;
OP: The optimum solution obtained by an exact method.

At first, the numbers of operations for each job is generated. Then, the number of machines to
execute each operation are determined and at last the machine numbers are generated. In these
instances all processing times are equal to 1.

356 Modarres and Ghandehari

The optimality of the solutions are checked either by GAMS or by (k/d) property. If an example is
solvable by GAMS, then the objective value of the model is marked by OV*. For the second set of
generated problems, the obtained solutions are compared with the exact optimal solution (k/d).
From Table 5-1, the solutions obtained from the proposed algorithm resulting in the optimal value
(indicated by OV *) are distinguished from the ones with a lower bound.

In Table 5.1, OV marked by * indicates the optimal value of the objective function has been
reached. The number of operations of the instances is up to 60.

We executed the program for at most 20 iterations where in many instances the convergence factor
didn’t exceed its limit and collected the information. For the problems with smaller number of
operations, the objective value of the jobs is equal to LB, as Table 5.1 shows. For larger size
instances, the results are good enough by considering the fact that only 20 iterations were executed.
The second set of instances are the ones that have special structure and their objective function are
equal to /k d , where k and d are two positive integers, from the following definition:

Definition 5.1. For two integers kd ≤≤1 , a),(dk coloring of a graph G is a coloring of the
vertices of G with colors }1,...,1,0{ −k such that,

(,) () () ()x y E G d c x c y k d∈ ⇒ ≤ − ≤ −

The circular chromatic number is defined as

() inf{ / :c G k d Gχ = has a (,)k d coloring}

Let an integer from set {0,1,..., 1}k − be assigned to each vertex of the set of vertices V and also
an edge between two vertices of io and jo be connected. If

() ()i jd I o I o k d≤ − ≤ − where : {0,1,..., 1}I V k→ − , then O is the total number of

operations, 1{ ,..., }OV O o o= = .

Let the number of operations of a job be .n For ,k n≤ we assign an integer which is 1i − to each
operation io of 1{ ,..., }ko o . The remaining operations are assigned randomly. Thus, the vertices of
this graph are marked by the colors of{0,1,..., 1}k − . The edges are assigned as described by
Definition 5.1.

We examine the efficiency of our algorithm by solving these instances. Each problem is solved 10
times. The average number of iterations to reach the optimal solution is shown in Table 5.2.

6. CONCLUSIONS

In this paper we have introduced a generalized cyclic open shop scheduling (GCOSS) problem
which is a NP-hard problem. To solve this problem, a hybrid algorithm of ACO, Beam search and
LP was developed. We generated two types of instances of GCOSS problems and solved them by
this method. It was shown that this algorithm works reasonably well by comparing the objective
value of these instances to the similar values obtained by an exact method or by checking their
lower values.

Generalized cyclic open shop scheduling and a hybrid algorithm 357

Table 5.1 The results of Beam-ACO-GCOSS for some instances

 LB OP OV Instanc LB OP OV Instanc LB OP OV
4×3_0 3 _ 3* 6×7_0 7 7 8 6×9_0 9 _ 9*
4×3_20 5 _ 5* 6×7_20 6 _ 6* 6×9_20 6 _ 6*
4×3_50 3 _ 3* 6×7_50 4 _ 4* 6×9_50 7 _ 7*
4×3_80 6 _ 6* 6×7_80 6 _ 6* 6×9_80 10 _ 10*
4×3_100 5 _ 5* 6×7_100 7 7 8 6×9_100 9 9 10
3×5_0 5 _ 5* 3×8_0 6 _ 6* 7×9_0 11 14 14*
3×5_20 5 _ 5* 3×8_20 6 _ 6* 7×9_20 9 10 10*
3×5_50 3 _ 3* 3×8_50 5 _ 5* 7×9_50 10 10 11
3×5_80 5 _ 5* 3×8_80 9 _ 9* 7×9_80 10 12 12*
3×5_100 6 _ 6* 3×8_100 7 _ 7* 7×9_100 13 _ 13*
4×5_0 4 _ 4* 4×8_0 5 _ 5* 8×9_0 9 11 11*
4×5_20 5 _ 5* 4×8_20 6 _ 6* 8×9_20 11 _ 11*
4×5_50 3 _ 3* 4×8_50 6 _ 6* 8×9_50 10 _ 10*
4×5_80 4 _ 4* 4×8_80 6 _ 6* 8×9_80 9 9 10
4×5_100 4 _ 4* 4×8_100 6 _ 6* 8×9_100 10 11 11*
3×6_0 6 _ 6* 5×8_0 8 10 10* 3×10_0 8 _ 8*
3×6_20 5 _ 5* 5×8_20 8 _ 8* 3×10_20 10 _ 10*
3×6_50 4 _ 4* 5×8_50 6 _ 6* 3×10_50 7 _ 7*
3×6_80 5 _ 5* 5×8_80 7 7 9 3×10_80 10 _ 10*
3×6_100 7 _ 7* 5×8_100 9 10 10* 3×10_10

0
9 _ 9*

4×6_0 5 _ 5* 6×8_0 7 8 9 5×10_0 8 9 9*
4×6_20 4 _ 4* 6×8_20 7 _ 7* 5×10_20 8 8 9
4×6_50 3 _ 3* 6×8_50 6 _ 6* 5×10_50 7 8
4×6_80 5 _ 5* 6×8_80 7 _ 7* 5×10_80 9 _ 9*
4×6_100 5 _ 5* 6×8_100 9 _ 9* 5×10_10

0
12 13

5×6_0 8 9 9* 7×8_0 11 12 12* 7×10_0 13 14
5×6_20 8 _ 8* 7×8_20 7 9 9* 7×10_20 9 11
5×6_50 5 _ 5* 7×8_50 8 _ 8* 7×10_50 11 12
5×6_80 5 _ 5* 7×8_80 11 12 12* 7×10_80 13 14
5×6_100 6 6 7 7×8_100 12 13 13* 7×10_10

0
13 15

3×7_0 6 _ 6* 3×9_0 7 _ 7* 9×10_0 14 20
3×7_20 8 _ 8* 3×9_20 7 _ 7* 9×10_20 12 14
3×7_50 5 _ 5* 3×9_50 6 _ 6* 9×10_50 10 13
3×7_80 7 _ 7* 3×9_80 7 _ 7* 9×10_80 12 17
3×7_100 7 _ 7* 3×9_100 8 _ 8* 9×10_10

0
16 20.971

4×7_0 6 _ 6* 4×9_0 7 _ 7* 3×15_0 13 14
4×7_20 6 _ 6* 4×9_20 6 _ 6* 3×15_20 11 _ 11*
Instance LB OP OV Instance LB OP OV Instance LB OP OV
4×7_50 6 _ 6* 4×9_50 7 _ 7* 3×15_50 12 _ 12*
4×7_80 6 _ 6* 4×9_80 6 _ 6* 3×15_80 10 _ 10*
4×7_100 6 _ 6* 4×9_100 8 _ 8* 3×15_10

0
13 14

358 Modarres and Ghandehari

Table 5.1 (Continued)

S L O OV Instan L O OV Instan L O OV
5×7_0 7 8 9 5×9_0 8 9 9* 5×15_0 15 17
5×7_20 6 _ 6* 5×9_20 7 _ 7* 5×15_20 13 _ 13*
5×7_50 5 _ 5* 5×9_50 7 _ 7* 5×15_50 12 _ 12*

5×7_80 6

7 5×9_80 8
8

9 5×15_80 15

15.9805*

5×7_100 8 8 9 5×9_1 9 10 11 5×15_ 18 18.9642*
8×15_0 14 19.9 3×20_ 14 _ 14* 3×25_ 21 22
8×15_20 14 16.9 3×20_ 14 _ 14* 3×25_ 20 21
8×15_50 12 17.9 3×20_ 14 15.9 3×25_ 19 21
8×15_80 14 16.9 3×20_ 15 _ 15* 3×25_ 17 _ 17*
8×15_100 15 19.9 3×20_ 16 _ 16* 3×25_ 23 22.9673*
5×20_20 18 19 3×40_ 29 31 3×30_ 22 24
5×20_50 18 _ 17.9 5×20_ 21 24 3×30_ 27 29
5×20_80 20 23.9 3×30_ 33 _ 33* 3×30_ 22 24

Table 5.2 The average number of iterations to reach the optimal solution in 10 executions

No
Operations k d Average iterations

5 5 2 1
7 5 2 1
7 7 2 1
9 5 2 1
9 7 2 1.1
10 5 2 1.1
10 7 3 1.2
15 5 2 1.4
15 7 2 3.3
15 9 4 2.1
15 11 3 4.5
15 15 4 51
20 5 2 1.2
20 11 3 41.2
20 17 8 2.9
30 5 2 14

REFERENCES

[1] Blum C. (2005), Beam-ACO-Hybridizing ant colony optimization with beam search: an application to

open shop scheduling; Computers and Operations Research 32; 1565-1591.

[2] Deuber W., Zhu X. (1997), Circular Coloring of Weighted Graphs; Journal of Graph Theory 23; 365-

376.

Generalized cyclic open shop scheduling and a hybrid algorithm 359

[3] Dorigo M., Stutzle T. (2004), Ant colony optimization; Boston, MA: MIT Press.

[4] Garey M.R., Johnson D.S. (1979), Computers and intractability; A guide to the theory of NP-

Completeness, Freeman, San Francisco.

[5] Kubale M., Nadolski A. (2005), Chromatic scheduling in a cyclic open shop; European Journal of

Operation Research; 164(99); 585-591.

[6] Liaw C.F. (2003), An efficient tabu search approach for the two-machine preemptive open shop

scheduling; computers & Operations Research 30, 2081-2095.

[7] Ow P.S., Morton T.E. (1988), Filtered beam search in scheduling; International Journal of Production

Research 26; 297-307.

[8] Stutzle T, Hoos H.H. (2000), MAX-MIN ant system; Future Generation Computer Systems 16(8);

889-914.

[9] Zhu X. (1992), Star-chromatic numbers and products of graphs; Journal of Graph Theory 16; 557-

569.

