
146 

 

 
 
 
 

A multi commodity pickup and delivery open tour m-TSP 
formulation for bike sharing rebalancing problem 

S. Mohammad Arabzad1, Hadi Shirouyehzad2*, Mahdi Bashiri3,  
Reza Tavakkoli-moghaddam4, Esmaeil Najafi5 

1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad 
University, Iran 

2 Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, 
Najafabad, Iran 

3 Department of Industrial Engineering, Shahed University, Tehran, Iran 
4 School of Industrial Engineering, College of Engineering, University of Tehran, Iran 

5Department of Industrial Engineering, Science and Research Branch, Islamic Azad 
University, Tehran, Iran 

m.arabzad@yahoo.com, hadi.shirouyehzad@gmail.com, bashiri@shahed.ac.ir, tavakoli@ut.ac.ir, 
najafi1515@yahoo.com 

 

  
Abstract 

Bike sharing systems (BSSs) offer a mobility service whereby public bikes, located 
at different stations across an urban area, are available for shared use. An important 
point is that the distribution of rides between stations is not uniformly distributed 
and certain stations fill up or empty over time. These empty and full stations lead to 
demand for bikes and return boxes that cannot be fulfilled leading to unsatisfied 
and possibly even lost customers. To avoid this situation, bikes in the systems are 
redistributed by the provider. In this paper, a mathematical model is proposed to 
rebalance the stations employing non-identical trucks based on travelling salesman 
problem (TSP) formulation. This model is categorized as static repositioning where 
the demands of stations in one period are considered. In the mentioned model, 
several types of bikes have been considered in BSSs and it is assumed that there 
are two depots, and the trucks start from one and return to another one. Finally, a 
numerical example confirms the applicability of the proposed model. The results 
show that the model would simultaneously obtain the minimum paths, the 
minimum implementing truck’s costs and the minimum ofloading/unloading 
bikesprogram. 
Keywords: Bike Sharing Systems (BSSs), rebalancing, travelling salesman 
problem (TSP), mathematical programming. 

1- Introduction 
   Bike-Sharing Systems (BSSs) allow individuals to rent a bicycle at automatic rental stations 
scattered around a city, use them for a short journey, and return them to any other station in that city 
(Raviv and Kolka, 2013).  
 
*Corresponding author.  
ISSN: 1735-8272, Copyright c 2016 JISE. All rights reserved 
 

Journal of Industrial and Systems Engineering 
Vol. 9, No. 3, pp 70-81 
Summer (July) 2016 

 



147 

 

 
   BSSs have grown rapidly in the past decade. Although the concept has been around since the 1960s, 
the number of cities offering BSSs has increased from just a handful in the late 1990s to over 800 at 
the time of publication (Meddin and DeMaio, 2015). Compared to private automobiles, BSSs offer a 
number of environmental and social benefits. These include reduction in energy use, air and noise 
pollution, and congestion levels on specific corridors and access routes to public transport stops 
(Martens, 2004). 
    A rental station typically includes one terminal and several bike stands. The terminal is a device 
capable of communicating with the electronic lockers, which are attached to the bike stands. When a 
user rents a bike, a signal is sent to the terminal that the locker has been vacated. A user can return a 
bike to a station only when there is a vacant locker. All rental and return transactions are recorded and 
reported in real time to a central control facility. Thus, the state of the system, in terms of the number 
of bikes and number of vacant lockers available at each station, is known to the operator in real time. 
Moreover, operators of BSSs make this information available to the users online. 
    A crucial factor in the success of a BSS is its ability to meet the fluctuating demand for bikes at 
each station. In addition, the system should be able to provide enough vacant lockers to allow the 
users to return the bikes at their destinations. Indeed, one of the main complaints heard from users of 
BSSs relates to unavailability of bikes and (even worse) unavailability of lockers at their destination, 
see, e.g., Shaheen and Guzman (2011) and media reports Brussel (2010) and Tusia-Cohen (2012). 
Persistent unavailability of bikes and/or lockers engenders distrust among the system’s users and 
could eventually lead them to abandon it. 
     Repositioning of bikes in the system involves routing decisions concerning the vehicles, starting 
from and returning to the depot. The latter involves determining the number of bikes to be removed or 
placed in each station on each visit of the vehicles. Ideally, the outcome of this operation would be to 
meet all demand for bikes and vacant lockers (Raviv et al., 2013). 
    The repositioning operation can be carried out in two different modes: one is during the night when 
the usage rate of the system is negligible; the other is during the day when the status of the system is 
rapidly changing. We refer to the former as the static bike repositioning problem (SBRP) and to the 
latter as the dynamic bike repositioning problem (DBRP). Some operators use static repositioning, 
some dynamic, and some use a combination of the two, Calle´ (2009). 
    In this paper, a mathematical model is proposed to rebalance the bike stations’ demands as static 
modelling. The proposed model is based on the travelling salesman problem (TSP) considering flow 
rate between the bike stations.The mathematical modelling extends the recentlypublished research by 
Dell’Amico et al. (2014). In the basis model, open-tour TSP concept (a tour in which the travelling-
man does not come back to the initial city) was used to rebalance the bikes throughpre-
determinedtours, but, the number of tours in this research aredeterminedbased on the parameters and 
limitations.Moreover, some identical trucks were considered for rebalancing in the basic model,while, 
in the present research, there are some non-identical trucks in different implementing costs and 
various capacities. Based on the demands, the appropriate types of trucks (different in their capacities) 
are selected to rebalance the demands. The other main extension is considering different types of 
bikes in the BSS. Each bike types is picked-up and dropped-off in each station and the trucks are able 
to circulate them between stations to rebalance the stations. 
   The rest of this paper is organized as follows: in Section 2 we review the literature, describing 
related researchesinvarious application areas of BSS. In Section 3, we present our modelling 
formulation by specifying the underlying assumptions and the chosen objective function. In Section 4, 
a numerical example is presented to show the applicability of the proposed model. Also, the results of 
the model are illustrated in this section. In Section 5, we discuss some of our assumptions and their 
implications. In section 6, research limitations and possible extensions and directions for further 
research are presented. 
2- Literature review 
   Modern BSSs have become prevalent only in the last few years; therefore, the existing literature 
analyzing these systems is relatively new. There are various interesting research questions concerning 
the establishment, operation and analysis of BSSs. Indeed, some works study strategic problems, such 
as Shu et al. (2010), and Lin and Yang (2011) who addresses the question of bike rental stations’ 
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capacity and locations. Others present empirical analysis, DeMaio (2009) and Hampshire and Marla 
(2011). Vogel and Mattfeld (2010) present a stylized model to assess the effect ofdynamic 
repositioning efforts on service levels. Their model is useful for strategicplanning but is not detailed 
enough to support repositioning operations. 
   Several approaches have recently been developedto modeling and optimizing the repositioning 
problem. There are essential differences between them in the underlying assumptions concerning the 
perceived system’s behavior and the problem’s objective, as we discuss next. Fu (2002) presented an 
inventory model suitable for the management of bike rental stations. Hernández-Pérez and Salazar-
González (2004a) introduced the one-commodity pickup and delivery traveling salesman problem 
(PDTSP), a generalization of the well-known TSP where each customer has supply or demand of a 
given amount of a single product. One vehicle of a given capacity must visit each customer and the 
depot exactly once, picking up units of the product from customers with supply and delivering it to 
customers with demand, while minimizing the total travel distance. They present an ILP model for 
this problem and describe a branch and cut procedure for solving it. Hernández-Pérez and Salazar-
González (2004b) presented heuristic methods for the problem and demonstrated their applicability 
for instances with up to 500 nodes. Brake et al. (2007) presented four models for the bike-sharing 
rebalancing problem, considering a fleet of capacitated vehicles; they proposed customized branch-
and-cut algorithms to solve the models. Louveaux and Salazar-González (2009) considered the 1-
PDTSP with stochastic demand or supply. They study the problem of finding the smallest vehicle 
capacity that assures feasibility, i.e., being able to satisfy all demands; for a given vehicle's capacity 
they search for a tour which minimizes the objective function which includes a penalty that is 
proportional to the unsatisfied demand.Benchimol et al. (2011) studied a one commodity pickup and 
delivery problem under the assumptions of a single vehicle and no time constraint. The goal is to 
minimize the total travel distance of the vehicle while completing a prescribed repositioning task. 
Chemla et al. (2013) describes a branch-and-cut algorithm for solving a relaxation of the problem, 
from which a solution is obtained through a Tabu search.Sayarshad et al. (2012) generated a multi-
periodic mathematical model to optimize bike-sharing system design in small communities by 
determining minimum required bike fleet size with minimum unmet demands and unutilized bikes. 
Fricker and Gast (2012) study the system’s behavior and the effect of various load-balancing 
strategies on their performances. They conclude that in asymmetric systems, repositioning of bikes by 
trucks is necessary even when an incentive mechanism to self-balance it is put in place.Schalekamp 
and Behrens (2013) developed mathematical programming models to determine the optimal daily 
allocation of bicycles to stations in a bike-sharing system.Chemla et al. (2013) considered bike 
distribution between stations as a pick-up and delivery problem, and presented some algorithms for 
solving the rebalancing problem in bike-sharing systems.Dikas and Minis (2014) formulated the static 
repositioning problem as an MILP and presented two different models, one arc-indexed and the other 
time-indexed, whose objective functions include user satisfaction with the system and operating costs. 
Dell’Amico et al. (2014) presented four mixed integer linear programming formulations of BSSs 
problem in which a fleet of capacitated vehicles is employed in order to re-balance the bikes with the 
objective of minimizing total cost. 

3- Model Formulation 
   Suppose a complete graph � = (�, �), where the set of vertices � = {0,1,… , � + 1} is partitioned 
into the depots(vertices	0 and � + 1 as primary and secondary depots, respectively), and the stations, 
vertices {1,… , �}. Each station i has a request of bike type b(���), which can be either positive or 
negative.If ��� > 0,  then i is a pickup node where ��� bikes must be removed; if ��� < 0 then i is a 
delivery node where ��� bikes must be supplied. The bikes removed from pickup nodes can either go 
to a delivery node or back to the secondarydepot. Bikes supplied to delivery nodes can either come 
from the primarydepot or pickup nodes. A fleet of m non-identical trucks of capacity ��� is available at 
the primarydepot to rebalance the stations. Also, traveling cost ��� is associated with each arc(�, �) ∈
�. The BSS problem involves determining how to drive at most mtrucks through the graph, with the 
aim of minimizing the total cost (containing costs of journey between stations, implementing trucks 
and loading/unloading bikes)and ensuring that the following constraints are not violated: (i) each 
truck performs a route that starts and ends at the depot, (ii) each truck starts from the primary depot 
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empty or with some initial load (i.e.,  with a number of bike type bthat vary from 0 to����� ), (iii) each 
station is visited exactly once and its request is completely fulfilled by the truck visiting  it,  and  (iv)  
the  sum  of  requests  of  the  visited  stations  plus  the  initial  load  is  never negative or greater than 
���� in the route performed by a truck. 
    In our study, each request ��� is computed as the difference between the number of bike type b 
present at station i when performing the redistribution, and the number of biketype b in the station in 
the final required configuration. Note that, we impose a station with request ��� = (0,0) must be 
visited, even if this implies that no bike has to be dropped-off or picked-up there. This case arises, for 
example, when the driver of the truck is supposed to check that the station is correctly working. The 
case in which stations with null requests have to be skipped can be simply obtained by removing in a 
preprocessing phase those stations from the set of vertices. 
   The fact that each truck is allowed to start its route with some bikes enlarges the space of feasible 
BSS problem solutions, and allows obtaining a more flexible redistribution plan. Note also that we do 
not impose the sum of redistributed bikes to be null, and hence, there can be a positive or a negative 
flow of bikes on the depot.  This consideration is useful to model cases in which some bikes enter or 
leave the depot for maintenance. 
   The traveling cost ��� is computed in our case as the shortest length of a path in the road network 
connecting i and j, for (�, �) ∈ �. It is important to work on a directed graph, because all BSSs we are 
aware of are located in urban areas, and thus one-way streets typically have a strong impact on the 
choice of the routes performed by the trucks during the redistribution. 
In this section we present an integer linear programming (ILP) formulation for BSS problem. Also, 
model notations, parameters and variables are presented. 
 

3-1- Notations 

Symbols Definition 

v Set of vertices 
�  Set of vertices except the depots 
A Set of arcs 
n Number of stations (Stations 0&n+1 are depots) 
k Truck types 
b Bike types 
��� Capacity of trucktypek from bike typeb 
��� Demand of bike typeb at vertexj 
��� Cost (distance)of the arc (i,j) 
�����  Total demand of stations for bike type b 
!� Initial cost of implementing truck typek 
" The load/unload cost (duration) for each bike 

 
 
3-2-Variables 

Symbols Definition 

#��� Taking value 1 if arc (i,j) is used by trucktypek 
$����  Flow over arc (i,j) for bike type b with truck type k 
%� Taking value 1 if truck typek is used to handle the demand 
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3-3- Mathematical Modeling 

&��'''���
�

#���
�∈()�∈()

+'!�
�

. %� +''''".$����
���∈()�∈()

																																																																				(1) 

s.t. 

''#��� = 1
�∈()�

												∀� ∈ �) 																																																																																																																											(2) 

''#��� = 1
�∈()�

													∀� ∈ �) 																																																																																																																										(3) 

' ' # �� =' ' #�,./0,�
�∈()1��∈()1�

																																																																																																																									(4) 

'''#��� ≤ |5| − 1													∀|5| ⊆ �) 
�∈8

; 5 ≠ ∅
�∈8�

																																																																																						(5) 

''=$���� − $���� > =
�∈()�

���								∀	� ∈ �) ; ?																																																																																																										(6) 

' ' $ ��� ≥ max	{0,−����� }
�∈()1�

∀	?																																																																								(7) 

' ' $�,./0,�� ≥ max	{0, ����� }
�∈()1�

∀	?																																																																																																												(8) 

maxG0, ���, −���H #��� ≤ $���� ≤ minG5��, 5�� + ��� , 5�� − ���H #��� 									∀(�, �, K) ∈ �	L ; 			?																							(9) 

'#��� ≤ 1												�, � ∈ �)
�

																																																																																																																																	(10) 

#��� +'#��� +
�

''#��N�N
�N

≤ 1
�N

									∀(�, �, K) ∈ �O,			� ≠ 1	, �P ≠ �			Q�R			�P ≠ �																											(11) 

'''$���� ≤ ��� . %�
��∈()�∈()

∀K																																																																																																																													(12) 

#��� , %� ∈ {0,1}																																																																																																																																																				(13) 
 

   Objective function (1) is comprised of three sections; minimizing the sum of traveling cost 
(distance), the constant cost of implementing trucks and the load/unload cost. Constraints (2) and (3) 
impose that every node but the depot is visited exactly once. Constraint (4) ensures that the number of 
trucks leaves the primary depot must be equal to all trucks that are used return to the secondary depot 
at the end of their tour. Constraint (5) is the classical sub-tour elimination constraints, see, e.g., Gutin 
& Punnen (2002) that impose the connectivity of the solution. Constraint (6) models the balance of 
the flows on the arcs entering and leaving a given node. The total load leaving the primary depot 
should be in any case non-negative, and moreover, in case �����  takes a negative value; it must be not 
lower than this value. This fact is imposed by constraint (7). Similarly, constraint (8) states that the 
total load entering the secondary depot is in any case non-negative and not lower than the sum of all 
demands for bike type bin case this is positive. Constraint (9) imposes lower and upper bounds on the 
flows on each arc, and makes these bounds as tight as possible by considering whether or not an arc is 
traveled by a truck. Constraint (10) ensures that each arc is traversed at most once by whole trucks. 
Constraint (11) allows stations to be rebalanced by containing a tour of certain truck. Constraint (12) 
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uses a binary variable to select the suitable trucks to rebalance the stations. Constraint (14) novelty 
was developed andreplaced to theconstraint (5) to prevent containing sub-tours in fewer problem 
dimensions. 

S� − S� + �.'#���
�

≤ � − 1											∀�, � ∈ �)																																																																																																(14) 

 
4- Numerical example and results 

4-1- Numerical example 
   In this section, in order to show the applicability of the proposed model a numerical example is 
described in detail. Suppose there is a city with 8 bike stations and the goal is to rebalance the pre-
determined demand in a period. There are two bike types comprised of VIP (type 1) and public (type 
2) in each stationand demands for each of them are unique. Also, there are three trucks types to 
rebalance the flow between stations in different capacities and initial implementing costs. As a 
characteristic of an open-tour TSP model, the trucks start at node 0 (primary depot)in appropriate 
initial inventory and end at node 8 (secondary depot)with some bikes passing whole stations exactly 
once. The variable cost of load/unload is also considered equal to 1 dollar for each bike. Tables 3 to 5 
show the parameters value for the numerical example.  
 
 

Table 3. Matrix of distances between origins and destinations 

Destination (j) Distance (���) 
Origin (i) 1 2 3 4 5 6 7 8 

1 0.00 4.47 3.61 6.71 7.81 6.40 5.83 10.1 
2 4.47 0.00 2.24 2.24 3.61 2.24 3.16 5.59 
3 3.61 2.24 0.00 4.00 4.47 3.16 2.24 7.16 
4 6.71 2.24 4.00 0.00 2.00 1.41 3.61 3.35 
5 7.81 3.61 4.47 2.00 0.00 1.41 3.00 3.04 
6 6.40 2.24 3.16 1.41 1.41 0.00 2.24 4.03 
7 5.83 3.16 2.24 3.61 3.00 2.24 0.00 6.02 
8 10.1 5.59 7.16 3.35 3.04 4.03 6.02 0.00 

 

 

Table 4. Demand of each station for each bike type  

Origin (i) 
 Demand (���) 
 ��0 ��T 

1  0 0 
2  8 9 
3  10 -3 
4  -3 5 
5  6 -5 
6  9 9 
7  -8 13 
8  6 -9 
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Table 5. Implementing cost and capacity of each truck  

Truck (k) 
 Implementing 

cost (!�) 
 Capacity (5��) 

  5�0 5�T 
1  550  20 20 
2  650  25 20 
3  750  30 25 

 

4-2- Solutions 
   The proposed mathematical model was solved by LINGO 9.0 software in a Dual-core system with 
CPU 3.0 GHz and 4 GB RAM. The model was solved and global optimal solution found in reasonable 
time(less than 1 min)with the objective value of 1513.73.Table 6 shows the final solution of assigning 
appropriate truck types conducting optimized tours to rebalance the network of bike stations. As the 
results show, in the optimized solution, the number of three tours where conducted from depot 1 
(station 1) to depot 2 (station 8). Truck types 1 and 3 were assigned to the tours in a way thattruck 
type 1 was chosen for one tour and truck type 3 was employed twice.Figure 1 also illustrates the 
results in a complete graph. 

 
Table 6. Flow over arc (i,j) for bike type b with truck k 

Origin 
(i) 

Truck 
(k) 

Destination (j) 1 2 3 4 5 6 7 8  
Commodity (b) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

1 
1      0 3           
2                  
3        3 0   0 0     

2 
1                  
2                  
3                14 9 

3 
1              10 0   
2                  
3                  

4 
1                  
2                  
3          0 5       

5 
1                  
2                  
3    6 0             

6 
1                  
2                  
3                9 9 

7 
1                2 13 
2                  
3                  
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Fig 1. Final Solution (assigning appropriate truck types to the most suitable tours and programming the 
optimum load/unload order) 

 
5- Discussion 
   As in the previous sections stated, the ILP model in this paper rebalances the flow between bike 
stations. There are some questions among rebalancing which are dealt in this paper solving the model. 
For example, how many trucksof each type are needed to rebalance the stations; which truck of each 
typeis appropriate for these operations; what are the best sequences (tours)of visiting each station; 
how many bikesof each typemust be picked-up or dropped-off while visiting each station; how many 
bikesof each typemust be picked-up starting the journey from the primarydepot. 
   In this section, the results are discussed more in details to illustrate the ability of model and stability 
of results throughtwosensitivity analysisas study on‘the optimized solution not regarding the 
demands’,‘ the optimized solution not regarding the distances’.So, various routing and flow programs 
using different trucks are obtained and compared with the final solution. 
 
5-1- The optimized solution not regarding the demands 
   The presented model is not only able to determine the number and the type of appropriate trucks for 
rebalancing, but also the sequence of visiting stations (tours) for each truck. These utilities work based 
on the distance between stations and their demands after a period of time. Suppose that there are no 
demand in each stationand each station must be visited exactly onceby trucks. In this situation, the 
optimized solutions (routs) based on the specified number of trucks are as Figure 2. 
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Fig 2. The optimized routing based on the specified number of (a) one tour (b) two tours (c) three tours, andnot 
regarding flow rates  

  So, the optimized routing problem just considering the distance with specified number of tours 
(trucks) and not regarding the station demands were determined. The figure easily shows the 
minimum length of conducting one, two and three tours. Absolutely, the routs would be turned when 
adding the data aboutdemand of each station and related limitations in capacities. 
5-2- The optimized solution not regarding the distances 
   Suppose a situation in which loading/unloading operation is time-consuming or complicated rather 
than traveling between the stations. In this condition, maybe it is possible to focus just on reduction in 
loading and unloading operations. Figure 3 illustrates the solution of modeling when “distance 
reduction” goal was omitted from the objective function.As it can be clearly seen, the distance 
traveled by trucks are much more rather than the final solution (Figure 1). 

 
 

 

Fig 3. The solution without considering “distance reduction” in the objective function 
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   The results in Figure 3 highlights the situation in which transferring distance (costs) are not as 
important asthe costs of loading/unloadingoperation. This situation usually when occurs that the 
distance between the stations is neglectableand the costs (or time) of loading/unloading operation is 
brilliant.In this situation, the ‘cost reduction’ goal can be omitted from theobjective function. The 
solution states that using truck 1 and truck 3 are the best decision considering the shown routs and 
flow rates. 
 
6- Conclusion 
   BSSs allow people to rent a bike at one of the many automatic rental stations scattered around the 
city, use them for a short journey and return them at any station in the city. Recently, many cities 
around the world established such systems in order to encourage their citizens to use bikes as an 
environmentally sustainable and socially equitable mode of transportation, and as a good complement 
to other modes of mass transit systems. In this paper, we proposed an open-tour TSP formulation for 
static rebalancing bikes between stations. The main characteristics of the proposed model are multiple 
commodities, multiple non-identical trucks, open-tour routs and static rebalancing. Detailed 
descriptions are stated as follows: 

• This model is able to recall one or more trucks for rebalancing the network ofstations. In these 
circumstances, rather than determining the number of trucks before rebalancing, selecting the 
appropriate number of each truck typewill be surrendered to the model that is composed of 
one or more tours. 

• The model distinguishes between the available trucks. The trucks are in different initial 
implementing cost and various capacities. The problem of selecting the most suitable trucks is 
surrendered to the model based on the need of rebalancing. 

• Different types of the bikes are considered in this model to be rebalanced their inventory in 
stationsand the model simultaneously rebalances them with equal priority with appropriate 
trucks. 

 
   The most limitation of this research along with some suggestion of future research are introduced as 
bellow:  

• In this model, primary depot sends the trucks and secondary depot receives the trucks. This 
limitation can be enhanced where each depot can send or receive trucks.  

• The problem is modeled based on the open-tour TSP while this can be extended as a problem 
of selecting the best mode of open-tour or close-tour (or both). 

• The model was formulated for one period while rebalancing based on the demands of several 
periods is much more stable. 

• Some real limitations such as limitation in distance traveled by each truck and limitation in 
rebalancing time are neglected in this research. They can be highlighted in future researches. 

• Whole demands of stationsare fulfilled in this research, while considering shortage costs this 
model can be extended regarding service level objective in future researches.    
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