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Abstract 

Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now 
common.These charts are developed based on considering the patient’s pre-operation 
risks. Change point detection is a crucial problem in statistical process control (SPC).It 
helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. 
Since the control chart signals do not necessarily indicate the real change point of the 
process, in this researcha Bayesian estimation methodis applied to find the time and 
the size of a change in patients’ post-surgery death or survival outcome. The process is 
monitored in phase Iusing Risk Adjusted Log-likelihood Ratio Test (RALRT) chart,in 
whichthe logistic regression model is applied to take into accountpre-operation 
individual risks. Markov Chain Monte Carlo method is applied to obtain the posterior 
distribution of the change pointmodel including time and size of the change in the 
Bayesian framework and also to obtain the corresponding credible intervals. 
Performance evaluations of the Bayesian estimator in comparison with the maximum 
likelihood estimator (MLE) are conducted by means of different simulation studies. 
When the magnitude of the change is small, simulation results indicate superiority of 
the Bayesian estimator over MLE, especially when a more accurate estimation of the 
change point is of interest. 
Keywords: Risk Adjusted Control Charts, Change Point, Bayesian Estimation, 
Markov Chain Monte Carlo (MCMC). 

1- Introduction 
   Risk adjusted control charts which are designed to identify unusual patterns in patients’ after surgery 
outcomes are used in many clinics and hospitals worldwide. The most frequently-used variables for 
monitoring purposes are patients’ post-surgery binary and survival time outcomes. Since the patients have 
different pre-operation conditions in terms of age, gender, hyper tension, etc., which are usually called 
potential risk factors, there is a need to evaluate individuals ‘risks and adjust patients ‘outcomes, 
accordingly. 
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  Otherwise, the results of monitoring might be misleading. For monitoring patients’ Bernoulli process of 
death or survival, or their survival time after surgery, patients’ risk-adjusted outcomes are plotted on an 
appropriate Risk Adjusted Control Chart (RACC). When the chart signals, it is most likelydueto a 
significant change in the performance of surgical team.There are many articles in this area, investigating 
both phases I and II of process control.Most of them have focused on phase II. Unkel et al. (2001) 
reviewed the statistical methods used for identifying infectious diseases outbreak. Tsui et al.(2010) 
mentioned Risk Adjusted CUSUM and Risk Adjusted EWMA charts as proper methods for patients’ 
health surveillance.Cock et al.(2008) reviewed applications of different risk adjusted control charts in 
monitoring mortality data in clinics. Woodall (2006) provided interesting studies on the use of control 
charts in public health applications. As one of the most frequently-used control charts,Risk Adjusted 
CUSUM chart is proposed for monitoring patients’ Bernoulli and survival time data by Collins et 
al.(2010),Jones and Steiner (2011), Sego et al.(2009), Sibanda and Sibanda (2007), and Steiner et 
al.(2000). Steiner and Jones (2009) proposed an updating EWMA chart for monitoring patients’ survival 
time data in which the chart is updated according to time index instead of sample index. Gombay et al. 
(2011) proposed four truncated and risk adjusted sequential tests for monitoring medical performances. 
Matheny et al.(2011), Matheny et al.(2007) and Spiegel halter et al. (2003) used Risk Adjusted Sequential 
Probability Ratio Test (RASPRT) chart for performance analysis in the hospitals and clinics. Alemi and 
Sullivan (2001) presented a tutorial on risk adjusted X chart and studied its applications inevaluation of 
diabetes control. 
   As control charts have a delay on identifying the process changes, the change point analysis is used to 
find the real time and magnitude of the change. Amiri and Allahyari (2012) have provided a recent review 
on the estimation methods and their properties for change point identification after an out-of-control 
signal appears on the monitoring control chart.Woodall and Montgomery (2014) have also recently 
discussed the capabilities of generalized likelihood ratio (GLR) approach as a generalization of the 
conventional CUSUM chart for change point detection and diagnosis.  
   In spite of widespread use of change point analysis in industrial process monitoring, it is rather a new 
area of research in healthcare quality surveillance. According to Woodall and Montgomery (2014) the 
application of monitoring in healthcare can be groupedin several categories including aggregation of data, 
healthcare monitoring, public-health surveillance, and syndromessurveillance. They remark that most 
focus in health- related issues however, is on the category ofmonitoring in healthcare. Paynabar et al. 
(2012) used risk adjusted Log-likelihood Ratio Test (RALRT) chart for monitoring patients’ outcomes in 
phase I and provided MLE estimator of the change point.In addition to patients’ individual risk factors, 
they included categorical operational covariates such as surgeon groups in their risk adjustment model. 
Assareh and Mengersen (2012), (2011a,b) and Assareh et al.(2011a,b,c)dealt with finding Bayesian 
estimators of the timeand the magnitude of the process change in Risk Adjusted CUSUM and EWMA 
charts in phase II.Despite use of the Bayesianestimation approach inphase II of healthcare process 
monitoring, there is no use of this approach in phase I. Detecting the change point in phase I however, is 
quitehelpful asit helps one to detect where the process has changed, find the sequence of in-control data 
and estimate the in-control process parameters. The flexibility and capability of the Bayesian estimation 
method is beneficial inconstructing a more realisticmodelin phase I.Therefore in this study we use the 
Bayesian estimation method for change point detection in phase I patients’ post-surgery Bernoulli 
outcomes. To be able to compare the performance of the Bayesian estimators with other estimators, the 
MLE estimators are also obtained in this study, for the data in phase I.Considering Woodall and 
Montgomery (2014), this study is beneath the category of healthcaremonitoring. 
   In section 2preliminaries including the risk adjustment and the process change point models 
areexpressed.In section 3 the process monitoring in phase I is considered.The ML estimations of the time 
and the size of change are proposed in section 4. In section 5 a Bayesian approach along with the MCMC 
computational algorithm is proposed to obtainthe Bayesian estimators of the time and the size of the 
change.In section 6a phase Isurgical outcome dataset is used to examine the control chart’s capability and 
to obtain a baseline risk adjustment model. The efficiency of the Bayesian estimators are compared with 
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the ML estimators of the time and thesize on different data sets.Finally, in section 7concluding remarks 
and potential areas for future researches are proposed. 
 

2- Preliminaries of the problem 

2-1- Risk adjustment for binary outcomes 

   Consider Bernoulli process of patients’ survival or death, which is measured with outcome 
, 1, 2,..., ,iy i m=  where 1iy =  indicates that thi  patient dies and 0iy = indicates she/he survives, 

beyond a 30 days period after surgery. Them denotes sample size. The thi patient’s mortality rate, ip , 

is a function of patient’s risks factors as follow: 

( ),β,ui ip f=
 

(1) 

Where 1( ,.., ),ui i irx x= is a vector of patients’ risk factors, 0 1β ( , ,..., )rβ β β= denotes the coefficient 

vector and f  denotes an appropriate link function. Also r  denotes the number of risk factors. As the 
outcome is a binary variable the logit function can be used as a reasonable risk adjustment model as 
follow: 
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   Let ix  denotes the Parsonnet score which is a composite risk factor. Parsonnet score was also 

mentioned in the previous related works such as Sego et al.(2007) and Assarehet al.(2011b). The larger 
the Parsonnet score,ix the higher is the death risk of the thi patient. By considering this composite risk 

factor ,ix the risk factors and coefficient vectors are summarized as u (1, )i ix= and 0 1β ( , ).β β= So ip  

may be obtained as follows: 
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To obtain the coefficients0β and 1β , the method of maximum likelihood estimation of logistic regression 

model proposed by Myers et al. (2002)is applied with the data in section 6.  

2-2- The process change point model 
  To monitor the Bernoulli process of patients’ after surgery death or survival, when the patients possess 
different pre-operation risks, it is allowed for the in-control process rate to change among patients. Then 
the observations are checked against the expected rate of death obtained by the risk adjustment model. 
According to Assarehet al.(2012),“in this setting, a Bernoulli process is in the in-control state when 
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observations can be statistically expressed by the underlying risk models, taking into account their 
individualcovariates”. For modeling a change in the process, consider , 1,2,...,iy i m=  as independent 

phase IBernoulli-distributedobservations. These observations come from patients’ process of death or 
survival in an interval of 30 days after surgery.The process is initially in-control and each observation iy

follows a Bernoulli distribution with the failure rate 0 .ip At  an unknown time τ , an assignable cause 

results in a change in the patients’ failure rate from the in-control 0ip to an out- of-control rate,1ip , so 

that  

1 0log ( ) log ( ) , .i iit p it p iδ τ= + ≥
 

(5) 

Where 0δ > represents an increase in patients’ mortality rate. Therefore,  
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The change point model is proposed as: 
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3- Phase I process monitoring 
   By considering equation (7), the phase I control chart is equivalent to testing the following hypothesis: 
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To monitor the process in phase I, RALRT chart which is constructed based on the observations’ 
likelihood function and the change point model is applied. By considering hypothesis (8), under0H , 

according to Paynabar et al. (2012)the corresponding log-likelihood function is written as 
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Under alternative hypothesis the log-likelihood function is written as  
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In equations (9) and (10) the process failure rates, 0 ,ip and 1ip are unknown and need to be estimated. For 

estimating the failure rates under0H , 0 ,ip ( 1,2,..., ,i m= ), all patients’ risk data are considered as a 

homogeneous dataset. Hence, the MLE method proposed by Myers et al.(2002)may be used to estimate 

the coefficient vector of the risk adjustment model. The 0,(1( , ) 1, )) 11, ( ,
ˆ ˆ ˆ( , )mm m

T ββ β= denotes the ML 

estimator of the risk adjustment modelparameters.The ML estimator of the failure rates 

0 for 1,2,...,ip i m= under 0H are denoted by0 (1, )ˆ ,i mp which can be obtained by substituting (1, )
ˆT

mβ  in 

equation (4).Under 1H the observations are divided at a potential change point.Whena change occurs at 

the unknown time,τ the data before and after the change point are not homogeneous. In this situationthe 
risk adjustment model coefficients are estimatedseparately before and after the process change. Consider 

0,(1, 1) 1,( , )) 1 1(1, 1
ˆ ˆ ˆ( , )T

τ ττ β ββ − −− =  and 0,( , ) 1,() ,( ),
ˆ ˆ ˆ( , )T

m mmτ τ τβ ββ =  as the ML estimators of the risk adjustment 

model parameters corresponding to observations 1 to 1τ −  and τ tom , respectively, under 1H . The 

coefficients can be obtained using the iterative method proposed by Myers et al.(2002).Hence, the ML 
estimators of 0 for 1, 2,..., 1ip i τ= −  and 1 for , 1,...,ip i mτ τ= + under the 1H , are 0 (1, 1)ˆ ip τ −′  and 

1 ( , )ˆ i mp τ respectively. These estimators are obtained by substituting (1 ), 1
ˆT

τβ −  and ( ),
ˆT

mτβ  in equation (4).As 

Hogg and Craig(2004)proposed, in the LRT method, the chart’s statistic is the ratio of the data likelihood 
function under hypotheses 1H and 0H . Since in this paper the data log-likelihood function isused, the 

ratio of the likelihood functions is changed to their logarithm subtraction. Therefore, considering the log-
likelihood functions in equations (9) and (10), RALRT chart’s statistic could be obtained asthe following 
equation: 

1 0( ) ( ) , , 1,..., .L L l l m lτ τ τΛ = − = + − )11( 

It is assumed that , 1,..., ,l l m lτ = + −  wherel is the minimum sample size required to estimate the 
coefficients of the risk adjustment model.  

4- ML estimation of the change pointparameters 

   ( )τΛ s are plotted against time index τ and as long as( )τΛ s are under a pre-specified upper control 
limit, UCL, the process is considered in control, otherwise it is in out-of-control status. In this situation, 
the ML estimator of the change point is the time when the likelihood function receives its maximum 
value. Therefore, according to Paynabar et al.(2012): 
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Substituting the patients’ modified mortality rates 1 for , 1,...,ip i mτ τ= + from equation (6) and 

replacing τ  by its corresponding value,ˆmleτ , from equation (12), into equation (10), the log-likelihood 

function changes to: 
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The ML estimator of δ  is the value that maximizes equation (13).The partial derivative of equation (13) 
with respect to δ  is
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Sincesetting this differential equation equal to zero results in no closed form solution forδ ,the Newton-
Raphson’s numerical method is applied to solve the equation forδ . “This method is based on the 
derivative of a given equation with respect to its unknown parameters that uses the following linear 
approximationequation”(Perry et al, 2006): 
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+ ∆ ≈ + ∆ )15( 

where 1k kx x x −∆ = − . When ( )f x x+ ∆ is set to zero and the equationis rearranged then 
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where kx is the value of x  at the thk iteration of the algorithm. Using an initial value and an termination 

threshold, this method will converge to the optimum value of ( )f x . Using this method to solve equation 

(14) for δ  results in: 
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The algorithm ends when the 1| |k kδ δ −− is smaller than a pre specified partial positive constant .ε In this 

paper the initial value 0δ  and the ending measureε are set to 0 and 410− , respectively. The algorithm 

converges tômleδ , the MLE estimator of the shift size after finite iterations.   
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5- Bayesian estimation  

5-1- Priors 
   “Statistical inferences for a quantity of interest in a Bayesian framework are described as the 
modification of the uncertainty about their value in the light of evidence, and Bayes’ theorem precisely 
specifies how this modification should be made as below” Assareh et al.(2011b): 

.posterior likelihood prior∝ × )18( 

The word “Prior” indicates the knowledge about the quantity of interest in terms of a probability 
distribution before any observation is made.The word “Likelihood”notifies the underlying likelihood 
function of the observations, and the word “Posterior” is the state of knowledge about the quantity after 
the data is observed. This is also a probability distribution. 
In this section the Bayesian estimators of change point parameters,τ  andδ are proposed. The first step is 
to determine the appropriate prior distributions for τ andδ . Assareh et al.(2011a,b)suggested the use 
ofuniform and truncated normal distributions as the prior distributions for the time and the size of the 
change point, respectively. However, sinceδ is assumed to be a positive quantity, it is possible to use 
other positive distributions such as gamma.  

Here the uniform distribution ( , )u l m l−   is applied as a prior for the change time τ because it is 

assumed that a change can occur at any time in the interval( , 1).l m − For the change magnitude however, 

the gamma distributions( , )G a b  is considered. The values ofa  and b are chosen in such a waythat 
reflect the prior knowledge about the change magnitude. Here a realistic and practical assumption is 
considered. It is assumed that when a change occurs in the process due to surgical team performance, it 
cannot be a fundamental change that radically increases the mortality rates. The reason for this 
assumption is that the surgical team is professional however, and has gained some experiences 
still.Therefore the values for a  and b  are set to 2 and 0.5 that result in a prior density function that is 
denser in the interval [0, 2] having a mean equal to 1. Consequently, the probability for a largeδ is small. 
The effect of different change sizes in the in-control rate 0,p according to the equation (6), is displayed on 

Figure 1. 
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By replacing 1 for , 1,...ip i mτ τ= +  from equation (6)the likelihood function can be represented as: 
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Considering the equation (18), the joint posterior distribution may be expressed as 

1 2( , | ) ( ) ( ).y Lπ τ δ π τ π δ∝ × × )22( 

By simplification and omitting the irrelevant parameters the joint posterior distribution would be 
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As the joint posterior distribution has no specific form, it is difficult to obtain the posterior distribution for 
each parameter. Therefore, in the next section the Markov Chain Monte Carlo(MCMC ) simulation 
method is employed to obtain posterior distribution forthe unknown time and the size of the change, τ
and δ . 

 

 

 

Figure 1.   Effect of change magnitude δ on an in-control failure rate0p  
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5-2- Markov Chain Monte Carlo (MCMC) Simulation 
   MCMC approach includes methods to sample from univariate and multivariate distributions in which 
the samples constitute a Markov chain. Gibbs sampling and Metropolis-Hasting (M-H) methods are quite 
popular in the context of MCMC approach. Sometimes it is impossible to directly sample from the 
conditional posterior distribution of the parameters.In these cases using MCMC methods to obtain the 
posterior distributions is very helpful. Although the Gibbs sampling is aneffective technique to generate 
samples from the conditional distributions of two or more variables, it fails to work with highly 
complicated multivariable distributions as it requires decomposition of the joint posterior distribution into 
full conditional distributions. In this paper, the M-H algorithm is applied to obtain the posterior 
distributions of the change point parameters. The key advantage ofM-H algorithm is itsefficiencyto work 
with multivariate distributions. For more details on MCMC methods readers are referred to Fienberg et 
al.(2007) and Colosimo and Castillo(2007). 

5-3- M-H algorithm for estimating change point parameters 
   Considering the joint posterior distribution of τ and δ  in equation (23),the conditional distribution for 
each parameter can be obtained as follows: 
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   Although these conditional distributions have unknown forms, the graphical assessmentof them shows 
that they may be approximated bythe Normal and the Weibull distributions, respectively. To execute the 
M-H algorithm, the first step is to choose a proposal density function for each parameter. Here the normal 

distribution ( 1)( , )kN τ λ− and the Weibull distribution ( 1)
1 2( , )kW bl v vδ − are chosen as the proposal 

distributions ofτ  andδ , respectively. ( 1)kτ − and ( 1)kδ −  are the values of τ  and δ in ( 1)stk −  iteration of 

the algorithm and 1,λ = 1 1.5,v = and 2 2.5v = are set to the stated parameters. As the values of the 

likelihood function and the conditional distributions are too small, their logarithms are usedinstead of the 
algorithm. The algorithmfor obtaining marginal posterior distributions is as follows: 

Algorithm for obtaining posterior distributions of τ  and δ  

1. Start with initial value (0)τ  and (0)δ . 
2. Set 1,k =  

3. Use M-H algorithm, generate ( )kτ  from posterior ( ) ( )1 1( | , )k kyπ τ δ− −  with proposed normal 

distribution ( 1)( , )kN τ λ− . 

4. Use M-H algorithm, generate ( )kδ  from posterior ( ) ( )1( | , )k kyπ δ τ− with proposed Weibull 

distribution ( 1)
1 2( , ).kW bl v vδ −  

5. Set 1k k= + . 
6. Repeat steps3-5, N  times. 

   The algorithm converges in finite steps. Good starting values will accelerate convergence. N is set to 
10000and the first 25% of the samples are considered as burn-in values and removed as they come from 
unstable posterior distributions of τ andδ . So the last 75% samples are used to obtain the Bayesian 
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estimators. Having the posterior distributions, the mean and the median of each distribution, ,τ τ% and 

,δ δ%  , are used as Bayesian estimators for the time and the size of the process change. 

6- Discussion 
6-1- An application in phase I cardiac surgery data 
   A data set containing the patients’ cardiac surgery data whichwas considered by different authors 
including Sego et al. (2009) and Paynabar et al.(2012) is examined here.The Patients’ potential risk data 
are represented by their Parsonnet scores. Sego et al. (2009) stated that the Parsonnet scores are closely 
approximated by an exponential distribution with mean 8.9. Paynabar et al.(2012) considered the first two 
years data(including data for 1000m =  patients) as the phase I  data for estimating the risk adjustment 

model parameters and obtained0 1
ˆ ˆ[ , ] [ 3.373,0.073]β β = − . Therefore, 

( ) exp( 3.473 0.073 )
3.473 0.073 .

1 exp( 3.473 0.073
ˆ

)
ˆ i

i i i
i

x
logit p x p

x

− += − + ⇒ =
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   In this study the data for phase I are generated by means of simulation using the risk adjustment model 
in equation (26).Theupper control limit of the RALRT chart of Paynabar et al.(2012) is also applied here. 
They obtained the simulated UCL’s for different sample sizes (m ), different numbers of the risk 
adjustment model coefficients( )β  and two different values of the type I error probability, α ,as 0.05 and 
0.01.The number of patients and the number of the risk adjustment model coefficients in this simulation 
study are 1000m =  and 2, respectively. For 0.01α = ,the UCL is considered to be 6.48. The value for 
l , the minimum sample size , is set to 5 in the numerical examples. Also on the basis of some trial and 
error, the values of a and b, the parameters for the prior distribution of δ  are set to 2 and 0.5, 
respectively. The Parsonnet scores, for 1,2,...,1000ix i = , are generated from an exponential 

distribution with mean equal to 8.9 as the patients’ risk scores. Substituting for , 1,2,...,1000ix i =  in 

equation (26),the mortality probabilities, , 1,2,...,ip i m=  are obtained for the 1000m =  patients. 

Then, Bernoulli outcomes , 1,2,...,iy i m=  are independently generated from the Bernoulli distributions 

with the failure rates, , for 1,2,...,1000ip i = as the patients’ after surgery death or survival outcome. 

Finally,these data are considered as the phase I dataset and the RALRT control chart is used to evaluate 
them. The chart is displayed in Figure 2. Investigation of Figure 2 reveals that all the values are under the 
UCL. So the process is inits control state. Therefore, the risk adjustment model in equation (26) may be 
applied as a base risk-adjustment model to monitor observations during phase II. 
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Figure2. The RALRT chart for the phase one data 

 

6-2- Performance Evaluation of Bayesian Estimators 
   In this section simulated data aregenerated to examine the Bayesian estimators’performancein detecting 
the time and the size of the process change. The risk-adjustment model given in equation (26) is used to 
generate data. Following steps areexecuted to simulate data and thento obtain the estimates. 

1- One thousand Parsonnet scores, 1,2,...,1000ix i =  are generated from an exponential 

distribution with mean equal to 8.9. Then by substituting them into equation (26), the values for 
patients’ initial risk, 0 , 1,2,...,1000ip i = are obtained. 

2- Using equation (6), a shift equal to δ at time τ is considered and the values for 

1 , , 1,...,ip i mτ τ= + are obtained. Then, the patients’ Bernoulli outcomes , 1,2,...,1000iy i =
are produced independently from the patients’specific Bernoulli distributions using the rates 

equal to 0 , 1,2,..., 1ip i τ= −  for patients 1 to 1τ − , and the rates equal to 1 , , 1,...,ip i mτ τ= +  
for patients τ  to .m The simulated Bernoulli data and the corresponding risk factors are regarded 
as phase I  data and the RALRT chart with the UCL= 6.48 is applied to monitor the mortality 
rate.  

3- When the chart signals, the MCMC simulation is performed and the values for Bayesian 
estimates of the time and the size of the change areobtained.  

The MCMC output and the posterior distribution of τ and δ  when the real change point and change size 
are 500 and3 respectively, are shown in Figure3. Table 1 shows Bayesian estimates and the standard 
deviation for the posterior distributions of τ and δ for the values of τ  and δ equal to(400, 500), and 

(0.5, 0.75, 1, 1.3, 1.8, 2,5, 3.5, 5), respectively. Comparing the Bayesian estimates of the change time 

for 500τ =  indicate that for δ  smaller than 1.3 the posterior meanτ  provides more accurate estimates 
of τ than the posterior medianτ%  and for δ  greater than 1.3 the τ%  is a better estimator of τ . When 

500τ = , the values obtained for τ  andτ% , are more accurate than those obtained for 400τ = .For the 

change size, when 500τ = , the posterior medianδ%  is more appropriate than the posterior meanδ for



 

0.5.δ =  However, when 0.5δ >
for all δ ’s,δ outperforms .δ%  

   As in the Bayesian framework the posterior distribution for each parameter is 
intervals maybe obtained. “A credible interval is a posterior probability based interval which involves 
those values of the highest probability in the posterior density of the parameter of
2012). Similar to Assareh et al. 
process change are considered and 

of the 50% and the 80% credible intervals of 
reveals that the posterior distribution of the change 
increase in the probability. In other words
472.4215 to428.5558 in comparison to 
This interpretation may be extended to 

 

 

Figure 3. MCMC output and posterior distributions of 

, :a c MCMC output of 
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0.5, δ estimates the change size more precisely than

As in the Bayesian framework the posterior distribution for each parameter is 
obtained. “A credible interval is a posterior probability based interval which involves 

those values of the highest probability in the posterior density of the parameter of
 (2011b), the 50% and the 80% of the estimated time and 

process change are considered and are shown in Table 2 for (400,500)τ =  and 

80% credible intervals of the estimated time of the change 
posterior distribution of the change time is more skewed to the left with 

In other words an increase in the probability changes
in comparison to the right boundary which increases from 502.8745 to 507.7336. 

be extended to the other situations of change point and change size.

MCMC output and posterior distributions of τ  and δ for 500τ =

MCMC output of τ  and δ , :b d  posterior distributions of τ

 

 

 

 

 

thanδ%  . When 400τ =   

As in the Bayesian framework the posterior distribution for each parameter is accessible, the credible 
obtained. “A credible interval is a posterior probability based interval which involves 

those values of the highest probability in the posterior density of the parameter of interest”(Assaeh et al. 
0% of the estimated time and the size of the 

(0.5,1)δ = .Comparison 

of the change for 500τ =  and 1δ =  
is more skewed to the left with respect to the 

changes the leftboundary from 
right boundary which increases from 502.8745 to 507.7336. 

other situations of change point and change size. 

 

500 and 3.δ =  

τ andδ  
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Table 1. Bayesian estimation of change point parameters 

δσ  δ%  δ  τσ  τ%  τ  δ  

0.5805  0.3140  0.4807  16.6124  445.3523  449.0327  0.5    

 

 

  

  

τ =400 

0.9963  0.3851  0.6812  20.0594  372.1084  373.0501  0.75  

1.4655  0.4867  0.8947  14.5885  401.6425  402.9857  1  

2.1746  0.4827  0.9232  56.9088  397.5790  379.9630  1.3  

2.3021  0.8820  1.4840  19.8774  463.4686  457.6051  1.8  

3.4653  1.0021  2.0457  21.6584  432.2708  438.3425  2.5  

3.1445  1.2915  2.1492  4.0162  400.3846  400.3640  3.5  

3.5887  2.3068  3.5932  5.5021  401.5714  403.2885  5  

2.4672  0.5298  1.0397  65.3585  488.3129  499.5874  0.5    

  

  

�=500 

1.1345  0.4797  0.7985  28.3526  456.6244  464.7723  0.75  

1.9937  0.5934  1.1119  24.8200  504.4645  497.3043  1  

2.5103  0.7271  1.3779  42.7222  612.8743  596.0793  1.3  

1.6378  0.7954  1.2335  12.0491  504.1157  505.0720  1.8  

3.6833  1.0722  2.1677  12.5339  503.8850  507.4838  2.5  

4.0507  1.6020  2.8829  4.6322  502.6877  503.2702  3.5  

5.1253  2.8691  4.7730  4.4279  501.4702  502.1380  5  
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Table2. Credible Intervals for Change point parameters 

80%  50%  Parameter δ  τ  

[346.7161	475.3345] [361.2815		452.3534] τ  

0.5 

 
400 

[0.2061	1.8691] [0.2979		0.8764] δ  

[281.4053	419.2256] 	[312.7669	400.4298] τ  
1 

[0.1156	1.1197] [0.1907	0.5841] δ  

[454.9908		511.9533] [467.4823	504.2285] τ  

0.5 

 
500 

[0.1977		1.6794] [0.3033	0.8755] δ  

[428.5558	507.7336] [472.4215	502.8745] τ  
1 

[0.2736	2.0942] [0.3852	1.0493] δ  

 

6-3- Comparison of the Bayesian estimators with the MLE estimators  
    Studying the performance of the proposed Bayesian estimators, 100 datasets are generated usingthe 
steps 1 and 2 in section 6-2. The Bayesian estimators and the maximum likelihood estimators of the 
change point parameters are obtained for each set of data. Then the mean and the standard deviation of 
the estimators are computed. Table 3 shows the resulted mean and standard deviation for each estimator.  
Concerning this table, the Bayesian estimators τ  and τ%  outperform the MLE estimator ̂mleτ for both 

small and large shifts. In addition, the standard deviation of τ% is much smaller than̂mleτ . As an example, 

for 500τ =  and 0.7781,δ = we have 503.1559τ = , 502.711τ =%  and ˆ 492.0625mleτ = . The 

corresponding standard deviations are( ) 58.7352SD τ = , ( ) 62.4293SD τ =%  and 

ˆ( ) 127.4563mleSD τ = .Comparison of τ and τ% shows that they perform almost the same. On the other 

hand, regarding the change size estimators, for 1δ ≤ , in two cases the Bayesian estimatorδ%   and in four 

cases the MLE estimator ˆmleδ are the most accurate ones. However, for 1δ ≥  in two cases δ%  and in two 

other cases ̂mleδ produce more precise estimates of the change size.  

The credible intervals are also given to evaluate the performances of the estimators. The credible intervals 
of the estimators which are computed for 500τ =  and a range of δ values are provided in Table 4. The 
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Table 3.Comparison of Bayesian  and MLE estimators for � = 500 and a range of  � 

0.2041 

0.4771 

0.5 

0.6021 

0.7781 

1 

2 

3 

5 

7.5 

10 

456.9022 

479.8635 

495.2615 

509.7522 

503.1559 

530.8575 

552.1965 

525.0353 

503.5180 

501.4740 

501.1294 

458.8763 

481.6228 

492.8620 

507.0434 

502.7110 

531.9220 

552.9419 

524.6791 

502.6352 

500.8396 

500.5755 

511.1110 

505.7910 

595.5000 

520.3617 

492.0625 

526.6393 

495.2490 

494.6101 

489.2500 

494.8401 

551.3294 

72.2927 

76.7997 

47.6041 

61.9235 

58.7352 

44.9611 

32.7508 

25.8160 

3.4221 

0.8976 

0.4268 

73.0659 

80.1885 

49.0743 

65.8224 

62.4293 

50.5956 

35.5530 

28.3498 

3.4769 

0.8926 

0.3792 

328.4438 

253.1331 

267.7504 

186.1663 

127.4563 

118.0719 

10.1684 

7.9302 

30.8739 

1.6558 

15.3051 

0.6584 

0.8628 

1.1130 

0.8958 

0.9296 

1.338523 

1.8038 

2.4668 

5.3356 

10.0104 

13.1989 

0.3664 

0.4467 

0.6237 

0.4952 

0.5105 

0.7334 

0.9857 

1.3921 

3.3032 

7.0350 

10.0820 
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7- Conclusion 
    In this study the Bayesian estimators of the change point parameters (including time and size of the 
change) are proposed forphase I analysis of the patients’ post-surgery death or survival risk-adjusted 
outcomes. In the Bayesian estimation, for eachτ andδ two Bayesian estimators including the mean and 
the median of the corresponding posterior distribution are proposed. Having the whole posterior 
distribution of the parameters in the Bayesian framework is a remarkable advantagethat enabled us to 
construct credible intervals for unknownτ andδ . Results show that in comparison to MLE, Bayesian 
estimation method effectively detects the true change point parameters. In the simulation study, the 
Bayesian method significantly outperformed MLE when the change time is estimated.  
   In this approach the prior distributions of the change point parameters (time and size) have been 
considered to be independent.In practice, however, there are situations in which this assumption may not 
be valid.As an example,over the night working hours, due to the physicians’ fatigue when a change 
occurs it may be more severe than the same change during the daytime. In such cases it is more 
reasonable to consider dependencybetween the parameters and,as a result, use a joint prior distribution to 
describe their behaviors.  
    In this paper, it was assumed that after a change occurs, the process remains in the new state as long as 
no out-of-control signal appears on the control chart. While, in practice as the surgeon’s or physician’s 
proficiency increases the process improves. Considering this assumptionmay lead to a more realistic 
model. Hence, another potential area for future research may be considering the incorporation of 
physicians’ learning process into the model.   

 

 

 

Table4: Estimated precision performance over 500τ =  and a given range of δ . (continue) 

0.6200 0.3200 0.100 δ 0.9400  0.7800  0.3800  τ

 

5 0.0100 0 0 δ% 0.9600  0.8400  0.5400  τ% 

0.9700 0.9700 0.1200 ˆ
MLEδ 0.9300  0.7600  0.0200  ˆMLEτ 

0 0 0 δ 1 1 0.8600  τ

 

7.5
 

0.3000 0.1400 0.0800 δ% 1 0.9900 0.9300 τ% 

0.9300 0.0200 0.0200 ˆ
MLEδ 1 0.7100 0.0100 ˆMLEτ 

0 0 0 δ 1 1 0.9900 τ

 

10
 

0.3100 0.1400 0.0800 δ% 1 1 1 τ% 

0 0 0 ˆ
MLEδ 1 0.6700 0.0300 ˆMLEτ 
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