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Abstract 
In the context of public transportation system, improving the service quality and 
robustness through minimizing the average passengers waiting time is a real 
challenge. This study provides robust stochastic programming models for train 
timetabling problem in urban rail transit systems. The objective is the minimization 
of the weighted summation of the expected cost of passenger waiting time, its 
variance and the penalty function including the capacity violation due to 
overcrowding. In the proposed formulations, the dynamic and uncertain travel 
demand is represented by the scenario-based multi-period arrival rates of passenger. 
Two versions of the robust stochastic programming models are developed and a 
comparative analysis is conducted to testify the tractability of the models. The 
effectiveness of the proposed stochastic programming model was demonstrated 
through the application to Tehran underground urban railway. The outcomes show 
the reductions in expected passenger waiting time of22%, and cost variance drop of 
60% compared with the baseline plans using the proposed robust optimization 
approach. 
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1-Introduction 
A rapid transit metro is a homogeneous railway system with a high sensitivity against different type of 

disturbances (Lin and Sheu, 2010). Here, the homogeneity of the system refers to the similarities, 
particularly the same capacity and average speed on track segments(Salido et al. 2008). 
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In order to cope with uncertainty, the rail managers must schedule the train operations effectively at 
public transit nodes. One of the main types of disturbances is stochastic variations of travel demand that 
affects the headway regularity and results in passenger congestion and additional waiting time. For the 
disturbed situation, passengers may not be allowed to board the first train and have to wait until the next 
train arrives due to the maximum vehicle capacity. Particularly, during the peak hours, a planned 
timetable may become infeasible with respect to the capacity constraints simply due to an unpredicted 
increase of passenger demand. An important consequence of demand disturbances is overcrowded 
vehicles. The on-board discomfort is likely to be influenced by congestion effects and in-vehicle 
overcrowding (Trozzi et al. 2013). The in-vehicle overcrowding occurs when the number of on-board 
passengers exceeds the normal loading capacity of a vehicle. Niu and Zhang (2012) used the in-vehicle 
overcrowded cost in the objective function of the train timetable problem. An optimization approach was 
developed to minimize both the passenger waiting time and the in-train overcrowding cost. However, to 
handle demand disruptions, a robust timetable is required. More specifically, the design and optimization 
of such a timetable that guarantees acceptable passenger waiting time is an important research topic. 

From the operational point of view, the quality of the train timetables for metro service is extremely 
demand sensitive(Sun et al., 2014). Usually, passenger demand fluctuates on a daily basis, so that the 
expected demand may not reflect the real daily passenger demand, where stochastic disturbances may 
occur. Hence, the precise estimation of the demand flows is an important issue in timetable design and 
particularly for the congested metropolitan areas. Fortunately, with the emergence of automated vehicle 
positioning and passenger counter systems, a rich historical data is now available for the public 
transportation sector to manage the operations effectively and to examine the reliability of the transit 
system(Carrel et al. 2013).Corman and Meng (2015) provided a comprehensive survey of the online 
railway traffic control approaches under dynamic and stochastic environments. It was pointed out that 
collecting and incorporating the realistic data of passenger flows is essential to improve the timetable 
robustness. With the intention of avoiding passenger congestion due to train capacity and demand 
uncertainty, the robust approach to train timetabling problem is a practical solution. 

In the following, the most significant contributions in the literature, with a particular attention to the 
demand-driven train timetabling problem are highlighted: The past scientific publications in the field of 
urban rail planning can be categorized to nominal scheduling (Barrena et al., 2014a; Chierici et al., 2004; 
Scholz et al., 2003), stochastic optimization (Li and Yang 2013), online control (Assis and Milani 2004; 
Carrel et al. 2010; Eberlein 1997; Eberlein et al. 1998; Eberlein et al. 1999; Lin and Sheu 2011; Sáez et al. 
2012; Sheu and Lin 2012) and disruption management models (O’Dell and Wilson 1999; Shen 2000; 
Shen and Wilson 2001). To the best of our knowledge, Cury et al. (1980) presented the first 
methodological method for generating the optimal schedules for metro services by taking into account the 
variation of the passenger flow, maintaining an satisfactory level of service and providing the ability to 
recover from disturbed situations. A hierarchical multi-level optimization techniques based on the 
Lagrangian relaxation framework was proposed in order to generate optimal schedules. Albrecht (2009) 
presented a two-level approach for the demand-oriented train timetabling problem in suburban railways. 
Carrel et al. (2010) proposed a comprehensive framework to investigate decision factors and major 
considerations in service control on high-frequency metro line. Niu and Zhou (2013) developed a 
deterministic nonlinear optimization model for demand-adapted timetable design subject to the resource 
constraints. Wang et al. (2013) presented a real-time train scheduling model in order to minimize the total 
passenger time. Canca et al. (2013) developed a nonlinear integer programming model for generating 
train timetable which considers a dynamic behaviour of passenger demand.  

Barrena et al. (2014a) developed linear time-indexed formulations for the train scheduling problem 
with dynamic demand in order to minimize passenger average waiting time by the use of branch-and-cut 
algorithm. Sun et al. (2014) developed three linear mathematical formulation of train timetabling problem 
to capture the period-dependent passenger demand. A sensitivity analysis was conducted to evaluate the 
performance of these proposed models on a metro line in Singapore. The result demonstrated that the 
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capacitated and dynamic timetable was the most practical model. Barrena et al. (2014b) proposed general 
mathematical programming formulations for the train timetabling problem on a unidirectional transit line 
under a dynamic demand.Saharidis et al. (2014) presented a mixed-integer linear programming model in 
order to minimize passenger waiting times at transfer nodes in the bus network. The model takes into 
account the increased passenger demand at a given time period and aims to reschedule the baseline 
timetables, with the purpose of constructing a more efficient schedule.  

As reviewed above, the most of the contributions in the field of transit scheduling assumed a 
deterministic travel demand. Taking the travel demand randomness and uncertainty into modeling has 
been captured by a limited number of studies.Smith and Sheffi (1989) studied locomotive scheduling 
problem where the power demand for each train is uncertain. They presented a multi-commodity flow 
formulation to minimize expected cost under uncertainty by penalizing trip arcs likely to have too little 
power. List et al. (2003) studied the robust optimization of the fleet sizing problem under the uncertainty 
of future demands. Yan et al. (2006) studied the inter-city bus routing and timetabling problem under 
stochastic demands. Yang et al. (2009) studied train scheduling problem with fuzzy passenger demand on 
a single-track railway. It was assumed that trains have sufficient capacity to transport all waiting 
passengers. A fuzzy goal-programming model with two objectives, namely, total passengers’ time and 
total delay time was proposed.Islam and Vandebona (2010) conducted a simulation experiment to 
illustrate that the variability of departure headways directly influences the waiting time variations at the 
bus stops. 

Meng and Zhou (2011) developed a multi-stage stochastic programming model to produce robust train 
schedule where a partial line blockage with uncertain duration happened on a single-track rail line. A 
branch and bound (B&B) algorithm was proposed to obtain optimal train schedule with minimal expected 
delays. Shafia et al. (2012) addressed the robust train timetabling problem in a single-track railway 
network. In order to solve large-scale instances, a beam search heuristic was suggested. 

Dou et al. (2013) developed a bi-objective train dispatching model based on fuzzy passenger demand 
forecast to minimize the total operation cost and unserved passenger demand during holidays. Yan et al. 
(2013) studied the courier routing and scheduling problem in an urban area with uncertain demands and 
stochastic travel times. Xu et al. (2014) assumed that passenger arrival rates and alighting ratios are 
triangular fuzzy variables. They presented several operational strategies to reduce energy consumption 
and congestion degree. Canca et al. (2014) proposed mixed-integer non-linear optimization models to 
determine optimal short-turning strategies for the management of demand disruptions in rapid rail transit 
systems. The pattern of short-turn services and the train timetable were determined through the proposed 
optimization model with the objective of minimizing the passenger waiting time while maintaining 
certain level of quality of service. Hassannayebi et al. (2014) addressed the timetable optimization 
problem for entire daily operations of the metro services. They proposed a two-stage simulation-
optimization approach to minimize the expected waiting times, subject to the capacity constraints, as well 
as dwell time and travel time variability and the demand randomness. Xu et al. (2015) developed a multi-
objective timetable optimization approach for subway system to minimize the passenger time and energy 
consumption. The variation on the passenger flow at stations was analyzed. A speed-profile-generation 
method was proposed to search for the energy-efficient speed profile. Yin et al. (2015) addressed the 
timetable optimization model in subway system considering uncertain passenger demand at each stop and 
random running times. To deal with uncertain passenger demands, a real-time train operation model was 
proposed. The train operation problem then was converted into a Markov decision process with 
nondeterministic state transition probabilities. The objective was to minimize the penalty for both the total 
time delay and energy consumption in a railway line. Wales and Marinov (2015) developed a discrete-
event simulation model in order to analyze the system’s performance and delay responsiveness. Different 
delay mitigation strategies were introduced and measured to evaluate their potential in moderating delays 
in the system. 
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The present work is motivated by the lack of methodological framework to investigate how demand 
uncertainties affect the feasibility and optimality of the timetabling decisions in metro services. The 
research application is required for the transit operations in Tehran metropolitan network due to the high 
variability and randomness in daily transportation demand. This article contributes by developing robust 
stochastic programming models for train timetabling under demand uncertainty. To the best of our 
knowledge, this study is the first attempt to apply robust stochastic programming model to rapid rail 
transit timetabling problem under demand uncertainty. Most of the existing timetabling models for urban 
rail management systems were implemented in a deterministic and static setting. Therefore, dynamic and 
stochastic models such as those presented here have considerable practical application. 

The remainder of the study is as follows. In Section 2, the problem is described. Robust stochastic 
programming formulations are provided in Section 3. The researchers organize and interpret the results of 
real test experiments in Section 4, which followed by conclusion in Section 5. 
 
2-Problem statement  

In the metro rail systems, the time between two consecutive departures of the trains is known as 
headway time. In this study, the aim is to optimize the headway time of train services at rail station with 
the objective of minimizing the expected and variance of the passenger waiting times as well as the 
expected overloading under stochastic demand. In what follows, we explain why we utilize the robust 
optimization methodology and its advantages: The number of passengers arriving at the station is an 
uncertain variable during the planning horizon. Consequently, using uncertain variables to characterize 
passenger demand is an essential assumption (Xu et al., 2014). Fortunately, in modern transportation 
system, the historical data of the travel demand is gathered and maintained in automatic passenger counter 
(APC) systems. The passenger arrival rate can be estimated and represented by demand scenarios where 
each one corresponds to an arrival rate profile. With this explanation, the objective is to develop a robust 
stochastic optimization model to construct robust train timetables. Here, the robustness of a timetable is 
related to its stability against stochastic variations in arrival rate of passengers. The robust timetable will 
be constructed subject to the maximum number of train services, fleet size and capacity, and the minimum 
and maximum headways. In the next section, the basic concept of the robust mathematical programming 
will be discussed. 
 

3-Robust mathematical programming 
Approaches to optimization under uncertainty have conducted on a variety of methods, including 

expectation minimization, goal programming, mini-max approach, stochastic programming including 
recourse models, robust stochastic programming, and fuzzy programming (Sahinidis 2004).The concept 
of robust stochastic programming was first introduced by Mulvey et al. (1995) to solve multiple-scenario 
stochastic optimization problems. This robust optimization approach is a kind of adjustable robust 
optimization (Goerigk and Schöbel 2015). The flexibility of the implementation and its practical solutions 
for decision-makers made the robust stochastic programming approach a valuable technique for 
uncertainty management. Robust stochastic programming is capable of handling soft constraint where the 
data uncertainty is represented by scenarios and the associated probability of occurrence. It also assumes 
that the probability distribution of the uncertain variable is given. Hopefully, the demand data of 
passengers can be estimated through implementation of the high-tech data recording system. Thus, the 
probability distribution of the arrival rates can be derived and implemented in the model. 

Here, the robust optimization model attempts to find a solution that is near to optimal in all possible 
scenarios while ensures the feasibility of the solution in almost all scenarios by means of penalty 
functions. These two conflicting measures of robustness are weighted in accordance with the decision-
makers’ objectives. The proposed formulation aims to minimize expected and variance of passenger 
waiting times and at the same time the expected overloading, taking into consideration the stochastic and 
dynamic variations of the passenger demand. 
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3-1-Robust stochastic programming framework 
The concept of robust stochastic programming was first introduced by Mulvey et al. (1995) to 

stochastic optimization problems. The methodology suggests a general robust scenario-based stochastic 
programming framework which combines the goal programming concept to model the uncertainty. 
Numerous applications of this robust stochastic programming approach have been reported in the 
literature including the capacity expansion problems (Malcolm and Zenios, 1994), power dispatch 
(Beraldi et al., 1998), chemical process planning (Ahmed and Sahinidis 1998), network design (Bai et al. 
1997), parallel machine scheduling (Laguna et al., 2000), production planning (Leung and Wu, 2004), 
supply chain management (Bozorgi-Amiri et al., 2013) and (Saffari et al., 2015), water resource systems 
planning (Ray et al., 2013) and generalized assignment problem (Fu et al., 2014). The aforementioned 
applications prove the ability of the robust mathematical programming models to solve the optimization 
problems under uncertainty. The robust optimization approach uses two robustness concepts including 
solution robustness and model robustness. The solution robustness means the solution is close to optimal 
in all possible scenarios. Alternatively, the model robustness states the case when the solution is almost 
feasible in all situations. Let�, �denote deterministic input data; but �, �, � are the uncertain part of the 
model. The robust optimization model involves two types of decisions. The first set of decision variables 
(design variables) denoted by � ∈ ℝ
�and their optimal values are not conditioned on the realization of 
the uncertain data. Oppositely, � ∈ ℝ

 represent the set of control variables where their optimal values 
depend both on the realization of uncertain data as well as the optimal values of the design variables. In 
the present formulation, each realization of an uncertain parameter is referred to a scenario (� ∈ �) 
associated with an occurrence probability��. Let � denotes the finite set of scenarios{1,2, … ,�}. 
Consequently, each scenario is associated with the subset of realized input data	{��, ��, ��, ��}. 
Furthermore, �� denotes the cost or benefit function associated with scenario	� ∈ �. Here, the aim is to 
find a trade-off between the solution and model robustness. The set of control variables for each scenario � ∈ � are denoted by the set {��, ��, … , ��}. The feasibility of the solutions is measured by a set of error 
vectors {��, ��, … , ��} are introduced. Thefinal formulation of the scenario-based robust optimization 
program is as follows:   

(1) ���� �!�			"#�, ��, ��, … , ��$ + &. (#��, ��, … , ��$ 
(2) Subject to �� = �, 
(3) ��� + ���� + �� = ��, � ∈ � 

(4) �, �� ≥ 0,			� ∈ � 

The equation (1)characterizes the objective function of the robust optimization model. The first term 
of this function measures the solution robustness, while the second term denotes the model robustness, 
penalizing infeasible solutions by a weight parameter	&. Mulvey et al. (1995)proposed quadratic and 
absolute penalty functions. We use the linear penalty function proposed by Yu and Li (2000). At this 
point, ,refers to the weight of cost variance. In conclusion, the robust stochastic programming model is 
written as follows: 

(5) ���� �!�	- �� . ���∈. +,- �� /0�� −- ��2 . ��2�2∈. 3 + 24�5�∈. + &- �� . ���∈.  

(6) 6. 7. �� −- ��2 . ��2�2∈. + 4� ≥ 0						� ∈ � 

(7) 4�, �� , �� ≥ 0						� ∈ � 
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The model robustness is related to the expected in-vehicle over crowding. The overcrowding results in 
passenger’s dissatisfaction. Therefore, one could consider a penalty term into the objective function. This 
approach improves the timetable robustness against demand randomness and simultaneously it takes the 
advantages of maintaining the desirable level of service.  

In the next sections, two versions of the above-mentioned robust stochastic optimization approach are 
presented. We propose alternative formulations of the train timetabling problem. The main objectives are 
the comparative analysis of the tractability and suitability of the models dealing with large-scaled 
instances. Therefore, the modelling approach benefits from different mathematical formulations.  In the 
first model, a time-expanded linear formulation is developed. The second formulation presents a 
nonlinear objective function and linear constraints. The interesting feature in the second formulation is 
that it requires fewer binary variables than the linear model. Both formulations are developed to improve 
the robustness of train timetable against the stochastic variations in arrival rate of passengers.   

 
 3-2-Time-indexed linear model 

This section provides a time-expanded formulation of the train timetabling model in accordance to the 
robust stochastic programming framework presented in the previous section. A set of train services (� ∈ 8) 
are given to be scheduled during the period of service ([0, T]). Let <=  be the headway between �-th and #� + 1$-th train departures. In the proposed time-indexed stochastic programming formulation, the index 7 ∈ > is referred to the departure time slots with equal length	?. The passenger arrival rate at interval 7 
under scenario	� ∈ � is denoted by@A�. The binary variables �=A  correspond to the timetabling decisions 
where the value of 1 means the departure of �-th train at the start of the interval	[7, 7 + 1]. The flow 
variables include �A�and BA�which refer to the number of boarding passengers on the departing train and 
the number of waiting passengers at the beginning of the interval [7, 7 + 1] under scenario	� ∈ �, 
respectively.  

The mixed-integer linear formulation is given by equations (8)-(17). The objective function has three 
parts. The first part is the expected value of the average waiting time per passenger (AWT) which is 
similar to the traditional formulation of the stochastic programming models. The second term is the 
variance of the cost, weighted by the parameter	,. The third part represents the infeasibility term due to 
the capacity violation, weighted by the parameter	&.  

The expected value of the total waiting time is∑ ∑ ?�� DBA� + �� @A�EA∈>�∈. . Using the flow-oriented 

variables, the total waiting time of passengers is written as a linear function. It should be noticed that the 
terms ? and @A� are constants and they can be removed from the objective function. Accordingly, the 
scenario-dependent cost function	#��$is formulated in equation (10). The third term of the objective 
function reflects the expected capacity overload, which is weighted by	&.The goal programming variables 
(FA�G andFA�H ) are putted into formulation in order to linearize the term maxL0, �A� −∑ �=A=∈M . �N in the 
objective function. For this purpose, equation (11)considers the positive and negative deviations from the 
target values. Constraint (12) states that if no train leaves at time7, the number of passengers boarding the 
train is zero. On the other hand, if a train departs at time7, constraint (12) establishes an upper limit on the 
number of passengers getting on the train. The minimum and maximum allowed headways are stated in 
equation (13). Constraints (14) and (15) refer to the possible departure times for each train. Equation (16) 
states the passenger flow preservation constraint.  
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(8) 
[�O��P1]:			���� �!�		- ��. ���∈. + ,- �� /0�� −- ��2 . ��2�2∈. 3 + 24�5�∈.

+ &- - ��. FA�GA∈>�∈.  

6. 7.	 
(9) �� −- ��2 . ��2�2∈. + 4� ≥ 0						� ∈ � 

(10) �� = ∑ #BA� + �� @A�$A∈>
∑ @A�A∈>

				� ∈ � 

(11) �A� −- �=A=∈M . � = FA�G − FA�H 	7 ∈ >,			� ∈ � 

(12) �A� ≤- S�=A ∗- @A2�
AH�	
A2U� V=∈M 						7 ∈ >,			� ∈ �	 

(13) ℎX=
 ≤- ?. #7 − 1$. �=G�,AA∈> −- ?. #7 − 1$. �=AA∈> ≤ ℎXYZ� ∈ 8 
(14) - �=AA∈> ≤ 1								� ∈ 8 
(15) - �=A=∈M ≤ 1									7 ∈ > 

(16) BA� = BAH�,� + @AH�,� − �A�7 ∈ >,						� ∈ � 

(17) �A�, BA�, 4�, FA�G , FA�H ∈ ℛG�=A ∈ {0,1}	
The above robust stochastic programming model can be transformed into the deterministic equivalent 

formulation of the classic stochastic programming model. Here, the objective is minimizing the expected 
value of the average waiting time per passenger. The linear stochastic programming model is written as 
follows: 

(18) [\]1]:			���� �!�		- ��. ���∈.  

6. 7.	 
Constraints (10), (13)-(16), and 

(19) �A� ≤- �=A=∈M . �	7 ∈ >,			� ∈ � 

(20) �A�, BA� ∈ ℛG�=A ∈ {0,1}	
Constraints (19) ensurethat the number of boarding don't exceed the maximum capacity of the trains. 

The value of stochastic solution generated by the above formulation will be analyzed in the result section.  
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3-3-Nonlinear model 
A drawback of the linear model [�O��P1] noticeably is the relatively large number of binary 

variables. In contrast to the formulations using the variables indexed by time, here a new formulation is 
proposed that use variables indexed by train service. Using new assignment variables, a new nonlinear 
formulation is derived. Thus, the main difference between the linear and non-linear stochastic 
programming models lies in the definition of the decision variables. The non-linear model is formulated 
using less number of binary variables. Whereas the constraints of the nonlinear model are similar to the 
linear model their structure is to some extent more complicated. The objective function as presented in 
equation (22) includes three terms. The first and second terms are as they are defined in the linear model. 
The infeasibility term (third part) is used to penalize violations of the capacity constraints, capable of 
modifying the solution in response to variations in data under different demand scenarios. Equation (23) 
represents the total waiting time of passengers under scenario	� ∈ �. The goal programming variables 
(F=�G andF=�H ) are defined to linearize the term maxL0, �=� − �N in the objective function. The positive 
deviation from the target values is of concern and thus the equation (24) is presented in the formulation. 
Constraint (25) establishes an upper limit on the number of passengers boarding a train. Constraint (26) 
represents the minimum and maximum headway times between train services. The planning horizon is 
divided into a number of periods (� ∈ ]) with length ̂ _ that correspond to different scenario-dependent 

arrival rates (@�#_$). The p-th period starts at time	7 = 7_.  
The binary variables (�=#_$) are used to assign train services to the demand periods. These variables are 

associated with the departure times (�= ) through constraint (27). Equation (28) guarantees that each train 
service must be assigned to a specific time period. The services frequency variables (_̀ ) are defined as 

auxiliary variables. The relation between the binary variables (�=#_$) and the integer variable (_̀ ) is 

presented in equation (29). Let �=� denotes the number of passengers arriving between �-th and � + 1-th 
train services under scenario	� ∈ �. An important part of the formulation is the calculation of�=�. For 
this purpose, the accumulative number of passengers arrived before the departure time of �-th train under 
scenario	� ∈ � is denoted by∆=�. Simply, the relationship between accumulative demand (∆=�) and inter-
departure flows (�=�) is expressed through equation (30). It is required to compute the number of 
passengers according to the arrival rates in the periods. In this regard, suppose �-th service is assigned to 
the period	�. Consequently, the following equation computes the accumulative input flow under 
scenario	�: 

(21) ∆=�=- /01 −- �=#A$
A2
AU� 3 . ^A2 . @�bA2c5A2∈d + b�= – 7_H�c. @�#_$									� ∈ 8,				� ∈ � 

The flow conservation is written in equation (31). Inequalities (32) and (33) are written to linearize the 
above equation. Constrains (32) and (33) calculate the cumulative flow of passengers arriving to the 
station until the �-th departure. Likewise, equations (34)-(35) calculate the number of passengers arrived 
to station after the last train services, respectively. Finally, the robust train timetabling model under 
period-depended and uncertain demand is written as a mixed-integer non-linear programming (MINLP) 
model with the following equations: 
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(22) 
[�O��P2]:		���� �!�	- ��. ���∈. +,- �� /0�� −- ��2 . ��2�2∈. 3 + 24�5�∈.

+ &- - �� . F=�G=∈M�∈.  

6. 7.	 
Constraint (9), 

(23) �� = ∑ DB=� + �� �=�E . b�=G�–�= c=∈M\{
} + ��∆�,�. �� + �� �
,�. bg– �
 c
∑ ^_. @�#_$_∈d

				� ∈ � 

(24) �=�–� = F=�G − F=�H 	� ∈ 8,			� ∈ � 
(25) �=� ≤ ∆=�	� ∈ 8,			� ∈ � 
(26) ℎX=
 ≤ �=G�– �= ≤ ℎXYZ� ∈ 8 
(27) 7_H� −�. D1 − �=#_$E ≤ �= < 7_ +�. D1 − �=#_$E 						� ∈ 8,			� ∈ ] 

(28) - �=#_$_∈d = 1									� ∈ 8 
(29) - �=#_$=∈M = _̀ � ∈ ] 

(30) �=� = ∆=G�,� − ∆=,�												� ∈ 8\{�},				� ∈ � 
(31) B=� = B=H�,� + �=H�,� − �=�											� ∈ 8,				� ∈ � 

(32) ∆=�≤- /01 −- �=#A$
A2
AU� 3 . ^A2 . @�bA2c5A2∈d + b�= – 7_H�c. @�#_$ +�. D1 − �=#_$E � ∈ 8,			�

∈ ],			� ∈ � 

(33) ∆=�≥- /01 −- �=#A$
A2
AU� 3 . ^A2 . @�bA2c5A2∈d + b�= – 7_H�c. @�#_$ +�. D1 − �=#_$E 					� ∈ 8,			�

∈ ],			� ∈ � 

(34) �
� ≤- iS1 −- �
#A$jk
AUA2 V . ^A2 . @�bA2clA2∈d + b7_ − �
 c. @�#_$ +�. D1 − �
#_$E 	� ∈ ],			� ∈ � 

(35) �
� ≥- iS1 −- �
#A$jk
AUA2 V . ^A2 . @�bA2clA2∈d + b7_ − �
 c. @�#_$ +�. D1 − �
#_$E 	� ∈ ],			� ∈ � 

(36) �= , �=�, �=�, B=�, ∆=�, 4�, F=�G , F=�H ∈ ℛG�=#_$ ∈ {0,1} 
One may want to optimize train schedules subject to strict capacity constraints in order to generate 

feasible solutions in all scenarios. Thus, the nonlinear stochastic programming model with expected value 
objective function is formulated as follows: 
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(37) [\]2]:		���� �!�		 ! =- �� . ���∈.  

6. 7.	 
Constraints (23), (26)-(35), and 

(38) �=� ≤ �	� ∈ 8,			� ∈ � 
(39) �= , �=�, �=�, B=�, ∆=�∈ ℛG�=#_$ ∈ {0,1} 

Constraints (38) impose an upper limit on the number of boarding. As concluding note, the complexity 
of the proposed robust stochastic programming formulations is not only depends on the number of 
variables and constraints but also the inherent complexity of the train scheduling problem. In what 
follows, the size of the proposed mathematical models is formally quantified. The linear model requires ‖>‖ ∗ ‖8‖ number of binary variables and 2. #‖�‖ + ‖8‖$ + 3. ‖>‖. ‖�‖ + ‖>‖constraints. On the other 
hand, the non-linear model requires ‖]‖ ∗ ‖8‖ binary variables and 3. ‖�‖ + 4. #‖8‖ + ‖]‖$. ‖�‖ +2. ‖8‖ + ‖]‖. ‖8‖ + ‖]‖ + 2. ‖8‖. ‖�‖. ‖]‖number of constraints. The complexity of the proposed 
models depends on number of train services (‖8‖), length of the planning horizon and the number of 
scenarios (‖�‖). The number of train services and the discretization level (?) have great impacts on the 
complexity of the models. Regularly, the integer linear programming model requires more binary 
variables compared with the non-linear model. This indicates the difficulty of solving the problem via the 
presented linear stochastic integer programming model for the large-sized instances. On the other hand, 
the nonlinear integer programming models are inherently more difficult to solve. It should be noted that 
the train timetabling problem under dynamic demand was proved as a NP-hard problem (Sun et al. 2014). 
In the next section, we conduct computational experiments on robust stochastic programming models that 
provide useful insight on the performance and tractability of the models. 

3-4-Computational experiments on illustrative examples 
In this section, the objective is to quantify the potential benefits of the robust optimization approach 

using the analytical result obtained under the mathematical model developed above, on a hypothetical rail 
system. Further, we investigate the efficiency and flexibility of the proposed robust and pure stochastic 
programming models via numerical examples. In the first case, the detail data of demand scenarios and 
their summarized information are provided in Table 1 and Table 2, respectively. The arrival profiles are 
generated randomly with a non-convex function including two demand peaks which is close to real-world 
situation. The minimum (ℎX=
) and maximum (ℎXYZ) headways are 1 and 5 minutes, respectively. 
Random patterns for travel demand are defined in three optimistic, pessimistic and most likely scenarios 
(ǁΩǁ=3). In every scenario the travel demand consisting of two peaks. In this example, it is assumed that 
in worse scenarios (2 and 3) the rate of arrival is more than the optimistic scenario (see Figure 1). The 
goal is to construct a robust timetable that minimizes the expected and variance of average waiting time 
per passenger. The computational experiments are performed on a personal computer with 2.5 GHz Intel 
core processor and 2GB memory which running on Windows 7 platform. 
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Table 1.The arrival rate scenarios, λq  (passenger per minutes) 

Period (t)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Scenario 1  3.5 8.8 11.4 13.1 20.5 25.1 33.5 34.6 32.4 31.3 30.6 28.1 25 25 21.5 

Scenario 2  11.1 10.4 23.7 21.8 25.6 30.9 34.7 38.9 35.2 41.9 36.2 33.6 29.1 29.8 31.5 

Scenario 3  14.6 24.5 37.5 35.1 36.3 31.9 36.4 44.1 37.8 53.5 46.5 44.5 36.4 41.1 42.4 
 

Period (t)  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Scenario 1  13 15.8 21.3 22.3 27.4 31 35.5 37.4 37 35.1 31.5 26.1 22 7.9 5.5 

Scenario 2  25.2 27.8 33.1 27.6 38.8 40.9 40.2 44.9 39.1 41.9 39.2 35.8 26 11 18.7 

Scenario 3  29.2 42.4 33.4 33.1 38.9 52.6 54 59.4 45.2 55.2 53.7 48.1 33.6 12.5 21.3 

 
Table 2.The summarized information of demand scenarios 

Scenarios 
Likelihood 

(��) 
Demand (number of 

passengers) 
Minimum arrival rate 

(passenger per minutes) 
Maximum arrival rate 

(passenger per minutes) 
Average arrival rate 

(passenger per minutes) 

1 0.2 713.2 3.5 37.4 23.8 
2 0.5 924.6 10.4 44.9 30.8 
3 0.3 1175 12.5 59.4 39.2 

 
Fig.1. The demand scenarios in the numerical example 

 

3-4-1-Expected value minimization 
In this section, the objective is to find the solution of stochastic programming models with the aim of 

minimizing the expected value of the average waiting time per passenger. The linear and non-linear 
stochastic programming models ([\]1]and[\]2]) are solved using CPLEX and DICOPT/GAMS solvers, 
respectively. The computational results of the linear and non-linear models are given in Table 3, where 
the both expected value and variances of the cost are reported. As expected, the average cost reduces as 
the number of train services (�) increases. However, the variance of cost increases first and then 
decreases with the increase of the number of services (Figure 2). Overall, the non-linear model 
outperforms the linear model in terms of the mean and variance of cost. In the present example, the 
nonlinear model generates efficient and robust solutions where the relative reduction in expected waiting 
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time and cost variance are 13.38% and 90.7% on average, respectively. On the other hand, more 
computational effort is required to solve the nonlinear model compared to the linear model. The average 
computational time of the nonlinear model is less than 4 minutes. The important observation is the highest 
CPU time belongs to the case with n=17 trains. As can be seen, the CPU time decreases by scheduling 
more or less train services.   

 
Table 3.The computational results of the pure stochastic programming models in example 1 (C=40) 

Nonlinear model [rst]  Linear model [rsu] 
n 

CPU time (sec) S.D. v#wxy$  CPU time (sec) S.D. v#wxy$ 
20.4 0.17 2.5517  0.43 0.96 2.8459 10 
32.15 0.19 2.3410  0.32 1.13 2.6155 11 
29.53 0.18 2.1797  0.42 1.17 2.4608 12 
30.04 0.14 2.0880  0.54 1.14 2.1940 13 
46.67 0.14 1.9221  0.57 1.21 2.0443 14 
236.60 0.32 1.6568  0.54 1.16 1.9337 15 
601.63 0.30 1.5379  0.46 1.21 1.7698 16 
804.83 0.31 1.4234  0.67 1.18 1.6693 17 
322.87 0.30 1.3151  0.68 1.22 1.5232 18 
209.89 0.27 1.2110  0.65 1.26 1.4274 19 
299.91 0.23 1.1094  0.51 0.87 1.3834 20 
194.61 0.19 1.0149  0.59 0.90 1.3392 21 
82.08 0.18 0.9318  0.62 0.65 1.1639 22 
48.57 0.21 0.8601  0.54 0.45 1.0425 23 
33.21 0.18 0.8180  0.51 0.47 0.9360 24 
51.90 0.20 0.7512  0.20 0.28 0.7992 25 
190.30 0.22 1.48  0.52 0.95 1.69 Average 

S.D.: Standard deviation of cost (minutes) 
 
 

3-4-2-Convergence analysis 
For convergence test, many numbers of scenarios is generated randomly, and the corresponding 

models are solved optimally. It is assumed that the arrival rates follow uniform probability distribution. 
The parameters of the probability distributions are given for different time-intervals (Table 4). The 
performance of the solutions is simulated via sampling techniques and the optimality gap is estimated. 
The mean, minimum, and maximum values of the linear stochastic programming model are provided in 
Table 5. Figure 3 illustrates the gap between the maximum and minimum values which decreases 
progressively by increasing the number of scenarios (|�|). It shows the convergence of the solution of the 
stochastic programming model as the sample size is large enough. Expectedly, the results demonstrate 
that the average CPU time grows exponentially by increasing the number of scenarios. Furthermore, the 
variance of the cost decreases by increasing the sample size.  

 

Table 4.The probability distribution of the arrival rate (passenger per minutes) 
Interval  u ≤ { ≤ | } ≤ { ≤ u~ uu ≤ { ≤ u| u} ≤ { ≤ t~ tu ≤ { ≤ t| t} ≤ { ≤ �~ 

Uniform distribution   U[0,10] U[10,30] U[30,50] U[10,30] U[35,50] U[5,15] 
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Table 5.Computational results of test instances under different numbers of scenarios (n=15) 
Number of 

scenarios (|�|) Mean value 
Standard 
deviation 

Minimum 
value 

Maximum 
value 

Relative gap 
(max–min)/min 

Average CPU 
time (s) 

5 1.680 0.124 1.514 1.851 22.26% 0.066 
10 1.761 0.109 1.603 1.915 19.46% 0.270 
20 1.803 0.071 1.675 1.912 14.15% 0.432 
50 1.794 0.040 1.719 1.881 9.42% 2.451 
75 1.795 0.030 1.732 1.872 8.08% 3.482 
100 1.798 0.031 1.730 1.894 9.48% 5.598 
150 1.802 0.023 1.728 1.856 7.41% 12.890 
200 1.801 0.020 1.762 1.855 5.28% 25.515 
250 1.799 0.020 1.753 1.857 5.93% 47.506 
500 1.799 0.013 1.754 1.840 4.90% 195.603 

 

 
Fig. 2. Sensitivity analysis of the stochastic programming 

models regarding the number of train services 

 
Fig. 3. Convergence of the objective values with the 

number of scenarios increasing 

 
3-4-3-Value of stochastic solution  

In order to evaluate the efficiency of the proposed stochastic programming models, their result are 

compared with those of a deterministic model, which replaces the stochastic parameters (@�#_$) by using 
their expected values (@̅#_$) or the nominal scenario. More specifically, the expected value models work 
with a single expected scenario. According to the notation given in Section 3.2, the average arrival rate is 
calculated according to the scenario probabilities: 

(40) @̅A =- �� . @A��∈. 7 ∈ > 

Similarly, the expected arrival rate of passenger is obtained for [�O��P2] with the following equation: 
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(41) @̅(_) = - ��. @�(_)
�∈. � ∈ ] 

Here, the deterministic equivalent models are referred to as [EV_MODEL1] and[EV_MODEL2] , which are written 
as follows:  

(42) [��_�����u]:   ���� �!�  ! = ∑ DBA + �
� @̅A EA∈>

∑ @̅AA∈>
+ & - FAGA∈>  

6. 7.  
Constraints (13)-(15), and 

(43) �A − - �=A=∈M . � = FAG − FAH 7 ∈ > 

(44) �A ≤ - S�=A ∗ - @̅A2
AH� 
A2U� V=∈M  

(45) BA = BAH� + @̅AH� − �A 7 ∈ > 

(46) �A , BA , FAG, FAH ∈ ℛG�=A ∈ {0,1} 

(47) 

[��_�����t]:  ���� �!�  !
= ∑ DB= + �

� �= E . b�=G�– �= c=∈M\{
} + �
� ∆�. �� + �

� �
 . bg– �
 c
∑ ^_. @̅(_)_∈d

+ & - F=G=∈M  

6. 7.  
Constraints (26)-(29), and 

(48) �= – � = F=G − F=H � ∈ 8 

(49) �= = ∆=G� − ∆=             � ∈ 8\{�} 
 B= = B=H� + �=H� − �= � ∈ 8\{1} 

(50) ∆=≤ - /01 − - �=(A)A2

AU� 3 . ^A2 . @̅bA2c5A2∈d + b�= – 7_H�c. @̅(_) + �. D1 − �=(_)E � ∈ 8,   � ∈ ] 

(51) ∆=≥ - /01 − - �=(A)A2

AU� 3 . ^A2 . @̅(A2)5A2∈d + b�= – 7_H�c. @̅(_) + �. D1 − �=(_)E � ∈ 8,   � ∈ ] 

(52) �
 ≤ - iS1 − - �
(A)jk
AUA2 V . ^A2 . @̅(A2)lA2∈d + b7_ − �
 c. @̅(_) + �. D1 − �
(_)E  � ∈ ] 

(53) �
 ≥ - iS1 − - �
(A)jk
AUA2 V . ^A2 . @̅(A2)lA2∈d + b7_ − �
 c. @̅(_) + �. D1 − �
(_)E  � ∈ ] 

(54) �= , �= , �= , ∆= , F=G, F=H ∈ ℛG�=(_) ∈ {0,1} 
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An optimal solution to above-mentioned deterministic equivalent models may result in overloaded 
trains when the uncertain demands are realized. However, the obtained solution can be regarded as a basis 
to evaluate the value of the stochastic solution versus the determinist solution. The value of the stochastic 
solution (VSS) is defined as difference between the objective function value of the solution chosen based 
on the decision regarding the expected value of the uncertain variables over all scenarios and the optimal 
value of the stochastic model. It measures the advantage gained if a stochastic model is utilized instead of 
a deterministic one (Birge 1982). In our implementation, the optimal solution of the deterministic model 
including the optimal departure times (���∗ ) is an input to the objective function of the main stochastic 
programming models, namely��d(���∗ ). It means that the uncertainty of arrival rates is disregarded 
however the expected values are utilized for decision making. In this regard, the EV_MODEL1  is used to 
find optimal departure times (���∗ ).  

The objective value ��d(���∗ )is regarded as a basis to compare with the optimal objective value of the 
stochastic programming models, i.e. ��d(��d∗ ) which assesses the performance of the decision in a 
realistic uncertain environment. Formally, the value of stochastic solution refers to the cost associated 
with the ignorance of uncertainty when making a decision (Avriel and Williams 1970). It calculates the 
difference between ��d(��d∗ ) and��d(���∗ ) as follows: 

(55) �\\ = ��d(���∗ ) − ��d(��d∗ ) 

In what follows, the computational results are provided to show the advantage of the proposed 
stochastic programming model and examine the value of stochastic solution under different level of 
uncertainty and model parameters. Consider the case, = 0. First, we examine the value of stochastic 
solution under different size of the problem. The results are summarized in Table 6, where the objective 
values of the solutions with expected demand are provided. The outcomes indicate that the VSS decreases 
with increasing the number of train services (Figure 4). 

Table 6.The value of stochastic solution of the linear SP model regarding the number of train services (C=40) 
�rr �rs(�rs∗ ) �rs(���∗ ) � � 

3.7484 2.8459 6.5943 0.0282 10 
3.2303 2.6155 5.8458 0.0282 11 
2.7323 2.4608 5.1931 0.0179 12 
2.3459 2.1940 4.5399 0.0177 13 
2.0321 2.0443 4.0764 0.0158 14 
1.6357 1.9337 3.5694 0.0155 15 
1.4159 1.7698 3.1857 0.0151 16 
1.1516 1.6693 2.8209 0.0149 17 
0.9633 1.5232 2.4865 0.0144 18 
0.7628 1.4274 2.1902 0.0140 19 
0.5604 1.3834 1.9438 0.0136 20 
0.4419 1.3392 1.7811 0.0130 21 
0.3652 1.1639 1.5291 0.0103 22 
0.3691 1.0425 1.4116 0.0098 23 
0.1804 0.9360 1.1164 0.0095 24 
0.2542 0.7992 1.0534 0.0094 25 

 

A set of experiments are also accomplished using the linear model to examine the different level of 
uncertainty, which are represented by the average range of uncertain arrival rate, i.e.(@A	XYZ + @A	X=
$/2. 
All computations are performed on the test instances of example 1 with � = 10 train services and 25 
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scenarios. The stochastic parameters (@A�) are randomly generated following uniform probability 
distributions	�[@A	XYZ, @A	X=
]. The results indicate that the proposed stochastic programming model can 
find decisions with high value of stochastic solution when the uncertainty in the arrival rate increases 
(Table 7). The result gives evidence that the higher is the degree of uncertainty, the more advantage could 
be gained by using the proposed stochastic programming model (Figure 5).  

 
Table 7.The value of stochastic solution regarding the average range of uncertain arrival rate (� = 10, |�| = 25$ 

�rr%
= b�rs#���∗ $ − �rs#�rs∗ $c�rs#���∗ $ % 

�rr = �rs#���∗ $ − �rs#�rs∗ $ �rs#�rs∗ $ �rs#���∗ $ �����{���{������� 

2.22% 0.035 1.5716 1.6065 12 
1.70% 0.025 1.4958 1.5212 12.5 
4.74% 0.080 1.6921 1.7723 13 
9.55% 0.162 1.6911 1.8526 13.5 
14.07% 0.247 1.7573 2.0045 14 
13.55% 0.254 1.8728 2.1266 14.5 
12.85% 0.255 1.9847 2.2397 15 

 

Fig. 4. The value of stochastic solution regarding the 
number of train services 

Fig. 5. The value of stochastic solution regarding the 
uncertainty degree 

 
3-4-4-Trade off between solution robustness and model robustness 

It is valuable to find trade-offs between the expected waiting time of passenger, variation of passenger 
waiting time and the expected capacity overload. As mentioned earlier, the role of weight & in the 
objective function; equations (8) and (22), is to find a trade-off between solution robustness and model (or 
quality) robustness for train timetables. The empirical approach to determine the value of trade-off 
parameters is quite common in robust optimization method(Liao et al. 2013). Thus, we shall let & vary 
within the sensitivity range limits #0.00 ≤ & ≤ 0.05$ and observe the performance of the robust solution. 
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As discussed in subsection 3.1, parameter , specifies the weight considered on the solution variance 
wherein the solution is less sensitive to change in data under all scenarios as , increases.A sensitivity 
analysis is conducted to evaluate the solution and model robustness with respect to the weight of gamma. 
The solution robustness of the linear model is computed according to the different value of parameter	, 
(Figure 6). The value of expected cost increases first and then stays relatively constant at higher value of 
weight	&. However, the solution robustness of the model does not differ noticeably regarding the different 
value of weight	,.The outcomes illustrates that the nonlinear model generates solutions with lower 
expected cost thus indicating the nonlinear model delivers a high solution robustness compared to the 
linear model (Fig. 7).As described by Mulvey et al. (1995), the variance of cost (CV) is measured with the 
following equation: 

(56) �� =- �� 0�� −- ��2 . ��2�2∈. 3
�

�∈.  

Figure 8 and Figure 9 show the standard deviation of cost versus values of weight	&. As the weight of 
infeasibility norm increases the cost variance decreases. The cost variance is zero for the cases when	, ≥2. The result indicates the lower variability for the solutions obtained from the non-linear model than the 
linear model with the same value of trade-off parameters. Figure 10 demonstrates that the penalty cost 
gradually decreases to zero with an increase in the value of weight	&. The outcomes direct the decision 
maker towards a robust solution through choosing the appropriate value for the weight	&.  

Overall, as the weight&increases, the expected cost increase (or solution robustness decreases), and on 
the other hand the model robustness increases. In other words, for larger values of	&, the generated 
solution is nearly feasible for any realization of the scenarios with the cost of additional waiting time. 
Therefore, the outcomes are consistent with the robust optimization perspectives. The outcomes indicates 
that the nonlinear model generates solutions with less expected cost of waiting time and consequently 
higher solution robustness compared to the linear model. The solution obtained from the nonlinear model 
also exhibit less variance of cost.  

 
 

Fig. 6. Solution robustness with respect to	& values 
(linear model) 

Fig. 7. Solution robustness with respect to	& values (non-
linear model) 
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Fig. 8. Standard deviation of cost with respect to	& 
values (linear model) 

Fig. 9. Standard deviation of cost with respect to	& values 
(non-linear model) 

Robust stochastic programming models are also used to test model robustness with respect to 
parameter& (Fig. 10 and Fig. 11). As can be seen, higher value for weight & is less likely to capacity 
overload. The model robustness that measures the infeasibility of the generated solutions is decreased by 
increasing the weight of error term. While, the model robustness was improved more rapidly using the 
nonlinear model which is indicative for high accuracy of the model. Furthermore, the weight of cost 
variance (,) influences the model robustness. Technically speaking, the model robustness increases by 
decreasing the importance of cost variance. Results from the numerical experimentation show that the 
nonlinear stochastic programming model has superior performance in terms of both the solution and 
model robustness.  

 

Fig. 10. Model robustness with respect to	& values 
(linear model) 

Fig. 11. Model robustness with respect to	& values 
(nonlinear model) 
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4-Real world implementation 
In this section, a discussion on two different applications are presented where demand uncertainty is 

dominant and it is handled using the stochastic programming models introduced in Section 3. The 
computational experiments are conducted for realistic cases drawn from metropolitan network in Tehran. 
The objectives are to determine robust solutions for the realistically sized problem instances. The 
stochastic programming models are solved to find the optimal headway times under stochastic arrival rate 
of passengers. Two important public transit terminals of Tehran-Karaj subway line are considered for 
timetable optimization problem. For the numerical analysis, the normal train capacity equals to � =500	passengers and the scheduled minimum and maximum train headways are ℎX=
 = 7 and ℎXYZ =25	minutes, respectively. The required data for the experimentation are collected from the APC system 
obtained from Tehran suburban railway. The demand profiles in the case study were collected during the 
month October 2014. The study period is between 5:00AM to 12:00AMconsisting of7 hourly intervals. 
The current headways were planned manually by the rail experts (Figure 12).  

 
 

 

 

Fig.12. Baseline train headways at Tehran and Golshahr terminals  

Due to the difficulties that can arise with stochastic demand, the rail planners construct the baseline 
headway with the expected demand and ignore its stochastic variations. Here, the stochastic programming 
models are implemented to improve the robustness of the timetable.  
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Fig. 13. Arrival rate scenarios at Tehran station 
(Case 1) 

Fig. 14. Arrival rate scenarios at Golshahr station 
(Case 2) 

Computational experiments are conducted to evaluate the solutions obtained from the classic approach 
of stochastic programming and its robust versions. First, we attempt to minimize the expected waiting 
time in which a predefined number of scenarios including the minimum, maximum and the average 
arrival rate patterns are available. In the computational experiments we use real data from a Tehran 
underground rail which exhibits a representative time-of-day demand seasonality. Figure 13 and Figure 
14 show the arrival rates as a function of the time intervals in the day. Alongside the average arrival rate, 
two extreme samples corresponding to busy and not busy days are represented. The arrival rate at the 
beginning and at the end of the period of study is relatively low, demonstrates a high peak in the morning. 
Due to the high amount of variability in arrival rates that occurs in the peak demand hours, we are 
expecting to gain significant improvements after implementing the robust optimization models. 

The results of expected value minimization are given in Table 8 and Table 9. We report the expected 
waiting time of the passenger,v(AWT),variance of cost (CV), lower and upper bounds of the expected 
waiting time, and the computational time. The results illustrate significant improvements of 17.7% and 
93.45% in the expected value and the variance of average waiting time of passengers serving at Tehran 
station, respectively, compared to the baseline schedule (Table 8).This verifies that the solution of robust 
optimization model is less sensitive to the variation of the demand. Moreover, the expected waiting time 
of passengers serving at Golshahr station is reduced 23.59% (through linear model) and 26.04% (through 
nonlinear model), on average, compared to the baseline schedule. The quality of the solution obtained 
from the linear and nonlinear models are slightly different in two cases. The linear model generated 
solutions with fewer expected cost (0.24% on average) in case 1. On the other hand, the expected cost of 
the solution obtained from nonlinear model (in case 2) is reduced by 3.22% on average, compared to the 
linear model. The improvement obtained from the stochastic programming approach strengthens the 
importance of accounting for arrival rate uncertainties in the timetable design of public transportation 
systems. Moreover, the result indicates that the computational time of the nonlinear model was 
substantially lower than linear model which exhibits the intractability of the linear model dealing with 
large-sized instances. In fact, the convex structure of the demand function significantly influences the 
computational time of non-linear model. To conclude the above discussion, the outcomes demonstrate 
that the performance of the baseline timetable is to a certain extent poor while robust stochastic 
programming models generate timetables with lower average and variance of cost.  
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Table 8.The computational results for minimizing expected waiting time(Case1: Tehran station) 
Nonlinear Model [rst]  Linear Model [rsu] Baseline schedule 

Number of 
train 

services (n) 

CPU 
time 
(sec) 

S.D. 
Upper 
bound 

 
CPU 
time 
(sec) 

Gap% 
Lower 
bound 

Upper 
bound 

 S.D. v(wxy)  

13.556 0.14 6.5418  65476 52.81 4.3752 6.6857  0.84 9.4312  30 
36.023 0.04 5.4576  16488 67.74 3.2401 5.4351  0.17 6.0247  35 
7.473 0.05 4.8018  31125 61.33 2.9465 4.7536  0.18 5.537  40 

S.D.: Standard deviation of cost (minutes) 
 

Table 9.The computational results for minimizing expected waiting time (Case2: Golshahr station) 
Nonlinear Model [rst]  Linear Model [rsu]  Baseline schedule  

Number of 
train 

services (n) 

CPU 
time 
(sec) 

S.D. 
Upper 
bound 

 
CPU 
time 
(sec) 

Lower 
bound 

Upper 
bound 

 S.D. v(wxy)  

4.868 2.22 11.8794  50.26 12.299 12.299  2.92 20.2633  30 
3.103 2.28 10.6584  76.26 10.9595 10.9595  2.03 13.2497  35 
7.815 2.33 9.8068  620.50 10.1627 10.1627  3.88 11.8402  40 

 

It is remarkable to study how the variance of the cost would change the solution and model robustness. 
Therefore, in order to gain further insight, we present Figure 16 and Figure 15 to show the trade-off 
between expected cost (i.e., solution robustness) and expected overload in (i.e., model robustness) for the 
solution obtained using the nonlinear model through increasing weight gamma in the robust optimization 
model. The computation experiments demonstrate that the expected cost increases gradually by increasing 
the value of Gamma and then converges to a maximum level (see Figure 16). Also, Fig.15 shows that, 
with the increase of weight Gamma, the capacity violation (expected error) decreases, gradually to zero. 
The performance of the robust stochastic programming model with a specific setting for variability weight 
(, = 0.01) indicates that the expected overloading can be reduced by over 44.58% with only a 12.19% 
efficiency loss or increase in the expected waiting cost. According to the experimental results, for a 
specific range of parameter	& ≤ 0.0007, theexpected waiting cost and the expected capacity overload are 
almost the same overall values of	,. For the higher values of the parameter	&, the expected waiting cost 
and the expected overload can be controlled by changing the value of	,. Although, the observed trends 
demonstrate the optimal policy is moving toward the conservative direction. Also, it can be observed that 
as the weight of cost variability (,) increases, the solution robustness improves but the model robustness 
degrades.  
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Fig.15. Model robustness with respect to	γ values 

 
Fig.16. Solution robustness with respect to	γ values 

 

A sensitivity analysis is performed to obtain the cost variance against the multipliers of the model and 
solution robustness. As Figure 17 demonstrates, the cost variance grows exponentially and then converges 
to nearly 2.25minutes with an increase in the value of Gamma, where	, ∈ {0, 0.001, 0.001, 0.1}. With the 
higher weight of the cost variability (e.g.	, = 10), the cost variance function becomes dominant and the 
generated solutions have no variability. The above discussion highlight the research limitations as 
follows: the present robust optimization framework requires a multi-objective optimization method to find 
the robust Pareto optimal solutions. The multi-objective optimization method supports the decision 
making process by delivering alternative non-dominated solutions. Also, the computational effort reduces 
by eliminating the need for sensitivity analysis.  
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Fig.17. Standard deviation of waiting cost with different values of & 

In what follows, a convergence analysis is conducted to find the solutions with minimum expected 
waiting time under a realistic situation via Monte Carlo sampling approach. In order to examine the 
quality of the solutions, we solve the stochastic programming models on different sets of randomly 
generated samples. The number of passengers in each period was collected through an automatic 
passenger counter (APC) system. The arrival rates of passengers are fitted by a triangular probability 
distribution function (Table 10).The number of replications is R=10 for simulation experiments. The 
result of convergence analysis on the real instances is provided in Table 11 (Tehran station) and  

Table 12 (Golshahr station). The results illustrate that the approximate relative gap is decreased by 
increasing the sample size. The estimated relative optimality gaps are 1.2% and 3% for the cases 1 and 2, 
respectively. The variance of cost is decreased quickly as the sample size increases. We note that the 
average computational times to solve the Case 1 were longer than those obtained for the second Case due 
to the increased uncertainty in the system. The outcomes demonstrate the benefits of including the 
stochastic demand in the adjustment of departure times. 

Table 10.The parameters of the Triangular distribution (a: minimum, b: most likely, c: maximum) for the arrival 
rate of passengers (passenger per minutes) 

Time intervals  [5:00,6:00] [6:00,7:00] [7:00,8:00] [8:00,9:00] [9:00,10:00] [10:00,11:00] [11:00,12:00] 

 
Tehran  (0.15, 3.26, 4.52) (1, 33.4, 37) (3, 50.3, 53) (3, 48, 53) (6, 39.2, 41) (7, 29.2, 30) (5, 22.1, 24) 

 Golshahr  (3, 72.4, 78) (7, 147, 159) (6, 134, 148) (7, 97, 107) (13, 52.6, 57) (9, 39.6, 43) (10, 35.2, 38) 
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Table 11.Computational results of Case 1 under different numbers of scenarios(n=30) 

Number of 
scenarios (|�|) Mean value 

Standard 
deviation 

Minimum 
value 

Maximum 
value 

Relative gap 
(max–min)/min 

Average 
CPU time 

(s) 
3 6.453 0.130 6.306 6.665 5.70% 8.933 
5 6.339 0.027 6.286 6.390 1.70% 31.847 
10 6.341 0.029 6.295 6.396 1.60% 85.326 
20 6.362 0.020 6.322 6.398 1.20% 312.944 
50 6.361 0.019 6.341 6.404 1.00% 1494.109 
100 6.381 0.027 6.338 6.427 1.40% 6902.183 
200 6.367 0.023 6.336 6.415 1.30% 18205.22 
250 6.365 0.020 6.342 6.418 1.20% 35946.95 

 
 

Table 12.Computational results of Case 2 under different numbers of scenarios(n=30) 

Number of 
scenarios (|�|) Mean value 

Standard 
deviation 

Minimum 
value 

Maximum 
value 

Relative gap 
(max–min)/min 

Average 
CPU time 

(s) 
3 11.786 0.791 10.253 12.740 24.30% 2.43 
5 12.047   0.553   11.009 12.904   17.20% 8.501 
10 11.940   0.397   11.252   12.605   12.00% 16.568 
20 12.012 0.282 11.539 12.605 9.20% 41.983 
50 12.076 0.132 11.92 12.358 3.70% 209.546 
100 12.108 0.124 11.924 12.311 3.20% 953.191 
200 12.076 0.119 11.867 12.219 3.00% 3942.204 
250 12.080 0.112 11.951 12.332 3.20% 6430.985 

 

 

5-Conclusion 
The robust train timetable design is an important problem for the public transportation systems. It aims 

at generating an operational schedule for a set of trains and with respect to a number of operational 
constraints. In this study, the objective was to incorporate the stochastic demand flows in mathematical 
formulation in order to construct a robust train timetable with minimum expected average waiting time as 
well as cost variance. The train scheduling problem was formulated as linear and nonlinear scenario-
based robust stochastic programming models. The applicability of the proposed robust mathematical 
programming models was examined with carrying out numerical test instances. Numerical examples 
illustrated the computational efficiency of the proposed modeling approach and the potential benefit of 
solving the robust stochastic programming model compared to the deterministic models. Afterward, the 
robustness and effectiveness of the developed stochastic programming models were verified through 
numerical test instances of real-world cases, and the trade-off between solution robustness and model 
robustness was investigated. On the basis of computational experiments, we found that the robust 
stochastic optimization models can obtain almost feasible and near to optimal solutions by controlling the 
weight parameters. The outcomes proved that the model robustness increases by decreasing the 
importance of cost variance. The computation experimentations validate that the average cost rises 
gradually by increasing the value of Gamma and then converges to a maximum value. Significant 
improvements were achieved in both solution quality and robustness through the implemented stochastic 
optimization approach. The average reduction in expected value and the variance of passenger waiting 
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time passengers were 22% and 60% compared to the non-robust baseline timetables. In conclusion, the 
outcomes showed the efficiency, robustness and the tractability of the nonlinear stochastic programming 
model compared to the linear model. The present study also recommends a number of fields for further 
research. The present formulation can be extended to consider the supply-side uncertainty. Furthermore, 
multi-objective optimization approach can be used to overcome the difficulties of dealing with weight 
parameters. 
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