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Abstract

The traveling salesman problem (TSP) is one of rifest important combinational
optimization problems that has nowadays receivechmattention because of its
practical applications in industrial and servicelgems. In this paper, a hybrid two-
phase meta-heuristic algorithm called MACSGA usaddlving the TSPis presented.
At the first stage, the TSP is solved by themodifiat colony system (MACS) in each
iteration, and at the second stage, the modifierttie algorithm (GA) and 2-opt local
searchare used for improving the solutions of this for that iteration. This process
avoids the premature convergence and makes beltgioss. Computational results on
several standard instances of TSP show the effigieof theproposedalgorithm
comparedwith the GA, ant colony optimization angeotmeta-heuristic algorithms.

Keywords: Genetic Algorithm, Ant Colony system, Traveling &han Problem,
Premature Convergence

1- Introduction

One of the most studied problems in combinatorf@inoization is the traveling salesman problem
(TSP) and its generalizations such as the multigleeling salesmen problem (MTSP) and the vehicle
routing problem (VRP) (Yousefikhoshbakht, Didehaad Rahmati, 2014). Their importance relies upon
the fact that they are difficult to be solvedbué antuitively used for modeling several real world
problems.This problem can be simply described Bawe.Suppose that there is one salesman who wants
to visit n cities, and his object is finding out the shortdamilton cycle through which he can visit all the
cities once and only once, and finally return te #lart one. In practice, the basic TSPis extendtd
constraints, for instance, on the allowed capaoitythe salesman, the length of the route, arrival,
departure and service time, the time of collecéind delivery of goods.

The techniques used for solving the TSP can beyeemed into exact, heuristic and meta-heuristic
methods. Exact approaches for solving the TSP aceessfully used only for relatively small-sized
problems, but they can guarantee optimality baseddidferent techniques. These techniques use
algorithms that generate both a lower and an uppend on the true minimum value of the problem
instance. If the upper and lower bound coincide;caf of optimality is achieved.
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There have been some papers such as exact exppbnegthod (Xiao and Nagamochi, 2016), branch
and bound (Battarraand Pessoa, 2014)proposing akgeithms for solving the TSP. Although the TSP
is conceptually simple, it is difficult to obtaim @ptimal solution. Im-city situation, any permutation of
n cities yields a possible solution. As a consequengmssible tours must be evaluated in the search
space. In other words, when the problem size isesahe exact methods cannot solve it efficiently
reasonable computing time.Therefore, we have tdheasgstic or meta-heuristicmethods for solvingnthe
and settle for the suboptimal solutions in a reabnamount of time for instances with large si&Szsne
of the famousheuristic algorithms are gravitaticeralulation search (Balachandar and Kannan, 2007),
2-opt, 3-opt heuristics (Lin, 1965) and Lin-Kernagh(Karapetyanand Gutin, 2011).

In the last 30 years, a new kind of algorithm ahiteetaheuristilhas emerged which basically tries to
combine basic heuristic methods in higher levehzavorks aimed at efficiently and effectively exihor
a search space.In general; it is absolutely esdntise meta-heuristics algorithms in order tosesol
complex optimization problems. Since the meta-lsticrapproaches are very efficient for escapingfro
local optimum, they are one of the best algoritfionsolving combinatorial optimization problems.ath
is why the recent publications are more based om-meuristic approaches such as genetic algorithm
(GA) (Sedighpour, YousefiKhoshbakht and Mahmood@par2011), african Buffalo Optimization (Odili
and MohmadKahar, 2016), ant system (AS) (Yousefifiakht, Didehvar and Rahmati, 2013), particle
swarm optimization (Anantathanavit and Munlin, 2P1&nd imperialist competitive algorithm
(ICA)(YousefiKhoshbakht and Sedighpour, 2012).

Recently, many researchers have found that theoymmeint of hybridization in optimization problems
can improve the quality of problem solving in comgan with heuristics and meta-heuristics. ICA with
tabu search(Ahmadvand, YousefiKhoshbakht and Mallib@wani, 2012), combination of particle
swarm optimization, greedy randomized adaptive cteaprocedure (GRASP) and expanding
neighborhood search strategy (Marinakis and Maijndk10), elite ant system and local search
(YousefiKhoshbakht, Sedighpour and Mahmoodabadi,1p0variable neighborhood descent search and
GRASP (Hernandez-Perez, Rodriguez-Martin and &afaanzalez, 2009) and so on are examples of
hybrid algorithms.

The TSP is an important NP-hard optimization probkhat arises in several applications including
the computer wiring, sequencing job, designing Wareé devices and radio electronic devices,
communications, architecture of computational nek&p etc. This means that a polynomial time
algorithm does not exist for it and the computatioattempt required to solve this problem increases
exponentially with the size of the problem. Consely, these kinds of problems are often solvedh wit
metaheuristic techniques. Besides, because hylgaditams have greater ability for finding an op&im
solution, they have been considered by researemerscientists in recent years. For these reasotiss
paper, a hybrid modified two-phase meta-heuridgorhm called MACSGA is proposed for solving the
TSP. In this algorithm, several modifications irihg a new state transition rule, a modified Order
crossover, an efficient mutation and several effedbcal search techniques are used in orderh@ae
better solutions. The algorithm was applied ontaoéenchmark instances from TSPLIB and is able to
produce very satisfactory results which are vergsel to best-known solutions (BKS) for most
testedproblems.

In the following parts of this paper, a mathematinadel of TSP is presented in Section 2. In Sectio
3, the basic ACO, GA and the proposed idea areaggd in detail. In Section 4, the proposed albarit
is compared with some of the other algorithms @ndard TSP problems. Finally in Section 5, the
conclusions are presented.

2- Mathematical model

The TSPis one of the most famous combinatorialngptition problems that has nowadays received
much attention because of its practical applicationindustrial and service problems.The TSPisndefi
in investigations as follows:
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Let G(V,A) be a perfect undirected connected graph with texesetV ={0,1,...,n}and an edge set
A={(i, ):i,jOv,i #j}. If the graph is not perfect, we can replace #ek lof any edge with an edge
that has an infinite size.In this problem, df represents the distance from nddé nodej, and by
introducing variablesx; to represent the tour of the salesman from riddenodej, one of the common
integer programming formulations for the TSP camb#en as:

mind > e, @

i=0 j=0

subject tc
zxj =1 (j=0,..n) (2)

2% =1 (i=0,...n)
j=0
3)

2 2 %21 (SON={L...1}[$22) (4)
2 2% 21(SON={L... 1] $22) (5)
x; {0, 1 (6)

In this formulation, the objective function (&)simple to minimize the total distance traveleditour.
Constraint set (2) ensures that the salesman aromee at each city. Constraint set (3) ensurdshba
salesman leaves each city once. Constraint setn@)5) are to avoid the presence of sub-tour.llgina
Constraint set (6) defines binary conditions onuthgables. Generally, the TSP formulated is kn@sn
the Euclidean TSP, in which the distance matix g; is expected to be symmetric, and to satisfy the

triangle inequality.

3- Proposed algorithm
In this section, first the ACOand GAare explained ghenour algorithm is analyzed in more detail.

3-1- Ant colony optimization

The ACO is an iterative stochastic search tieglnwhichwas inspired by the food foraging behavio
of real ant colonies. Furthermore, this algorithesed for solving combinatorial optimization prabke
that do not have a known efficient algorithm. Whitalking between their colony and the food source,
ants deposit pheromones along the paths they nitneepheromone level on the paths increases with the
number of ants passing through and decreasesheiteMaporation of pheromone. As time passes, shorte
paths accumulate more pheromone. Therefore, phemimtensity helps ant to identify shorter paths to
the food source. Consequently, a positive feedlaackautocatalytic mechanism based on pheromone is
formed.This technique is based on AS introducedbyigo et al. who used it to solve TSP problems
(Dorigo, Maniezzo and 1996). It led the simple liilgence body of the artificial ant colony into the
optimization algorithms to solve the problems meffeciently.

Since the first ACO was proposed in 1991, thi@rthmhas attracted the attention of an increqsin
number of researchers and several ACO algorithnas haen proposed in the literature. The first ACO
algorithm called AS was applied to the TSP. Besidemy improved algorithms have also been tested on
the TSP. Those improvements are different in soragswbut all of them are based on a stronger
exploitation of the search history to direct thésamearch process and share the same main ideh vghi
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the indirect communication among the individuatmnira colony of ants, based on an analogy with the
trails of pheromone.

3-2- Genetic algorithm

Meta-heuristic algorithms such as memetic atbors simulated annealing, particle swarm
optimization, Tabu search and soon have been ssfollgsapplied to many difficult optimization
problems including traveling salesman problem, elehiouting problem, quadratic assignment problem
and job-shop scheduling problem, etc. The GA is @fethe oldest meta-heuristicalgorithms
thathasreceived much attention from researcherssaiahtists. This algorithm is adaptive searching
procedure for solving optimization problems basedtlie mechanics of natural genetics and natural
selection.

The GA starts from a group of initial solutionsledl the initial population. Furthermore, a fitness
function is used to evaluate the performance okthations. In each iteration, two solutions calbedent
solutions are chosen from the population accortiinthe selection probability which is proportional
their fithess value. Then, the two parent solutior@ssover to produce two new solutions of the next
generation. These new solutions will replace thiksallutions if they have better fitness compareith wi
the old ones. Later, a mutation operation is agpiethe newly generated solutions based on a rontat
probability. Repeat these operations (selectioossover, and mutation) to produce more new solsition
until the population size of the new generatiothés same as that of the old one. The iteration gharts
from the new population. Since better solutionsehavarger probability to be selected for crossawet
the new solutions produced carry the features @if fharents, it is hoped that the new generatidhbsi
better than the old one. The procedure continugis the number of generations is reachedtw the
solution quality cannot be easily improved.

3-3- The proposed algorithm

Although the various versions of ACO have some athges like enjoying distributed calculation and
being robust, this algorithm is still one of thesbmethods to solve combinatorial optimization peals
more effectively considering time and quantitycongoato other meta-heuristic algorithms. However,
there are some disadvantages such as long iniaregleration and easily-occurring stagnation in ACO
In order to overcome these shortcomings, many relsess have improved the ACO (Tsai and Tsai,
2002).In the following subsections, transition m@biities, crossover and mutation of GA, local skar
and pheromone updating rulesare presented resplgctiv

3-3-1 Statetransition rule

At each iteration of the modified ACS, each antdsia solution of the TSP step by step. At eagh ste
the ant makes a move in order to complete the bptutial solution by choosing between elementa of
set of A expansion states through following a probabilitydiion. The probability of ark which moves

from cityi to cityj which has not been visited yet is presented agvistl

1 ifg<g, &j=j

P‘() =40 ifg<q&j# | (7)
(O Oy (1)

PIPRACUACIAY

Otherwise

Where

j' =argmax,

I, ()7f ( )/i; (t) identifies the unvisited node in« that maximizesp(t).
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7; (t) : The value of phermone on the arc (i,j)
n,(t):The heuristic information for the ant visibility msure (e.g., defined as the reciprocal of the

distance between nod@and nodg for the TSP).
y; (t): The value of savings algorithm computedby=c, + ¢, — G -

g: A uniformly distributed random number betweern 0t
q,: A parameter belonging to [0,1]: the smallgrtiye higher the probability to make a random choice

a, 5,4 The controling parameters by user.

3-3-2- Crossover of GA

Genetic algorithms were inspired by the evolutgrocess, observed in nature. The system encodes
theparameters of a solution into a chromosome, evtier basic element of a chromosome is the gene. In
the proposed algorithm, three operations are peddr i.e., selection operations, crossover opérstio
and mutation operations in order to search the ogi@mal solution. After building solutions of the TSP
in each iteration by ACS, they are considered goap of initial population for GA. In the proposéd,
only one kind of feasible solutions is commonly éoypd for solving the TSP. Therefore, a bisection
array shown in Figure 1 is used (where= 11 and fitness functior 29.34. In this array, the visited
nodes are ordered from left to right in the firsttion and the value of fitness function of thiadible
solution is shown in the second section. Therefihie selection operation selects those feasiblgisol
built by ACS. The fitness degree of a chromosomeviaduated by Euclidian distance between nodes of
this produced cycle.

[1]9]10[3]11]5]4|2]|6] 7] 8]29.3¢]

Fig. 1. A chromosome in the proposed algorithm

Then crossover and mutation operationsare apptiethem for improving the obtained solution of
ACS.Order is still one of the best crossovers imgeof quality and speed. Therefore, this methad ith
simple to implement has been considered hereanchdloified Order crossover is proposed based on this
crossover. A randomly chosen crossover point dg/ttie parent strings into left and right substrifigee
right substrings of the parents are selected amddme arrangement of genes in another chromosome i
found. Finally, the selected genes in each chromesdased on their arrangement in another
chromosome are replaced. In the proposed crossafter,selecting a randomized number of genes from
each chromosome, the process is the same as tke @odsover. The only difference is that instefid o
selecting all the positions to the right of thedamly chosen crossover point, several random paositin
a parent, are selected (Figure?2). Clearly this owetiilows only the generation of valid strings.

2316 5 42*1**4231564
134 2 5 613* * * 6 132466
1) )

Fig. 2. A crossover for a chromosome

3-3-3- Mutation of GA

The aim of the mutation operation is to preventcheomosomes in the new population to fall into a
local minimum. It should be noted that the systearfggms the mutation operation after the crossover
operation is performed and some chromosomes petfogrmutation operation in the evolution process.
For achieving this purpose, a random number betWeand 1 generated by the system is smaller than a
predefined mutation rate (MR) belonged to (0,1knthithe system performs the mutation operation.
Mutation method is to randomly select a gene ofséflected chromosome, and then randomly generate a
new value to replace it. Furthermore, the mutatiparation continues until every chromosome is gerta
to perform the mutation operation or not. Thereftwe mutations are used in the proposed algorithm.
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These operators randomly select one point in thiegstThen, this node is moved to another position
(Figure3 (left)) or substrings of nodes are rev@iaier this node (Figure3 (right)).

Fig. 3. Mutations (1) (right) and (2) (left)

3-3-4- Local search

The vast literature on meta-heuristics tells ug thgromising approach to obtaining high-quality
solutions is to couple a local search algorithmhwvat mechanism to generate initial solutions. ACS's
definition includes the possibility of using locsgarch as daemon actions. Daemon actions are aised t
implement centralized actions which cannot be peréal by single ants. An example of daemon actions
is the activation of a local optimization procedinaring the implementation phase, the ACS is combin
with 2-opt local search procedure to obtain morprowement in the algorithm's performance. Zhe
opt heuristic tries to improve a single route bylaeing its two non-adjacent edges by two otheesdt
should be noted that there are several routesdonecting nodes in order to produce the tour again.
However, only a state that satisfies the probleoasstraints is acceptable. Therefore, this unique t
will be accepted only if, first, the above congitaiare not violated and, second, the new touryuesl a
better value for the problem than the previoustsmiu The process is repeated until no further cédn
of route length is possible.

3-3-4- Pheromone updatingrule

In order to improve future solutions, the pheromtnadls of the ants must be updated to reflect the
ant’s performance and the quality of the solutitmsd. The pheromone updating formula was meant to
simulate the change in the amount of pheromonegabeth the addition of a new pheromone deposited
by ants on the visited edges and the pheromoneoeatign. This updating is a key element to the
adaptive learning technique of ACS and helps taenthe improvement of subsequent solutions. Unlike
the AS, the pheromone of all edges belonging tadbge chosen by ants is not updated in the prapose
algorithm. In other words, the pheromone updatih§©@SGA includes only global updating rules. What
distinguishes the proposed algorithm from the otligorithms is the fact that only arcs belonginghte
best known solution and the best solution in curiggration are updated. In other words, when
solutions for the problem are producedafter loearsh algorithms in the current iteration, the phesne
level on the edges of thebest known solution foumdo now and the current best solution are updayed
formula (8).This rule is intended to provide a geeamount of pheromone on the paths of the twb bes
solutions, thus intensifying the search aroundetsegutions.

Lt+)=@1-p)z t)+p/G) iffedodi DUT} (8)
Where
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G, : The cost of the best known tour or the currest Belution.

T,: The best know tour or the current best solution.
p: A parameter in the range [0, 1] that regulatesrédduction of pheromone on the edges.
A pseudo code of the proposed algorithm for the iBSiPesented in Figure4.

S:=none /I S is population of solutior
I

s is the random solution; & is the best solution found
Il
f'is value of s';

initialize pheromone trails;
repeat // main cycle //
fori:=1tondo
begin
Construct a solutiorg by using formula 7; S=S

Us
end;
apply Genetic Algorithm to S and gener&e;
S:=none;
for i:=1 to length(S") do
begin
if f(s')<f then
begin
£ fs):S =5
end // save the best so far solution //
apply 2-opt local search tg’
end
global update pheromone trails
until no improvement finding for 20 iterations
shows  andf’
Fig.4. Paradigm of proposed algorithm
After the global updating, the system evaludhes fitness value of the best known solution. & th
algorithm has not improved the best solution forite@ations, the termination condition is met ahd t
algorithm is stopped. Otherwise, go to state ttamsrule step.

4- Experiments and computational results

The proposed algorithm is coded in C and implgea on a Pentium 4, 3 GHZ (512 MB RAM) PC
with windows XP. Because the MACSGA is a metahéiarialgorithm, the solutions produced by the
proposed algorithm were dependent on the seedtaggmherate the sequence of pseudo-random numbers
and on the different values of the search parametethe algorithm. The ranges of seven parameters
were set in the table 1. In this table, all of ga@ameter value have been determined on theris&trice
i.e. Eil51 by the numerical experiments. The patemsetting procedure is necessary to reach the bes
balance among the quality of the solutions obtaiaed the required computational attempt. The
algorithm with each parameter combination for fhistance was tested10 times. Then to determine the
value of parameters several alternative values#émh parameter were tested while all the otherg wer
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held constant, and the ones that were selected thavbest computational results concerning both the
quality of the solution and the computational timeeded to achieve this solution. The results confir
that our parameter setting worked well. It is gsgsible that better solutions could exist.

Table 1. Parameter setting for MACSGA

Candidate The bes
Parameters

Value value
Power of ant’s visiblity measure on arc 1, 2, 3, 4, 2
Power value of pheromone releaseed on ar 1,23, 4, 3

. . 0.05, 0.1, 0.1¢
The constant coefficient of evaporation of pheromd 0.2 0.95 0.15
Power value of savings algorithon arc (i,j 1, 2, 3, 4, 3
The size of the populati n n
. 0.1, 0.15

The rate of mutation 0.2 0.25 0.3 0.2
The number of iterations after which the metahéar | 5, 10, 15, 20, 2 20

algorithm terminate if fails to reach a new bestson

Table 2 shows the results of proposed algorfibmthe 22TSP benchmark instances. The selecstd te
problems are Euclidean TSP instances where the gfzée problems range from 24 to 400. The finst a
second columns in Table 3 specify number of ingara its name. Furthermore, size of these instance
is shown in the third column. Columns 4-6 show ltest value result of MACSGA(BVR), the worst
value result of MACSGA(WVR), the average value oAGBGA(AV) over the ten runs for each
problem. Finally, the best known solutions (BKS)tlaése instancesin the literature are presentéuein
last column.

Table 2. Results of MACSGAfor the TSP
Instanc | n BVR WVR AV BKS

1| GR2L | 24 | 1272 1272 1272 1272
2 | Bayg2¢ | 29 | 161C 161C 161C 161C
3 Pr7e 76 | 10836< | 10954 | 10855 | 10815¢
4 | Rat9¢ | 99 | 1227 130¢ 1262 1211
5 | Rd10( | 10C | 799¢ 8152 805¢ 791(C
6 | Pri0: | 107 | 44385 | 4512< | 44821 | 4430:¢
7 | Pri2< | 124] 5912¢ | 6074, | 59854 | 5903(
8 | Bierl2i | 127 | 11828. | 12054 | 119124 | 11828
9 | Ch13( | 13C| 6138 629¢ 6195 611C
10| Pr13¢ | 13€| 97132 | 9800€ | 97645 | 9677
11| Prl4s | 144 | 5874€ | 5974t | 58E8¢ | 5853
12| Ch15( | 15C| 6558 6698 6614 652¢
13| Pr15: | 152 | 73682 | 74925 | 7423¢ | 7368:
14| Ratl19! | 195 | 2338 248¢ 241 232¢
15| D19€¢€ | 19€| 1595€ | 16798 | 1633 | 1578(
16| Ts22% | 225 | 12789¢ | 129541 | 12829 | 12664<
17| Pr22¢ | 22€ | 81021 | 8387< | 8159¢ | 8036¢
18| Gil262 | 26z | 239: 257¢ 2488 237¢
19| Pr26¢ | 264 | 49847 | 5254& | 5115¢ | 4913t
20| A28C |28C| 26(6 289¢ 2791 257¢
21| Pr29¢ | 29€| 4829¢ | 5036¢ | 4973¢ | 4819
22 | Rd40( | 40C| 15529 | 16984 | 1665¢ | 1528!
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The relative deviations calculated by formuly (8here value of the algorithm denotes the coshef
optimum found by proposed algorithm, and BKS isdhst of the optimal solution. A simple criterian t
measure the efficiency and the quality of an atbariis to compute the relative average of percentag
deviation of its solution from the BKS on specifienchmark instances. Figure 5 shows the percentage
deviation of the best, worst and average solutiointhe algorithm. It is concluded that the proposed
method obtains high quality solutions from the BIS.this figure indicates, maximum relative errada
average relative error for 26 test problems ofBR® are 2.17% and 0.63%, respectively. In moreitjeta
the BVR version of MACSGAhas found the best knowhutsons for 5 examples including 1, 2, 10, 16
and 19 However, in other instances, the BVR finds netr/BKS, i.e. the gap is about as high as 2%.

Value of thealg orithm+ Value of the BKS
X100

9)
Value of the BKS
14
12
1
|.
'L GBVR
I ®WVR
L
1 MAV
L
|
|

S © O D O AN DA DI DDA DD DD
A IO AR S ORGSR LR N S S LR

Fig.5. Comparison Gap of the best, worst and averagéicatuof the proposed algorithm

A computational experiment has been conducted ibleT& to compare the performance of the
proposed algorithm with some of the best technigiesigned including GA, ACS, PSO (Zhong, Zhang
and Chen, 2007) and Bee Colony Optimization (BC@pitg, Low and Chong, 2008) for TSP. We
executed the algorithm on some of the well-knowsbfm instances from one dataset. The sets of data
used for the experiment are TSP instances availablethe TSP library (http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/). The selectetl pesblems are Euclidean TSP instances where the
sizes of the problems range from 24 to 200. T, fsecond and third columns in Table 3 specify the
number, name of instance and its size referenceded¥er, the fourth, fifth and sixth, seventh aighth
columns show the 5 meta-heuristic algorithms. Adddlly, in order to recognize the performancehsf t
method, the best known solutions (BKS) in the ditere and also on the web, are presented in the las
column.

The results show that the MACSGA has the abiliteessape from local optimum and find the best
solutions for all of the instances.The resultshi$ tomparison show that the proposed algorithmsgai
equal solutions to the GA in GR24 and Bayg29, andains better solutions than the GA in other
problems from Gr48 to KroB100.Furthermore, the Iltssindicate that although the ACS gives an equal
solution to the proposed algorithm for 5 instandtieis, algorithm cannot gain optimal solutions fdiners
and yields worsesolutions than the proposed alguarifThe computational experiments also show that in
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general the proposed algorithm gives better resoligpared to other two algorithms including PSO and
BCO algorithms in terms of the solution’s qualis a result, the proposed algorithm vyields better
solutions than the GA, PSO, ACS, and BCO.

Table 3.Comparison of algorithms for standard problems ®PT

Instanc | n GA | ACS | PSC | BCC | MACSGA | BKS
1 GR2¢ 24 | 1272 | 1272 - - 1272 127z
2 | Bayg2¢ | 29 | 161(C | 161C - - 161(C 161(
3 GRA4¢ 48 | 5037 | 504¢ - - 504¢ 504¢
4 | ATT48 | 48 | 1064: | 1062¢ - 1066! 1062¢ 1062¢
5 Eil51 51 | 42¢ 427 427 42¢ 42¢€ 42¢
6 | Berlin5z | 52 | 754¢ | 754z | 7542 - 754z 754z
7 ST7(C 70 | 68€ 67¢ - - 67% 67%
8 Eil76 76 | 54¢ 54z 54C 53¢ 53¢ 53¢
9 | KroA10C | 10C | 2154( | 2130¢ | 2129¢ | 2176 2128: 2128:
10 | KroB10C | 10C | 22437 | 2218: - 2263 2214 2214
11 | KroC10( | 10C | 2299: | 2078 - 2085 2074¢ 2074¢
12 | KroD10C | 10C | 21597 | 2134! - 21648 2129/ 2129
13 | KroE10C | 10C | 2219¢ | 2210¢ - 2245( 2206¢ 2206¢
14| Eil101 | 101| 64s 63€ - 63< 62¢ 62¢
15| Lin10t | 10f | 1470¢ | 1453¢ - 1528¢ 1437¢ 1437¢
16 | Bierl2i | 127 - - - - 11828. | 11828:
17 | KroA15C | 15C | 27054 | 2674¢ - 2785¢ 2652 26524
18 | KroB15C | 15C | 2665¢ | 2643 - 2653t 2613( 2613(
18 | KroA20C | 20C | 3027¢ | 29762 | 2956 | 29961 2936¢ 2936¢
20 | KroB20C | 20C | 3198( | 2965:¢ - 3035( 29437 2943;

In addition, four of the best solutions searchedHhsy proposed method in Table 1 are presented in
Figure 6. In this figure, the horizontal and veatiaxes show the two-dimensional coordinates xyahd
should be noted that in the all examples presertbed proposed algorithm has been able to find the
optimum solution.
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Fig.6. Best routes found by the proposed algorithm far fastances

5- Conclusions

In this paper, a hybrid algorithm combiningMAG®A and 2-opt local search was proposed for solving
the TSP. One of the main contributions of this papes to show that the modified ant colony systam c
be used in hybrid synthesis with other metaheasdtr the solution of the TSP with remarkable Itssu
The algorithm was applied on a set of benchmartaites from TSPLIB and gave very satisfactory
results. Using this proposed algorithm for othensians of the TSPand also applying this methodtien
combinational optimization problems including thehicle routing problemSchool bus routing problem
and the sequencing of jobs are suggested for futsesarch.
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