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Abstract 

A new mathematical model based on the alternative process routings in presence of a 
queuing system in a dynamic cellular manufacturing system has been proposed in this 
paper. This model integrates two problems of cell formation and inter-cell layout and 
also an efficiency factor which is defined for minimizing the cell load variation 
through the maximizing the busy time for all machine types. In order to evaluate the 
performance of proposed model, some numerical examples are generated randomly 
and solved using GAMS optimization software suitable for MIP and MINLP models. 
The Baron solver which is capable of solving both linear and nonlinear model is 
implemented. Experimental results verify the applicability of proposed model in every 
industrial plant which implements a CMS. Moreover, based on the sensitivity analysis, 
the queue system has significant impact on overall system efficiency. In other words 
by increasing the part arrival rate the machine busy time is increased strictly. 

          Keywords: Queuing theory, Cellular Manufacturing System, Machine breakdown,       
reliability. 

1- Introduction 
Cellular ManufacturingSystem (CMS) is a practical tool of Group Technology (GT) philosophy which 

aims at improving the total efficiency of the production system. In today’s competitive environment it is 
necessary to have an efficient manufacturing system with the high amount of flexibility in coping with the 
erratic nature of the real world elements such as part demand and diversification. A CMS designing 
problem includes four sub problems which should be solved sequentially or concurrently. These sub 
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problems are Cell Formation (CF), Group Layout (GL), Group Scheduling (GS) and operator assignment 
problems. In developing countries like Iran managersusually like to continue the manufacturing with 
traditional systems. The implementation of CMS needs to change a manager's insight to the modern world 
requirements. If these scientific researches would be supported by both the university and industry they 
can be applied and used in real word manufacturing companies. More sensitivity analyses required to 
suffice managers that the proposed system is stable and reliable.   

Solving the CF problem is the first stage which should be regarded basically during the optimization 
process. So in recent years many analytical approaches like mathematical programming, heuristic solution 
procedures, meta-heuristics, clustering and graph theory based theoriesare investigated by many 
researchers. Recently,Dalfard (2013) has developed a new nonlinear mathematical model to solve the 
dynamic CF problem which takes in to account the number and average length of inter-intra cell trips 
associated with a Simulated Annealing (SA) meta-heuristic embedded in branch and cut process to solve 
the problem more efficiently. Ilić (2014) proposed an e-learning based algorithm to solve the CF problem 
optimally. Three types of initial machine-part matrix including binary (zero-one), production volume and 
operation time matrixes are regarded. Bagheri & Bashiri (2014a)developed a hybrid Genetic Algorithm 
(GA) and Imperialist Competitive Algorithm (ICA) to solve a CF problem. Reza Tavakkoli-Moghaddam 
et al. (2012)proposed a scatter search algorithm to solve the CF problem with respect to the four 
objectives including minimization of total fixed-variable cost, intercellular part trips cost and cell load 
variation and also maximization of machine utilization factor. Arani, S. D., and Mehrabad, M. S. (2014) 
have employed Automated Guided Vehicles (AGVs) to transfer the jobs which may need to visit one or 
more cells. Tavakoli-Moghadam et al. (2006)have developed a model for facility layout problem in CMS 
with stochastic demands. The main goal of objective function is to minimize inter-cell and intra-cell part 
trips. Moreover; a comprehensive mathematical model has been proposed by R Tavakkoli-Moghaddam et 
al. (2008). The fuzziness and uncertainty concepts have been studied in their research, where its 
objectives are minimization of total machines and parts costs, maximization of preference level of the 
decision making (DM) and balancing the intracellular workload. Niakan et al. (2015) have examined a 
new multi-objective mathematical model in a Dynamic Cell Formation Problem, where social criteria and 
uncertainty conditions are considered. Furthermore, Chung et al. (2011)have developed an effective Tabu 
Search (TS) algorithm to solve the CF problem. Moreover; machine reliability and alternative process 
routings are considered in their research. Besides the mentioned studies there are many other studies in 
which the optimization of the CF problem has been studied. For exampleDefersha & Chen (2006; 
Elbenani et al. (2012; Saraç & Ozcelik (2012). 

Integration of the CFP with GL problem is a new practical concern which has attracted the attention of 
many related practitioners to propose some new optimization tools in recent years. Although the inter cell 
layout problem basically is about the cell’s locations, the intra cell layout problem is related to the 
determining the position of a machine within a cell. Totally these two problems are knows as a Group 
Layout problem. Because of complexity of given problems, most of these studies have considered the GL 
problem as a sequel to the CF problem. Ulutas (2015) has presented a Clonal Selection Algorithm (CSA) 
to solve a classical CFP that outperforms current available heuristics in the literature. Bashiri & Bagheri 
(2013)proposed a two stage heuristic clustering based approach to solve a CFP problem associated with 
the operator assignment problems. In their research the CFP solution obtained by a clustering technique is 
an input as a candidate solution for a mathematical programming problem. Wu et al. (2007)developed a 
GA approach to solve these two problems associated with the GS problem. Arkat et al. (2012) proposed a 
new mathematical model which solves the CF and GL problems simultaneously. Then the model was 
extended by incorporating the GS problem in designed framework which has significant impact on total 
system efficiency. Reza Tavakkoli-Moghaddam et al. (2007) have considered a predefined CF structure 
as an input for the GL problem. In their proposed mathematical model, demand is regarded as a stochastic 
parameter. Also Bagheri & Bashiri (2014b)developed a comprehensive mathematical model which 
integrates the CFP with inter-cell GL and also operation assignment problems. In their research it has 
been shown that these problems are interrelated and must be solved concurrently in order to find an 
optimal solution for the total system.  
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Proposing new mathematical programming models in which the practical aspects of a cellular 
environment are taken into account should be a useful research especially for those who want to design an 
efficient manufacturing system. There are many researches in literature in which the uncertainty of the 
manufacturing system like stochastic nature of part demand and production mix has been regarded. 
However, almost the parts arriving rate in a CMS environment is not considered as a major factor which 
has a significant impact on machine busy time.   In this paper machine utilization factor is investigatedin 
presence of uncertainty in parts arrival rate and mean number of parts processed by machines. Ghezavati 
& Saidi-Mehrabad (2011)proposed an efficient hybrid self-learning method to solve the CFP. This paper 
is extension of their work by incorporating some other real world production elements like machine busy 
time and dynamic alternative process routings associated with the inter-cell layout determination. In a 
queue system, the customers (parts) have a stochastic arriving rate and wait in a queue to be served by an 
available server (machine). Two kinds of arriving patterns can be considered: Number of arrivals in a 
time interval follows a probability distribution or this value is determined by the mean number of parts 
processed by a machine based on its processing time. Figure1 illustrates the concept of a queue system in 
the CMS environment. Three different concepts are defined during this research: first is the Machine 
Utilization Factor (MUF) which can be calculated for a specific part by this part mean number of arrivals 
divided by the mean number of total parts which should be processed on the corresponded machine. The 
second is the Total Machine Utilization Factor (TMUF) which is the sum of MUF for all parts processed 
by this machine. The third concept implemented in this paper is the Efficiency Factor (EF) which is the 
sum of TMUF value for all machines. The TMUF must be less than 1 so that the queue system will 
remain in a stable mode. Hence the number of arrivals should be less than the number of processed parts 
on the specific machine. The alternative process routing controls this rational theory. In this paper a new 
mathematical model has been developed in order to design an efficient CMS in which the maximum EF is 
obtained through the optimal selection of the alternative process routings. The main objectives of 
proposed mathematical model are to minimize the intra cell art trips, system reconfiguration cost and also 
maximization of the system EF value. 

 
 

 

 

 

 

 

 

 

Fig 1. The schematic view of the part queuing in CMS 
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The rest of this paper is organized as follows: In next section, a new linear MIP programming model is 
described which is the transformation of the preliminary explained nonlinear mathematical model based 
on mentioned objectives. In section 3, the proposed model efficiency will be verified by some 
hypothetical numerical examples followed by conclusion and future directions in section 4. 
 

2- The proposed mathematical model   

2-1- Model description 

   As mentioned previously the EF is considered as a main factor in a CMS to enhance the efficiency of a 
practical manufacturing system. The machine total utilization factor (EF) or the probability that machine j 
in production h, is busy can be determined by equation 1. 

λ
ρ

µ
1, ,

J

jh
j j Ah

i h
i

i h= ∈= ∀
∑

 

 
(1) 

 

   In equation 1 A is the set of different parts which are planned to be processed by machine i, λjh  is the 

mean number of arriving parts per unit time and µh
i  is the processing rate of machine i which is the mean 

number of different parts processed by machine i in production h. The introduced efficiency factor for 
production period hcan be obtained by equation 2. 
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    There are some assumptions which are required in order to simplify the problem. In this paper it is 
assumed that some elements like part demand, number of cells and their upper-lower bounds are 
predefined and constant during the production horizon. There is some alternative process routings for 
some parts which the best one should be selected based on the model objectives. The intra cell part trip is 
based on the number of trips and the distances between the machines are not important. However, the 
system reconfiguration cost is based on the distances between the cells which should be located in 
predefined cell locations. These candidate locations are predetermined and constant over the production 
horizon.    
 

2-2- Notation 

Sets 

I Number of machines  

J Number of parts 

C Number of machine cells which should be constructed 

G Number of candidate locations to be a cell ( G C≥ ) 

H Number of production periods 
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h
jL  Number of process routings for part type j in period h. 

Indices 

i, i ′  Machine index 

j Part index 

c, c′  Cell index  

h Production period index  

g, g ′  Location index  

l Routing index 

i
ljU  Index for machines existed in routing l of part type j. 

Parameters 

iW  The importance weights for intra cell part trips, system reconfiguration cost and also efficiency      

factor 

A1 Unit cost of an intra cell part trip  

iγ  System reconfiguration cost for machine i including machine uninstall, install, and movement 

costs. 

h
jD  Demand value for part j in period h 

ggdis ′  Distances between two candidate locations  

g andg ′  

λ jh  Arriving rate for part type j, in production period h 

µh
i  Mean number of different parts processed by machine i in period h 

jit  Processing time for part type j on machine type i 

                
,c cu l  The upper and lower machine capacity for cell c  

 
Decision variables: 

1; If machine is assigned to cell in period

0;
h
ic

i c h
X

Otherwise


= 
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1; If cell is located in location in period

0;
h

cg

c g h
Y

Otherwise


= 


 

h
lj

1; If routing l of part j should be selected in period h.
Z

0; Otherwise


= 
  

ρh
i  Machine i total utilization factor in production h 

 
2-3- Objective function and constraints  

The mixed integer nonlinear mathematical model for the CMS design is presented as follows: 

min objective function=   
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   Objective function of the proposed model includes 3 different terms. The first term, i.e. (3a), is to 
minimize the intra-cell part trips. It shouldbe noted that an intra-cell part trip is determined irrespective of 
machine locations inside the cells. Term (3b) is to minimize the system reconfiguration cost over the 
production horizon. This term is because of thedynamic nature of a cellular system. In other words parts 
demands erratic nature and differences of production mix in each production period force the system to 
change the layout. This cost includes uninstalling, movement and installing the machines between the 
cells based on inter- cell layout distances. Term (3c) is to maximize the efficiency factor introduced in 
this paper. Maximizing a machine busy time will lead to the cell load variation minimization indirectly by 
choosing an optimal routing for each part type. Eq. (4) implies that each machine type must be assigned to 
a cell. Constraints (5) and (6) ensure that the number of machines for a cell is not exceeded lower and 
upper bounds of that cell size. Eq. (7) implies that each cell must be established in a candidate location. 
Furthermore, in a candidate location only one cell can be established. This issue is considered by 
constraint (8). Constraint (9) indicates that just a single process routing will be selected as an optimal 
route for each part. Eq. (10) is revised form of equation (1) which calculates the TMUF based on selected 
routing for a part type. As stated before this value should be maximized by selecting an optimal routing 
for each part type. Finally constraint (11) defines the variables types.   

2-4- Transformation to a linear model 
   Terms (3a) and (3b) in the objective function are nonlinear. Since thelinear models are less complicated 
than nonlinear models from computational time view point the proposed model can be reformulated as a 
pure 0-1 linear programming model by introducing some new variables with auxiliary constraints which 
will lead to solving the problem in a less computational time. The linearization procedure implemented in 
this paper consists of two steps which can be described as follows: term (3b) has two kinds of 

nonlinearity. It contains the multiplication of two binary variables. So a new variable of h
icgXY  can be 

defined which is replaced as:  

, , , ;= ∀h h h
icg ic cgXY X Y i c g h 

So the following constraints should be added to the proposed mathematical model:  

, , ,h h
icg icXY X i c g t≤ ∀  (12) 

, , , ;h h
icg cgXY Y i c g h≤ ∀  (13) 

1 , , , ;h h h
icg ic cgXY X Y i c g h≥ + − ∀  (14) 

The second nonlinearity in both terms (3a) and (3b) is related to the “Max” function. Defining new binary 

variables as 
( )i

lj

h

U c
N , ′ ′

h
icc ggE  which are replaced by following equations: 
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Six auxiliary constraints should be added to the proposed model as follows: 
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Accordingly the final linear mathematical model can be presented as follows: 
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Subject to:  

Unaltered set constraints (4) – (11), and new auxiliary constraints (12) – (18). 

The last set constraint, i.e. (11), is replaced by: 
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3- Numerical examples 
In order to evaluate the applicability of the proposed mathematical model, some numerical examples 

are generated randomly and solved using GAMS optimization software of 23.5-Cplex on a Core i5 PC 
with 1 GB RAM. The numerical examples general information and obtained results are reported in table 
1. This table also shows the comparison between two linear and non linear models from computational 
time aspect. According to table 1 linear model can find the optimal solution in less computation time than 
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nonlinear model. The optimal solutions are found using Cplex and Baron Solvers for linear and nonlinear 
models respectively.   
 

Table 1.Experimental results of proposed numerical examples 

Example 
number 

Problem size: 

Number of parts-  Number of machines- Number 
of cells - Number of locations- Total available 

routes 

Objective 
value- 

Computation 
time(s) 

forMIP model 

Objective 
value- 

Computation 
time(s) 

forMINLPmo
del 

1 3- 3- 2-3-6 5.65-0.58 5.65-0.9 

2 4- 5- 3-5-6 34-0.53 34-0.89 

3 4- 7- 4-6-8 6.3-2.6 6.3->1800 
 

 
To analyze the proposed mathematical model in more details, input information of the last example 

(i.e., example 3) is reported in tables 2-4. These tables include part- machine information, machine related 
information and the candidate locations distances, respectively. Minimum and maximum machine 
capacities for each cell are 1 and 3, respectively ( 1, 3c cL U= = ).Optimal cell formation and routings 

obtained for this example are reported in tables 5-6. According to table 6 the machine type 4 has the 
maximum EF value of 0.9 in period 1. Based on the alternative process routings depicted in table 2 this 
machine should be used for both parts 1 and 2. Moreover, since the operating cost and the processing time 
of this machine is low in comparison to the other machines the second routing in which machine 4 is 
active has been selected. So its busy time is calculated as 0.9.  As it was predictable, the parts arrival rate 
(queuing system) has significant impact on overall system efficiency. 
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Table 2.The input information of part-machine matrix – example 3 
 

Period 1 

Parts Routes Process 
sequence 

Processing time for each 
operation 

Demand 
( 1

jD ) 
 
′λ  

1 Rout1 2-3-4-5-7 0.7, 0.3, 0.5, 0.2, 0.5 20 3 

2 Rout 1 4-5-2-7-3-6-1 
0.05, 0.1, 0.1, 0.5, 0.3, 0.3, 0.3, 

0.1 
100 3 

3 
Rout 1 4-6-7-2-5-2 0.6, 0.6, 0.2, 0.2, 0.1, 0.2 

20 3 
Rout 2 3-1 0.7, 0.9 

4 
Rout 1 6-2-1-3 0.5, 0.1, 0.2, 0.6 

100 3 
Rout 2 6-4-5 0.5, 0.6, 0.5 

Period 2 

Parts Routes Process 
sequence 

Processing time for each 
operation 

Demand 
( 1

jD ) 
 
′λ  

1 
Rout 1 2-3-2 0.7, 0.3, 0.7 

20 3 
Rout 2 4-1-5-3 0.1,0.5, 0.3, 0.3 

2 
Rout 1 4-3-2-3-2 0.4, 0.2, 0.3, 0.2, 0.3 

50 3 
Rout 2 7-6-1 0.2,0.7,0.1 

3 
Rout 1 5-4-3-1 0.5, 0.5, 0.3, 0.05 

100 3 
Rout 2 1-3-5-4-7 0.05, 0.3, 0.5, 0.5, 0.2 

4 
Rout 1 4-5-6-5-7 0.3, 0.2, 0.5, 0.2, 0.5 

80 3 
Rout 2 4-5-6-3-2 0.3, 0.2, 0.5, 0.6,0.1 

 

 

 

Table 3.The machine related information – example 3 

Machine type Service rate ( µ i
) Relocation cost (

iγ ) 

1 20 1 
2 15 3 
3 20 4 
4 10 5 
5 16 6 
6 16 7 

7 15 10 
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Table 4.Distance of cell locations to each other– example 4 
Location 1 2 3 4 5 6 

1 0 5 7 7 6 5 
2 5 0 2 5 5 4 
3 7 2 0 3 4 3 
4 7 5 3 0 8 2 
5 6 5 4 8 0 1 
6 5 4 3 2 1 0 

 

 

 
Table 5.Optimal routings obtained for different part types- 

example 3 
 

Part type 1 2 3 4 
Optimal APR (period 1) 1 1 1 1 
Optimal APR (period 2) 1 1 2 2 

 
 
 
 

Table 6.Optimal cell formation and EF value for different 
machines- example 3 

Machine 
type 

Machine 
efficiency factor 
in both periods 

Cell in which the 
machine is installed 

in both periods 
1 0.3,0.3 4,2 
2 0.4,0.4 2,1 
3 0.45, 0.3 1, 4 
4 0.9, 0.6 4, 2 
5 0.562, 0.562 1, 4 
6 0.375, 0.375 2,1 
7 0. 4, 0.4 3,3 

 

 

4- Conclusion 
This paper presented a mathematical model for dynamic cellular manufacturing system based on 

queuing theory. The objectives were minimization of intra-cell part rips, system reconfiguration cost and 
also maximization of total efficiency factor which is equal to all machines busy time probability. 
Experimental results verified the efficiency of proposed model in both optimality and computational time 
aspects. Also based on sensitivity analysis of the presented model, it can be inferred that part arrival rate 
has the significant impact in process routing selection which in turn affects the machine utilization factor. 
However; this study is still open for incorporating other features in future researches. Some guidelines for 
future studies can be outlined as follows: 
Solving the proposed model for large size examples is computationally intractable. So, proposing new 
heuristic and meta-heuristics to solve the model for large size problems, optimally could be suggested.  
Incorporating new real world production factors such as production planning concept and intra cell layout 
problem can be studied in provided framework. 
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