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Abstract

In the context of public transportation system, rioying the service quality and
robustness through minimizing the average passengeiting time is a real

challenge. This study provides robust stochastmgiamming models for train

timetabling problem in urban rail transit systerfibe objective is the minimization
of the weighted summation of the expected cost afspnger waiting time, its
variance and the penalty function including the acdy violation due to

overcrowding. In the proposed formulations, the adgit and uncertain travel
demand is represented by the scenario-based neuiticbarrival rates of passenger.
Two versions of the robust stochastic programmirgdeis are developed and a
comparative analysis is conducted to testify thectability of the models. The
effectiveness of the proposed stochastic progragmiodel was demonstrated
through the application to Tehran underground untz@way. The outcomes show
the reductions in expected passenger waiting tifd2%, and cost variance drop of
60% compared with the baseline plans using the gsegh robust optimization
approach.

Keywords: Train timetabling; urban rail; uncertain demandyust stochastic
programming

1-Introduction

A rapid transit metro is a homogeneous railwayesysivith a high sensitivity against different tyde o
disturbances (Lin and Sheu, 2010). Here, the honmage of the system refers to the similarities,
particularly the same capacity and average speéok segments(Salido et al. 2008).
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In order to cope with uncertainty, the rail managmust schedule the train operations effectively at
public transit nodes. One of the main types ofullisinces is stochastic variations of travel denthatl
affects the headway regularity and results in pagsecongestion and additional waiting time. Far th
disturbed situation, passengers may not be alldwéxbard the first train and have to wait until thext
train arrives due to the maximum vehicle capacRgrticularly, during the peak hours, a planned
timetable may become infeasible with respect tocdygacity constraints simply due to an unpredicted
increase of passenger demand. An important consequef demand disturbances is overcrowded
vehicles. The on-board discomfort is likely to b&luenced by congestion effects and in-vehicle
overcrowding (Trozzi et al. 2013). The in-vehicleeccrowding occurs when the number of on-board
passengers exceeds the normal loading capacitywehiale. Niu and Zhang (2012sed the in-vehicle
overcrowded cost in the objective function of tradrt timetable problem. An optimization approactswa
developed to minimize both the passenger waitimg tand the in-train overcrowding cost. However, to
handle demand disruptions, a robust timetablegsired. More specifically, the design and optinizat
of such a timetable that guarantees acceptablempgaswaiting time is an important research topic.

From the operational point of view, the qualitytbé train timetables for metro service is extremely
demand sensitive(Sun et al., 2014). Usually, paggedemand fluctuates on a daily basis, so that the
expected demand may not reflect the real daily grags demand, where stochastic disturbances may
occur. Hence, the precise estimation of the denflame is an important issue in timetable design and
particularly for the congested metropolitan aréastunately, with the emergence of automated vehicl
positioning and passenger counter systems, a ristorical data is now available for the public
transportation sector to manage the operationstafédy and to examine the reliability of the trédns
system(Carrel et al. 2013).Corman and Meng (2@ibyided a comprehensive survey of the online
railway traffic control approaches under dynamid atochastic environments. It was pointed out that
collecting and incorporating the realistic datapassenger flows is essential to improve the tinketab
robustness. With the intention of avoiding passermgmngestion due to train capacity and demand
uncertainty, the robust approach to train timetapfiroblem is a practical solution.

In the following, the most significant contribut®in the literature, with a particular attentiontle
demand-driven train timetabling problem are hightiegl: The past scientific publications in the field
urban rail planning can be categorized to nominhkduling (Barrena et al., 2014a; Chierici et2004;
Scholz et al., 2003), stochastic optimization (hda’ang 2013), online control (Assis and Milani 200
Carrel et al. 2010; Eberlein 1997; Eberlein eflP8; Eberlein et al. 1999; Lin and Sheu 2011; ®hat
2012; Sheu and Lin 2012) and disruption managemerdels (O’'Dell and Wilson 1999; Shen 2000;
Shen and Wilson 2001). To the best of our knowled@ary et al. (1980) presented the first
methodological method for generating the optimhksitiles for metro services by taking into accohet t
variation of the passenger flow, maintaining ans&attory level of service and providing the alilib
recover from disturbed situations. A hierarchicalltidevel optimization techniques based on the
Lagrangian relaxation framework was proposed ireotd generate optimal schedules. Albrecht (2009)
presented a two-level approach for the demand-mdetrain timetabling problem in suburban railways.
Carrel et al. (2010proposed a comprehensive framework to investigatgsobn factors and major
considerations in service control on high-frequemsgtro line. Niu and Zhou (2013jeveloped a
deterministic nonlinear optimization model for demadapted timetable design subject to the resource
constraints. Wang et al. (201@esented a real-time train scheduling model iriotd minimize the total
passenger time. Canca et al. (20@8yeloped a nonlinear integer programming modelgiemerating
train timetable which considers a dynamic behavaiyrassenger demand.

Barrena et al. (2014a)eveloped linear time-indexed formulations for then scheduling problem
with dynamic demand in order to minimize passemyerage waiting time by the use of branch-and-cut
algorithm. Sun et al. (2014eveloped three linear mathematical formulatiotraih timetabling problem
to capture the period-dependent passenger demasengitivity analysis was conducted to evaluate the
performance of these proposed models on a meteoifirSingapore. The result demonstrated that the
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capacitated and dynamic timetable was the mostipahenodel. Barrena et al. (2014tmoposed general
mathematical programming formulations for the tri@inetabling problem on a unidirectional transiteli
under a dynamic demand.Saharidis et al. (2ptd3ented a mixed-integer linear programming model
order to minimize passenger waiting times at trangbdes in the bus network. The model takes into
account the increased passenger demand at a gimenperiod and aims to reschedule the baseline
timetables, with the purpose of constructing a naffieient schedule.

As reviewed above, the most of the contributionsthie field of transit scheduling assumed a
deterministic travel demand. Taking the travel detheandomness and uncertainty into modeling has
been captured by a limited number of studies.Smith Sheffi (1989studied locomotive scheduling
problem where the power demand for each train éerain. They presented a multi-commodity flow
formulation to minimize expected cost under unéetyaby penalizing trip arcs likely to have toatlkt
power. List et al. (2003tudied the robust optimization of the fleet sizprgblem under the uncertainty
of future demands. Yan et al. (20G8udied the inter-city bus routing and timetabliprgblem under
stochastic demands. Yang et al. (208t@gied train scheduling problem with fuzzy passemtgmand on
a single-track railway. It was assumed that tradiase sufficient capacity to transport all waiting
passengers. A fuzzy goal-programming model with blgectives, namely, total passengers’ time and
total delay time was proposed.lslam and Vandeb@&@tHd Q) conducted a simulation experiment to
illustrate that the variability of departure heagwalirectly influences the waiting time variatioaisthe
bus stops.

Meng and Zhou (201X-eveloped a multi-stage stochastic programming rtoderoduce robust train
schedule where a partial line blockage with una@ertluration happened on a single-track rail line. A
branch and bound (B&B) algorithm was proposed tmioboptimal train schedule with minimal expected
delays. Shafia et al. (2012ddressed the robust train timetabling problem isingle-track railway
network. In order to solve large-scale instancdmam search heuristic was suggested.

Dou et al. (2013) developed a bi-objective traispdiching model based on fuzzy passenger demand
forecast to minimize the total operation cost andenved passenger demand during holidays. Yan et al
(2013)studied the courier routing and scheduling probieran urban area with uncertain demands and
stochastic travel times. Xu et al. (20l@9sumed that passenger arrival rates and alighditigs are
triangular fuzzy variables. They presented seveparational strategies to reduce energy consumption
and congestion degree. Canca et al. (2@tdposed mixed-integer non-linear optimization msde
determine optimal short-turning strategies for itienagement of demand disruptions in rapid railsitan
systems. The pattern of short-turn services andréire timetable were determined through the predos
optimization model with the objective of minimizinfpe passenger waiting time while maintaining
certain level of quality of service. Hassannayebiak (2014)addressed the timetable optimization
problem for entire daily operations of the metrovems. They proposed a two-stage simulation-
optimization approach to minimize the expected wgitimes, subject to the capacity constraintsyel$
as dwell time and travel time variability and trenthnd randomness. Xu et al. (20d6yeloped a multi-
objective timetable optimization approach for supwgstem to minimize the passenger time and energy
consumption. The variation on the passenger flowtations was analyzed. A speed-profile-generation
method was proposed to search for the energy-@fficspeed profile. Yin et al. (2018jdressed the
timetable optimization model in subway system coeshg uncertain passenger demand at each stop and
random running times. To deal with uncertain pagsedemands, a real-time train operation model was
proposed. The train operation problem then was eded into a Markov decision process with
nondeterministic state transition probabilitieseTdbjective was to minimize the penalty for both thtal
time delay and energy consumption in a railway.lM&les and Marinov (201%)eveloped a discrete-
event simulation model in order to analyze theeay& performance and delay responsiveness. Differen
delay mitigation strategies were introduced andsuesl to evaluate their potential in moderatinggel
in the system.
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The present work is motivated by the lack of mettogical framework to investigate how demand
uncertainties affect the feasibility and optimalif the timetabling decisions in metro servicese Th
research application is required for the transérapons in Tehran metropolitan network due tohigh
variability and randomness in daily transportatitemand. This article contributes by developing sbbu
stochastic programming models for train timetablimgder demand uncertainty. To the best of our
knowledge, this study is the first attempt to apmjpust stochastic programming model to rapid rail
transit timetabling problem under demand unceryaiktost of the existing timetabling models for unba
rail management systems were implemented in ardetistic and static setting. Therefore, dynamic and
stochastic models such as those presented heretiasielerable practical application.

The remainder of the study is as follows. In Seci®) the problem is described. Robust stochastic
programming formulations are provided in Sectiof I3 researchers organize and interpret the results
real test experiments in Section 4, which follovegctonclusion in Section 5.

2-Problem statement

In the metro rail systems, the time between twosecuntive departures of the trains is known as
headway time. In this study, the aim is to optintlze headway time of train services at rail statidti
the objective of minimizing the expected and vas@mf the passenger waiting times as well as the
expected overloading under stochastic demand. lat fdllows, we explain why we utilize the robust
optimization methodology and its advantages: Theler of passengers arriving at the station is an
uncertain variable during the planning horizon. §amuently, using uncertain variables to chara&eriz
passenger demand is an essential assumption (4l, €2014). Fortunately, in modern transportation
system, the historical data of the travel demarghthered and maintained in automatic passengaiteou
(APC) systems. The passenger arrival rate cantbaated and represented by demand scenarios where
each one corresponds to an arrival rate profileéh\Wiis explanation, the objective is to develaplaust
stochastic optimization model to construct robuainttimetables. Here, the robustness of a timetabl
related to its stability against stochastic vagiasi in arrival rate of passengers. The robust bietwill
be constructed subject to the maximum number of s@rvices, fleet size and capacity, and the minim
and maximum headways. In the next section, theclwsicept of the robust mathematical programming
will be discussed.

3-Robust mathematical programming

Approaches to optimization under uncertainty hawadacted on a variety of methods, including
expectation minimization, goal programming, minixnapproach, stochastic programming including
recourse models, robust stochastic programming,fared programming (Sahinidis 2004).The concept
of robust stochastic programming was first intraetlby Mulvey et al. (1995) to solve multiple-sceaar
stochastic optimization problems. This robust ofation approach is a kind of adjustable robust
optimization (Goerigk and Schdbel 2015). The fldikipof the implementation and its practical satuis
for decision-makers made the robust stochastic ramging approach a valuable technique for
uncertainty management. Robust stochastic programimicapable of handling soft constraint where the
data uncertainty is represented by scenarios andsbociated probability of occurrence. It alsauimnes
that the probability distribution of the uncertaiariable is given. Hopefully, the demand data of
passengers can be estimated through implementatitdme high-tech data recording system. Thus, the
probability distribution of the arrival rates caa therived and implemented in the model.

Here, the robust optimization model attempts ta #nsolution that is near to optimal in all possibl
scenarios while ensures the feasibility of the tsmtuin almost all scenarios by means of penalty
functions. These two conflicting measures of robeiss are weighted in accordance with the decision-
makers’ objectives. The proposed formulation aimartinimize expected and variance of passenger
waiting times and at the same time the expectedaading, taking into consideration the stochaatid
dynamic variations of the passenger demand.
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3-1-Robust stochastic programming framework

The concept of robust stochastic programming west fntroduced by Mulvey et al. (1995) to
stochastic optimization problems. The methodolagygests a general robust scenario-based stochastic
programming framework which combines the goal pmogning concept to model the uncertainty.
Numerous applications of this robust stochasticgmmming approach have been reported in the
literature including the capacity expansion prolde@alcolm and Zenios, 1994), power dispatch
(Beraldi et al., 1998), chemical process planniésignjed and Sahinidis 1998), network design (Bail.et a
1997), parallel machine scheduling (Laguna et241Q0), production planning (Leung and Wu, 2004),
supply chain management (Bozorgi-Amiri et al., 2048d (Saffari et al., 2015), water resource system
planning (Ray et al., 2013) and generalized assggnmroblem (Fu et al., 2014). The aforementioned
applications prove the ability of the robust mathéoal programming models to solve the optimization
problems under uncertainty. The robust optimizaapproach uses two robustness concepts including
solution robustness and model robustness. Thei@oludbustness means the solution is close to aptim
in all possible scenarios. Alternatively, the mod®#ustness states the case when the solutiomizsal
feasible in all situations. Létbdenote deterministic input data; BItC, e are the uncertain part of the
model. The robust optimization model involves twpes of decisions. The first set of decision vdesb
(design variables) denoted lye R™tand their optimal values are not conditioned onrtaization of
the uncertain data. Oppositely,€ R"2 represent the set of control variables where thgiimal values
depend both on the realization of uncertain datavelsas the optimal values of the design variables
the present formulation, each realization of anewain parameter is referred to a scenawos(R)
associated with an occurrence probahiljjy Let 2 denotes the finite set of scenafibg, ..., w}.
Consequently, each scenario is associated withstlieset of realized input d&@,,, B, C,, e }-
Furthermore{,, denotes the cost or benefit function associated sdenariav € 2. Here, the aim is to
find a trade-off between the solution and modelisthess. The set of control variables for eachasten
w € N are denoted by the set{ v,, ..., ¥,,}- The feasibility of the solutions is measuredaget of error
vectors 4, 6,, ..., 6,} are introduced. Thefinal formulation of the scda@dased robust optimization
program is as follows:

Minimize o(x,V1,V2, - Ve) +V-7(61,02, .., 64) Q)
Subject tadx = b, 2
ByXx + Cpyy + 6, = €4, 0 €N 3
XYy, =20, w€eN 4

The equation (1)characterizes the objective functibthe robust optimization model. The first term
of this function measures the solution robustnessle the second term denotes the model robustness,
penalizing infeasible solutions by a weight paramnet Mulvey et al. (1995)proposed quadratic and
absolute penalty functions. We use the linear perfahction proposed by Yu and Li (2000). At this
point, ¢refers to the weight of cost variance. In conclasithe robust stochastic programming model is
written as follows:

Minimize Z Pw-$w + & Z Pw {(Ew - z P!’ Ew’) + ZTw} + VZ Pw- 00 5)
wWEN WEN w'en WEN

s.t.fw—z Po' S0 +Tw=0 wEeEN (6)
w'en
Ty 84 éw =0 wEN )
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The model robustness is related to the expect&dhicle over crowding. The overcrowding results in
passenger’s dissatisfaction. Therefore, one coatdider a penalty term into the objective functidhis
approach improves the timetable robustness agdémand randomness and simultaneously it takes the
advantages of maintaining the desirable level ofise.

In the next sections, two versions of the abovetioead robust stochastic optimization approach are
presented. We propose alternative formulationdi@fttain timetabling problem. The main objectives a
the comparative analysis of the tractability andtafility of the models dealing with large-scaled
instances. Therefore, the modelling approach bentém different mathematical formulations. Ireth
first model, a time-expanded linear formulation developed. The second formulation presents a
nonlinear objective function and linear constraifitie interesting feature in the second formulat®on
that it requires fewer binary variables than timedir model. Both formulations are developed to aner
the robustness of train timetable against the sitahvariations in arrival rate of passengers.

3-2-Time-indexed linear model
This section provides a time-expanded formulatibthe train timetabling model in accordance to the
robust stochastic programming framework presemtele previous section. A set of train servides {)

are given to be scheduled during the period ofiser§0, T]). LetH; be the headway betweéith and
(i + 1)-th train departures. In the proposed time-indestedhastic programming formulation, the index
t € T is referred to the departure time slots with edeagtha. The passenger arrival rate at interwal

under scenario € (2 is denoted b¥,,,. The binary variables;, correspond to the timetabling decisions
where the value of 1 means the departure-tf train at the start of the intervfalt + 1]. The flow
variables includé,,andw,,which refer to the number of boarding passengeithemeparting train and
the number of waiting passengers at the beginninghe interval [t,t + 1] under scenario € 0,
respectively.

The mixed-integer linear formulation is given byuatjions (8)-(17). The objective function has three
parts. The first part is the expected value of dkerage waiting time per passenger (AWT) which is
similar to the traditional formulation of the stastic programming models. The second term is the
variance of the cost, weighted by the paramgterhe third part represents the infeasibility tetoe to
the capacity violation, weighted by the parameter

The expected value of the total waiting timg jg, X.ter APe (Wtw + %Aw). Using the flow-oriented
variables, the total waiting time of passengensritten as a linear function. It should be notitkdt the
termsa and,,, are constants and they can be removed from trectdlg function. Accordingly, the

scenario-dependent cost functi@p,)is formulated in equation (10). The third term b€ tobjective
function reflects the expected capacity overloduictvis weighted by.The goal programming variables

(9:»andyz,,) are putted into formulation in order to linearite termmax{O, bio — Yier Xit .C} in the
objective function. For this purpose, equation ¢bhsiders the positive and negative deviations filoen
target values. Constraint (12) states that if amtleaves at tine the number of passengers boarding the
train is zero. On the other hand, if a train depatttime, constraint (12) establishes an upper limit on the
number of passengers getting on the train. Themmini and maximum allowed headways are stated in
equation (13). Constraints (14) and (15) refehtgossible departure times for each train. Equdfi6)
states the passenger flow preservation constraint.
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[Modell]: Minimize Z Pw-€0 + ¢Z Do {(Ew - Z pwr.5w1> + er}
WEN WEN w'en

(8)
+ yz Pe- 9t
WEN teT
s. t.
fw—z Po €0 TTw=20 weN 9)
w'en )
Wy, +-A
= ZtET( tw 2 tw) wE _Q (10)
ZtET Atw
btw_z Xip - C=9 —9iwt €T, wE N (11)
i€l
t-1
btwsz (xl-t*z At,w) teT, we (12)
i€l t'=1
Ronin < Z a(t—1).xpq — z a(t—1).x; < oyl €1 (13)
teT teT
Z xp <1 i€l (14)
teT
Z Xy <1 €T (15)
i€l

Wtw = Wt—l,w + At—l,w - btwt € T, w € .Q (16)
Dt Wean Twr Gt Gt € R¥ %y € {013 17

The above robust stochastic programming model eamamsformed into the deterministic equivalent
formulation of the classic stochastic programmirgpel. Here, the objective is minimizing the expdcte
value of the average waiting time per passengee.liflear stochastic programming model is written as
follows:

[SP1]: Minimize Z Pw-€o (18)
WEN
s.t.
Constraints (10), (13)-(16), and
19
btwsz X .CteET, we
i€l
(20)

btwiwtw € :R+xit € {0:1}

Constraints (19) ensurethat the number of boardongt exceed the maximum capacity of the trains.
The value of stochastic solution generated by bowe formulation will be analyzed in the resulttist
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3-3-Nonlinear model

A drawback of the linear modelMjodell] noticeably is the relatively large number of bina
variables. In contrast to the formulations using Wariables indexed by time, here a new formulaison
proposed that use variables indexed by train serlilsing new assignment variables, a new nonlinear
formulation is derived. Thus, the main differencetwieen the linear and non-linear stochastic
programming models lies in the definition of theideon variables. The non-linear model is formudate
using less number of binary variables. Whereastimstraints of the nonlinear model are similarhe t
linear model their structure is to some extent mamaplicated. The objective function as presented i
equation (22) includes three terms. The first sawbad terms are as they are defined in the lineatein
The infeasibility term (third part) is used to pkrea violations of the capacity constraints, capabf
modifying the solution in response to variationglata under different demand scenarios. Equati8h (2
represents the total waiting time of passenger&muadenaria € 2. The goal programming variables
(9i,andg;,,) are defined to linearize the temmax{O, Siy — C} in the objective function. The positive
deviation from the target values is of concern tmab the equation (24) is presented in the forrranat
Constraint (25) establishes an upper limit on theiper of passengers boarding a train. ConstraB)t (2
represents the minimum and maximum headway timaselea train services. The planning horizon is
divided into a number of periodp € P) with length6,, that correspond to different scenario-dependent

arrival rates,(g’)). Thep-th period starts at time= ¢,,.
The binary variablengp)) are used to assign train services to the demaridds. These variables are

associated with the departure timés ) through constraint (27). Equation (28) guarantbaseach train
service must be assigned to a specific time pefiibé. services frequency variable% ( are defined as

auxiliary variables. The relation between the bmneariables i/l.(p)) and the integer variable() is

presented in equation (29). L&t, denotes the number of passengers arriving betivdeandi + 1-th

train services under scenawoe 2. An important part of the formulation is the cdation o%;,,. For
this purpose, the accumulative number of passersgered before the departure timeieh train under
scenariaw € £ is denoted b¥;,,. Simply, the relationship between accumulative aednd\;,,) and inter-

departure flows §;,,) is expressed through equation (30). It is reguite compute the number of
passengers according to the arrival rates in thegse In this regard, suppos¢h service is assigned to
the periodp. Consequently, the following equation computes #weumulative input flow under
scenariaw:

t! ’
A= thep {(1 - zt_lyi“)> .2 )} +(di ~tp1) AP i€l wen 1)

The flow conservation is written in equation (3hequalities (32) and (33) are written to lineartize
above equation. Constrains (32) and (33) calculmecumulative flow of passengers arriving to the
station until the-th departure. Likewise, equations (34)-(35) caleuthe number of passengers arrived
to station after the last train services, respebtivFinally, the robust train timetabling modelden
period-depended and uncertain demand is writtea @m$xed-integer non-linear programming (MINLP)
model with the following equations:
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[Model2]: Minimize Z P + @ Z Do {(Ew - Z pwr.fwr> + er}
WEN WEN w'en

(22)
+ )/2 Z Peo- Gitw
wWEN i€l
s.t.
Constraint (9),
1 1 1
Zie[\{n} (Wiw + 551'(») . (di+1_ di ) + EAl.w- dl + §5n,w- (T_ dn )
= w €N (23)
$o ®
ZpEP ep')‘w
bi,-C =9, — gini €1, w€ N (24)
b, <Aipi €1, w€N (25)
hmin < di+1 d < hmaxi €l (26)
tpoy — M. (1 - yl.(”)) <d; <t,+M. ( yl(”)) i€l, pep 27)
Z yl-(p) =1 i€l (28)
pEP
Z yP =E pep (29)
Lw - Al+1w - Ai,(u S I\{Tl}, w € (] (30)
Wla) - Wl—l,(u + 6,:_1’“) - bla) l E I, w E .(2 (31)
t’
, _ Y 5, ) o ®) ®) ;
A, =< zt’EP {(1 ztzlyi ).Bt Ay }+ (dl tp_l)./lw + M. ( ) )lE I, p (32)
EP, wen
t’
_ ® (t") _ ) _,®)
> Ztlep {(1 zt:lyi ).et,.zw }+ (d; ~tper) AP + M. (1-yP) i€l p (33)
EP, weln
N © (") ) ®
SZ {( Z Vn ) 0.2, }+(tp—dn)./1w +M.(1 Vn )pEP, w €N (34)
t=t'
NT ,
S Z {( = 90) 0 AG )}+ (tp =y ) AP +M.(1-yP) pep, wen (35
t=t'
d; 100 Bito Wieor Biar Te Gity G0 € R*YY € (0,1 (36)

One may want to optimize train schedules subjedtiiat capacity constraints in order to generate
feasible solutions in all scenarios. Thus, the inealr stochastic programming model with expectddeva
objective function is formulated as follows:
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[SP2]: Minimize z=z Do &0 (37)

wWEN

S.t.

Constraints (23), (26)-(35), and

by <Ci€l, w€N (39)
d; 810y, iy Wig Diy€ Ry € {0,1} (39)

Constraints (38)mpose an upper limit on the number of boardingcéscluding note, the complexity
of the proposed robust stochastic programming ftatimns is not only depends on the number of
variables and constraints but also the inherentptexity of the train scheduling problem. In what
follows, the size of the proposed mathematical Hsoweformally quantified. The linear model reqaire
IT]| = ||1]] number of binary variables ad(||2]| + |[I]]) + 3.||T |- ||| + ||T]|constraints. On the other
hand, the non-linear model requir®|| = ||I|| binary variables and.|[Q2] + 4. (|[I]| + ||PI]D. ||2]] +
2.0 + NP N+ 1P+ 2.1 11211 [IP]lnumber  of constraints. The complexity of the preubs
models depends on number of train servidd$l)( length of the planning horizon and the number of
scenarios|[2]]). The number of train services and the discratimdevel @) have great impacts on the
complexity of the models. Regularly, the integarelir programming model requires more binary
variables compared with the non-linear model. Tinicates the difficulty of solving the problem \tize
presented linear stochastic integer programmingeinfaat the large-sized instances. On the other hand
the nonlinear integer programming models are initgrenore difficult to solve. It should be notedath
the train timetabling problem under dynamic demaad proved as a NP-hard problem (Sun et al. 2014).
In the next section, we conduct computational a@rpamts on robust stochastic programming models that
provide useful insight on the performance and #aitity of the models.

3-4-Computational experiments on illustrative examfes

In this section, the objective is to quantify thatgntial benefits of the robust optimization apptoa
using the analytical result obtained under the eratitical model developed above, on a hypothetiGhal r
system. Further, we investigate the efficiency fiexibility of the proposed robust and pure stotitas
programming models via numerical examples. In tfet €ase, the detail data of demand scenarios and
their summarized information are provided in Tabkend Table 2, respectively. The arrival profiles are
generated randomly with a non-convex function idirig two demand peaks which is close to real-world
situation. The minimum~h,;,) and maximum K,,,,) headways are 1 and 5 minutes, respectively.
Random patterns for travel demand are definedretbptimistic, pessimistic and most likely sceosri
(1Q1=3). In every scenario the travel demand consigtiigvo peaks. In this example, it is assumed that
in worse scenarios (2 and 3) the rate of arrivah@e than the optimistic scenario (see FigureThg
goal is to construct a robust timetable that mingsithe expected and variance of average waitimg ti
per passenger. The computational experiments aferped on a personal computer with 2.5 GHz Intel
core processor and 2GB memory which running on \Wsd7 platform.
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Table 1The arrival rate scenarias, (passenger per minutes)
Period (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenario 1 35 88 114 131 205 251 335 346 324 31.363@8.1 25 25 215
Scenario 2 111 104 23.7 218 256 309 347 389 352 41823336 291 29.8 315
Scenario 3 146 245 375 351 36.3 319 364 441 378 53654445 364 411 424

Period (t) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Scenario 1 13 158 213 223 274 31 355 374 37 351 31512622 79 55
Scenario 2 252 278 331 276 388 409 40.2 449 39.1 41923358 26 11 187
Scenario 3 292 424 334 331 389 526 54 594 452 55275381 336 125 213

Table 2The summarized information of demand scenarios

Likelihood Demand (number of Minimum arrival rate Maximum arrival rate Average arrival rate

Scenarios . . .
(o) passengers) (passenger per minutes) (passenger per minutes) (passenger per minutes)

1 0.2 713.2 35 374 23.8
2 0.5 924.6 104 44.9 30.8
3 0.3 1175 125 59.4 39.2
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¢ Scenariol O  Scenario 2-A - Scenario 3=¥— Expected Arrival Rate
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o o o o
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Passenger arrival rate (pass/minutes)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time intervals

Fig.1. The demand scenarios in the numerical example

3-4-1-Expected value minimization

In this section, the objective is to find the smlaotof stochastic programming models with the aim o
minimizing the expected value of the average waitiime per passenger. The linear and non-linear
stochastic programming mode[$P1]andSP2]) are solved using CPLEX and DICOPT/GAMS solvers,
respectively. The computational results of thedmand non-linear models are given in Table 3, wher
the both expected value and variances of the cesteported. As expected, the average cost redisces
the number of train services)(increases. However, the variance of cost inceedisst and then
decreases with the increase of the number of smrv{Eigure 2). Overall, the non-linear model
outperforms the linear model in terms of the mead wariance of cost. In the present example, the
nonlinear model generates efficient and robusttemls where the relative reduction in expected inwgit
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time and cost variance are 13.38% and 90.7% onagegerrespectively. On the other hand, more
computational effort is required to solve the noedir model compared to the linear model. The agerag
computational time of the nonlinear model is lé@mnt4 minutes. The important observation is thadgg
CPU time belongs to the case with n=17 trains. &s loe seen, the CPU time decreases by scheduling
more or less train services.

Table 3. The computational results of the pure stochastignamming models in example 1 (C=40)

Linear model [SP1] Nonlinear model [SP2]
E(AWT) S.D. CPU time (sec) E(AWT) S.D. CPU time (sec)
10 2.8459 0.96 0.43 2.5517 0.17 204
11 2.6155 1.13 0.32 2.3410 0.19 32.15
12 2.4608 1.17 0.42 2.1797 0.18 29.53
13 2.1940 1.14 0.54 2.0880 0.14 30.04
14 2.0443 1.21 0.57 1.9221 0.14 46.67
15 1.9337 1.16 0.54 1.6568 0.32 236.60
16 1.7698 1.21 0.46 1.5379 0.30 601.63
17 1.6693 1.18 0.67 1.4234 0.31 804.83
18 1.5232 1.22 0.68 1.3151 0.30 322.87
19 1.4274 1.26 0.65 1.2110 0.27 209.89
20 1.3834 0.87 0.51 1.1094 0.23 299.91
21 1.3392 0.90 0.59 1.0149 0.19 194.61
22 1.1639 0.65 0.62 0.9318 0.18 82.08
23 1.0425 0.45 0.54 0.8601 0.21 48.57
24 0.9360 0.47 0.51 0.8180 0.18 33.21
25 0.7992 0.28 0.20 0.7512 0.20 51.90
Average 1.69 0.95 0.52 1.48 0.22 190.30

S.D.: Standard deviation of cost (minutes)

3-4-2-Convergence analysis

For convergence test, many numbers of scenariggenerated randomly, and the corresponding
models are solved optimally. It is assumed thatathival rates follow uniform probability distridon.
The parameters of the probability distributions green for different time-intervals (Table 4). The
performance of the solutions is simulated via samplechniques and the optimality gap is estimated.
The mean, minimum, and maximum values of the lirgachastic programming model are provided in
Table 5. Figure 3 illustrates the gap between tleximum and minimum values which decreases
progressively by increasing the number of scendfi®B. It shows the convergence of the solution of the
stochastic programming model as the sample sif@gde enough. Expectedly, the results demonstrate
that the average CPU time grows exponentially leygasing the number of scenarios. Furthermore, the
variance of the cost decreases by increasing thplesize.

Table 4.The probability distribution of the arrival ratea@senger per minutes)

Interval 1<t<5 6<t<10 11<t<15 16 <t<20 21<t<25 26 <t<30

Uniform distribution U[0,10] U[10,30] U[30,50] U[10,30] U[35,50] U[5,15]
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Table 5.Computational results of test instances undeewifft numbers of scenarios (n=15)

Number of Standard Minimum Maximum Relative gap Average CPU
. Mean value - . . .
scenarios () deviation value value (max—min)/min time (s)
5 1.680 0.124 1.514 1.851 22.26% 0.066
10 1.761 0.109 1.603 1.915 19.46% 0.270
20 1.803 0.071 1.675 1.912 14.15% 0.432
50 1.794 0.040 1.719 1.881 9.42% 2.451
75 1.795 0.030 1.732 1.872 8.08% 3.482
100 1.798 0.031 1.730 1.894 9.48% 5.598
150 1.802 0.023 1.728 1.856 7.41% 12.890
200 1.801 0.020 1.762 1.855 5.28% 25.515
250 1.799 0.020 1.753 1.857 5.93% 47.506
500 1.799 0.013 1.754 1.840 4.90% 195.603
3 2
O E(AWT) of modell
5 . e B o
25 5 A— Cost Variance (CV) of modell | o o o o
o~ o o E(AWT) of model2 18 o O—o o 0O *ﬂ—gf ﬂ—%
A
<$ o g 5 O Cost Variance (CV) of modelZ 7 A B A A
L2 57 0 A
3 ¢ © £
E o El6 A
= o @] A 8
81,5 . 315 ¢
&) A p - <
> A o R O-o o g
© A X o [0}
> o\ o =14
@ o o S
o 1 Q2
O A . © 81.3
AA Ao —O— Mean value
1.2 L
05 N A Minimum value
\ A A 11 o Maximum valug
o L0 n-n I? Enl ‘? Enl 0 0 n oo n0 1 L 1 1 1 L 1 1 1
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2! 5 10 20 50 75 100 150 200 250 500
Number of train services Sample size

Fig. 2. Sensitivity analysis of the stochastic programmingFig. 3. Convergence of the objective values with the
models regarding the number of train services number of scenarios increasing

3-4-3-Value of stochastic solution
In order to evaluate the efficiency of the proposeuthastic programming models, their result are

compared with those of a deterministic model, whigplaces the stochastic parametéﬁg)l by using
their expected valued®)) or the nominal scenario. More specifically, thgected value models work
with a single expected scenario. According to thation given in Section 3.2, the average arriage iis
calculated according to the scenario probabilities:

WEN

Similarly, the expected arrival rate of passengetitained fofModel2] with the following equation:
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(P — (62)
y Zwe.{) Pw-Ay, P EP (41)

Here, the deterministic equivalent models are reteto agEV_MODEL1] andEV_MODEL2] , which are written
as follows:

Yeer (Wi +llit
[EV.MODEL1]: Minimize z = L_Z) +y gt (42)
Yeer e teT

s.t.

Constraints (13)-(15), and

b, —Z Xy - C=gf —gr teT (43)
iel
t-1
b, < Z (xl-t *Z At,) (44)
iel t'=1
Wy = Wr_q + At—l - bt teT (45)
be ,w; ,97,9f € Rtx; €{0,1} (46)

[EV_.MODEL2]: Minimize z

1 1 1

Yienm (Wi +36i )'(di+1'di ) +3581.dy +28, . (T- dn)+ z RN CY))

= = Y 9i
Yoep Op. A® '

S.t.

Constraints (26)-(29), and

8 -C=gf—g;ii€l (48)
8 =01 — 4 i€ N\{n} (49)
Wi = Wi—l + 6i—1 - bi i € I\{l}

t,
<1 —Z yi(t)>,9t,.i(t }+ (d; -tp-1) 1® + M. (1 yl(p))
t=1
t,
<1 —Z yi(t)>,9t,.i(t’)}+ (di ~tp_q)-1® + M, (1 yl(p))l €I, pePp (51)
t=1

i€l, peP (50)

NT
= {(1—2 3) 60 ,1<t>}+(t —d) AP +M.(1-yP) perp (52)
t'ep t=t'
N
= {(1—2 y,ﬁt)) 0, ,1<t>}+(t —d) AP + M. (1-yP) pep (53)
t'ep t=t'
di 8 b At gr € Ry € {01} (54)
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An optimal solution to above-mentioned determinigtguivalent models may result in overloaded
trains when the uncertain demands are realized eMerythe obtained solution can be regarded asia ba
to evaluate the value of the stochastic solutiasu®the determinist solution. The value of thelsastic
solution (VSS) is defined as difference betweendbijective function value of the solution chosesdih
on the decision regarding the expected value ofitteertain variables over all scenarios and tharabt
value of the stochastic model. It measures theradge gained if a stochastic model is utilizedaadtof
a deterministic one (Birge 1982). In our impleménota the optimal solution of the deterministic nebd
including the optimal departure timegg(,) is an input to the objective function of the maiochastic
programming models, namely (dy,). It means that the uncertainty of arrival ratedisregarded
however the expected values are utilized for decisiaking. In this regard, tlt&/ MODEL1 is used to
find optimal departure timegfy).

The objective valu€sp (dgy)is regarded as a basis to compare with the optifmjelctive value of the
stochastic programming models, i&;,(dgp) which assesses the performance of the decisioa in
realistic uncertain environment. Formally, the eahf stochastic solution refers to the cost assetia
with the ignorance of uncertainty when making aiglen (Avriel and Williams 1970). It calculates the
difference betweefsp (dsp) andsp (dyy) as follows:

VSS = Zsp (dZV) — Zsp (d;P) (55)

In what follows, the computational results are juled to show the advantage of the proposed
stochastic programming model and examine the vafustochastic solution under different level of
uncertainty and model parameters. Consider thegcase. First, we examine the value of stochastic
solution under different size of the problem. Theults are summarized in Table 6, where the olbgcti
values of the solutions with expected demand areigeed. The outcomes indicate that the VSS decsease
with increasing the number of train services (Fégdy).

Table 6.The value of stochastic solution of the linearm&&tel regarding the number of train services (C=40)

n 14 Zsp(diy) Zsp(dsp) A

10 0.0282 6.5943 2.8459 3.7484
11 0.0282 5.8458 2.6155 3.2303
12 0.0179 5.1931 2.4608 2.7323
13 0.0177 4.5399 2.1940 2.3459
14 0.0158 4.0764 2.0443 2.0321
15 0.0155 3.5694 1.9337 1.6357
16 0.0151 3.1857 1.7698 1.4159
17 0.0149 2.8209 1.6693 1.1516
18 0.0144 2.4865 1.5232 0.9633
19 0.0140 2.1902 1.4274 0.7628
20 0.0136 1.9438 1.3834 0.5604
21 0.0130 1.7811 1.3392 0.4419
22 0.0103 1.5291 1.1639 0.3652
23 0.0098 1.4116 1.0425 0.3691
24 0.0095 1.1164 0.9360 0.1804
25 0.0094 1.0534 0.7992 0.2542

A set of experiments are also accomplished usiedittear model to examine the different level of
uncertainty, which are represented by the averagger of uncertain arrival rate, (&"** + A/™")/2.
All computations are performed on the test instanaeexample 1 witth = 10 train services and 25
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scenarios. The stochastic parametetg,)( are randomly generated following uniform probiapil
distributionsl/[A;%%*, A/*"']. The results indicate that the proposed stochastigramming model can
find decisions with high value of stochastic sauatiwhen the uncertainty in the arrival rate incesas
(Table 7). The result gives evidence that the highthe degree of uncertainty, the more advantagél
be gained by using the proposed stochastic progmagnmodel (Figure 5).

Table 7The value of stochastic solution regarding the ayerange of uncertain arrival rate=€ 10, |2| = 25)

VSS%
Uncertaintydegree Zsp(dpy)  Zsp(dsp) VSS = Zsp(diy) — Zsp(dsp) _ (Zsp(dpy) — Zsp(dsp)) %
Zsp(dyy)
12 1.6065 1.5716 0.035 2.22%
125 1.5212 1.4958 0.025 1.70%
13 1.7723 1.6921 0.080 4.74%
135 1.8526 1.6911 0.162 9.55%
14 2.0045 1.7573 0.247 14.07%
14.5 2.1266 1.8728 0.254 13.55%
15 2.2397 1.9847 0.255 12.85%
7 0.300
J> O Value of stochastic solution o VSS
6 & Stochastic solution A VSS%
Q o ) 0.250 o o
O Deterministic solution _5
gs | © E
e ?
2 a ©0.200
> i
24 | ° 5
k3] o}
g g © 20.150
(@) 3 o B A A
A o o g AN
A =
A (o] ©
8 o >0.100 N
2 O A o
o %2 e} o
o A A p p ©o
1 O-.g a9 0.050 A
o
[u]
O oo g % Q
0 0.000 - ' - - -

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2

; ) 12 125 13 135 14 14.5 15
Number of train services

Uncertainty degree

Fig. 4. The value of stochastic solution regarding the i 5 The value of stochastic solution regarding the
number of train services uncertainty degree

3-4-4-Trade off between solution robustness and metrobustness

It is valuable to find trade-offs between the expdavaiting time of passenger, variation of paseeng
waiting time and the expected capacity overload.mentioned earlier, the role of weightin the
objective function; equations (8) and (22), isitmifa trade-off between solution robustness andetn@d
quality) robustness for train timetables. The eiopirapproach to determine the value of trade-off
parameters is quite common in robust optimizatiethod(Liao et al. 2013). Thus, we shall yevary
within the sensitivity range limit€0.00 < y < 0.05) and observe the performance of the robust solution
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As discussed in subsection 3.1, paramétespecifies the weight considered on the solutionanae
wherein the solution is less sensitive to changdata under all scenarios @sincreases.A sensitivity
analysis is conducted to evaluate the solutionraadel robustness with respect to the weight of gamm
The solution robustness of the linear model is aateh according to the different value of parameter
(Figure 6). The value of expected cost increasssdind then stays relatively constant at highérevaf
weighty. However, the solution robustness of the mode$ dut differ noticeably regarding the different
value of weightp.The outcomes illustrates that the nonlinear magleierates solutions with lower
expected cost thus indicating the nonlinear moedivelrs a high solution robustness compared to the
linear model (Fig7).As described by Mulvey et al. (1995), the var@an€ cost (CV) is measured with the
following equation:

2

V=) P <é’w Db fa,r) (56)

Figure 8 and Figure 9 show the standard deviatfarost versus values of weight As the weight of
infeasibility norm increases the cost variance e@ses. The cost variance is zero for the cases gvien
2. The result indicates the lower variability foetkolutions obtained from the non-linear model tthemn
linear model with the same value of trade-off paeters. Figure 10 demonstrates that the penalty cost
gradually decreases to zero with an increase irvélee of weighy. The outcomes direct the decision
maker towards a robust solution through choosiegapropriate value for the weight

Overall, as the weighincreases, the expected cost increase (or soltdlmrstness decreases), and on
the other hand the model robustness increasesthber words, for larger values pf the generated
solution is nearly feasible for any realizationtbé scenarios with the cost of additional waitimget
Therefore, the outcomes are consistent with thagtobptimization perspectives. The outcomes indiat
that the nonlinear model generates solutions vésis lexpected cost of waiting time and consequently
higher solution robustness compared to the line@tah The solution obtained from the nonlinear nhode
also exhibit less variance of cost.
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Robust stochastic programming models are also tsetbst model robustness with respect to
parameter (Fig. 10 and Fig.11). As can be seen, higher value for weighis less likely to capacity
overload. The model robustness that measures fisasibility of the generated solutions is decredsed
increasing the weight of error term. While, the mlodbbustness was improved more rapidly using the
nonlinear model which is indicative for high acayaf the model. Furthermore, the weight of cost
variance §) influences the model robustness. Technically ldpgathe model robustness increases by
decreasing the importance of cost variance. Refuats the numerical experimentation show that the
nonlinear stochastic programming model has supgrwformance in terms of both the solution and
model robustness.
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4-Real world implementation

In this section, a discussion on two different aggtions are presented where demand uncertainty is
dominant and it is handled using the stochastignamming models introduced in Section 3. The
computational experiments are conducted for réalistses drawn from metropolitan network in Tehran.
The objectives are to determine robust solutionstifie realistically sized problem instances. The
stochastic programming models are solved to firdagtimal headway times under stochastic arrivtal ra
of passengers. Two important public transit terisirgf Tehran-Karaj subway line are considered for
timetable optimization problem. For the numericaklgsis, the normal train capacity equalste=
500 passengers and the scheduled minimum and maximaimheadways are,,;, = 7 and h,,q =
25 minutes, respectively. The required data for theeerentation are collected from the APC system
obtained from Tehran suburban railway. The demanfilgs in the case study were collected during the
month October 2014. The study period is betweefA%0 to 12:00AMconsisting of7 hourly intervals.
The current headways were planned manually byathexperts (Figure 12).
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Fig.12.Baseline train headways at Tehran and Golshaimirtats
Due to the difficulties that can arise with stodlmdemand, the rail planners construct the baselin

headway with the expected demand and ignore ithastic variations. Here, the stochastic progrargmin
models are implemented to improve the robustnetizedimetable.
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Computational experiments are conducted to evathatsolutions obtained from the classic approach
of stochastic programming and its robust versidiist, we attempt to minimize the expected waiting
time in which a predefined number of scenariosuditlg the minimum, maximum and the average
arrival rate patterns are available. In the commral experiments we use real data from a Tehran
underground rail which exhibits a representativeetof-day demand seasonality. Figure 13 and Figure
14 show the arrival rates as a function of the tinbervals in the day. Alongside the average alniate,
two extreme samples corresponding to busy and wsey Hays are represented. The arrival rate at the
beginning and at the end of the period of studgliatively low, demonstrates a high peak in thenimy.

Due to the high amount of variability in arrivaltea that occurs in the peak demand hours, we are
expecting to gain significant improvements aftepliementing the robust optimization models.

The results of expected value minimization are iveTable 8 and Table 9. We report the expected
waiting time of the passengB(AWT),variance of cost (CV), lower and upper bounds ef ¢élpected
waiting time, and the computational time. The resillustrate significant improvements of 17.7% and
93.45% in the expected value and the variance efa@e waiting time of passengers serving at Tehran
station, respectively, compared to the baselinedue (Table 8).This verifies that the solutiorrabust
optimization model is less sensitive to the vamiatdbf the demand. Moreover, the expected waitimg ti
of passengers serving at Golshahr station is red28e59% (through linear model) and 26.04% (through
nonlinear model), on average, compared to the in@sethedule. The quality of the solution obtained
from the linear and nonlinear models are slightiffecent in two cases. The linear model generated
solutions with fewer expected cost (0.24% on aweragcase 1. On the other hand, the expectedofost
the solution obtained from nonlinear model (in casé reduced by 3.22% on average, compared to the
linear model. The improvement obtained from theclséstic programming approach strengthens the
importance of accounting for arrival rate uncetias in the timetable design of public transpootati
systems. Moreover, the result indicates that thepedational time of the nonlinear model was
substantially lower than linear model which extslihe intractability of the linear model dealingttwi
large-sized instances. In fact, the convex strectifrthe demand function significantly influencée t
computational time of non-linear model. To conclube above discussion, the outcomes demonstrate
that the performance of the baseline timetableoisatcertain extent poor while robust stochastic
programming models generate timetables with lowerage and variance of cost.
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Table 8 The computational results for minimizing expecteadting time(Casel: Tehran station)

Baseline schedule Linear Model [SP1] Nonlinear Model [SP2]
Number of
train Upper  Lower CPU Upper CPU
. E(AWT) S.D. PP Gap% time PP S.D. time
services (n) bound  bound bound
(sec) (sec)
30 9.4312 0.84 6.6857 4.3752 52.81 65476 6.5418 0.14 13.556
35 6.0247 0.17 54351 3.2401 67.74 16488 5.4576 0.04 36.023
40 5.5637 0.18 47536 2.9465 61.33 31125 4.8018 0.05 7.473

S.D.: Standard deviation of cost (minutes)

Table 9.The computational results for minimizing expeoteting time (Case2: Golshahr station)

Baseline schedule Linear Model [SP1] Nonlinear Model [SP2]
Number of
train Upper Lower CPU Upper CPU
. E(AWT) S.D. PP time PP S.D. time
services (n) bound bound bound
(sec) (sec)
30 20.2633 2.92 12.299 12.299 50.26 11.8794 2.22 4.868
35 13.2497 2.03 10.9595 10.9595 76.26 10.6584 2.28 3.103
40 11.8402 3.88 10.1627 10.1627 620.50 9.8068 2.33 7.815

It is remarkable to study how the variance of tbstevould change the solution and model robustness.
Therefore, in order to gain further insight, we gaet Figure 16 and Figure 15 to show the trade-off
between expected cost (i.e., solution robustnesseapected overload in (i.e., model robustnegsihi®
solution obtained using the nonlinear model throimgiheasing weight gamma in the robust optimization
model. The computation experiments demonstratethieagxpected cost increases gradually by incrgasin
the value of Gamma and then converges to a maxiteuet (see Figure 16). Also, Fig.15 shows that,
with the increase of weight Gamma, the capacityation (expected error) decreases, gradually to.zer
The performance of the robust stochastic programmmiadel with a specific setting for variability vabit
(¢ = 0.01) indicates that the expected overloading can Haced by over 44.58% with only a 12.19%
efficiency loss or increase in the expected waithogt. According to the experimental results, for a
specific range of parametgr< 0.0007, theexpected waiting cost and the expected capawirioad are
almost the same overall valuesgofFor the higher values of the parametethe expected waiting cost
and the expected overload can be controlled bygihgrthe value op. Although, the observed trends
demonstrate the optimal policy is moving toward ¢baservative direction. Also, it can be obsenfet t
as the weight of cost variabilityp] increases, the solution robustness improvesheuitodel robustness
degrades.
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A sensitivity analysis is performed to obtain tlstcvariance against the multipliers of the moahel a
solution robustness. As Figure 17 demonstrates;dbevariance grows exponentially and then coresrg
to nearly 2.25minutes with an increase in the vafuamma, where € {0,0.001,0.001, 0.1}. With the
higher weight of the cost variability (eq.= 10), the cost variance function becomes dominanttaed
generated solutions have no variability. The abdiszussion highlight the research limitations as
follows: the present robust optimization framewnzluires a multi-objective optimization method itwf
the robust Pareto optimal solutions. The multi-otije optimization method supports the decision
making process by delivering alternative non-doit@idaolutions. Also, the computational effort resic
by eliminating the need for sensitivity analysis.
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Fig.17.Standard deviation of waiting cost with differesiwes ofy

In what follows, a convergence analysis is condiui¢tefind the solutions with minimum expected
waiting time under a realistic situation via Mor@arlo sampling approach. In order to examine the
quality of the solutions, we solve the stochastiogpamming models on different sets of randomly
generated samples. The number of passengers in pmad was collected through an automatic
passenger counter (APC) system. The arrival ratgmssengers are fitted by a triangular probability
distribution function (Table 10).The number of iegtions is R=10 for simulation experiments. The
result of convergence analysis on the real instwiscprovided in Table 11 (Tehran station) and

Table 12 (Golshahr station). The results illustrate that #pproximate relative gap is decreased by
increasing the sample size. The estimated relafiienality gaps are 1.2% and 3% for the cases 12and
respectively. The variance of cost is decreasedktyuas the sample size increases. We note that the
average computational times to solve the Case & lwager than those obtained for the second Case du
to the increased uncertainty in the system. Theoms demonstrate the benefits of including the
stochastic demand in the adjustment of departoresti

Table 10The parameters of the Triangular distribution (&nimum, b: most likely, c: maximum) for the arrival
rate of passengers (passenger per minutes)

Time intervals [5:00,6:00] [6:00,7:00] [7:00,8:00] [8:00,9:00] [9:00,10:00] [10:00,11:00][11:00,12:00]
Tehran (0.15,3.26,4.52) (1,33.4,37) (3,50.3,53) 48,53) (6,39.2,41) (7,29.2,30)5,22.1, 24)
Golshahr (3,72.4,78) (7,147, 159)(6, 134, 148) (7,97, 107) (13,52.6,57) (9, 39.6, 43)(10, 35.2, 38)
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Table 11Computational results of Case 1 under differemuloers of scenarios(n=30)

Number of Standard Minimum Maximum Relative gap Avergge
. Mean value o . ; CPU time
scenarios (Q|) deviation value value (max—min)/min )

3 6.453 0.130 6.306 6.665 5.70% 8.933

5 6.339 0.027 6.286 6.390 1.70% 31.847
10 6.341 0.029 6.295 6.396 1.60% 85.326
20 6.362 0.020 6.322 6.398 1.20% 312.944
50 6.361 0.019 6.341 6.404 1.00% 1494.109
100 6.381 0.027 6.338 6.427 1.40% 6902.183
200 6.367 0.023 6.336 6.415 1.30% 18205.22
250 6.365 0.020 6.342 6.418 1.20% 35946.95

Table 12Computational results of Case 2 under differemuloers of scenarios(n=30)
Number of Standard Minimum Maximum Relative gap Avergge
. Mean value o . - CPU time
scenarios (Q|) deviation value value (max—min)/min )

3 11.786 0.791 10.253 12.740 24.30% 2.43

5 12.047 0.553 11.009 12.904 17.20% 8.501
10 11.940 0.397 11.252 12.605 12.00% 16.568
20 12.012 0.282 11.539 12.605 9.20% 41.983
50 12.076 0.132 11.92 12.358 3.70% 209.546
100 12.108 0.124 11.924 12.311 3.20% 953.191
200 12.076 0.119 11.867 12.219 3.00% 3942.204
250 12.080 0.112 11.951 12.332 3.20% 6430.985

5-Conclusion

The robust train timetable design is an importaabjem for the public transportation systems. iihsi
at generating an operational schedule for a seatanis and with respect to a number of operational
constraints. In this study, the objective was twonporate the stochastic demand flows in mathemidatic
formulation in order to construct a robust trametable with minimum expected average waiting taee
well as cost variance. The train scheduling probleas formulated as linear and nonlinear scenario-
based robust stochastic programming models. Théicappity of the proposed robust mathematical
programming models was examined with carrying oumerical test instances. Numerical examples
illustrated the computational efficiency of the posed modeling approach and the potential bengfit o
solving the robust stochastic programming model maned to the deterministic models. Afterward, the
robustness and effectiveness of the developed adtichprogramming models were verified through
numerical test instances of real-world cases, &edttade-off between solution robustness and model
robustness was investigated. On the basis of catipnal experiments, we found that the robust
stochastic optimization models can obtain almaasifde and near to optimal solutions by controlling
weight parameters. The outcomes proved that theemombustness increases by decreasing the
importance of cost variance. The computation erpentations validate that the average cost rises
gradually by increasing the value of Gamma and tbemverges to a maximum value. Significant
improvements were achieved in both solution qualitgd robustness through the implemented stochastic
optimization approach. The average reduction ineetqal value and the variance of passenger waiting
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time passengers were 22% and 60% compared to theobast baseline timetables. In conclusion, the
outcomes showed the efficiency, robustness andraléability of the nonlinear stochastic programgnin
model compared to the linear model. The presemntystlso recommends a number of fields for further
research. The present formulation can be extermedrtsider the supply-side uncertainty. Furthermore
multi-objective optimization approach can be useavtercome the difficulties of dealing with weight
parameters.
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