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Abstract 
The last decade has seen numerous studies focusing on the closed-loop supply chain. 
Accordingly, the uncertainty conditions as well as the environmental impacts of 

facilities are still open issues. This research proposes a new bi-objective mixed-

integer linear programming model to design a closed-loop supply chain tire 
remanufacturing network considering environmental issues that improve 

performance in conditions of uncertainty associated with the tire industry. This 

model seeks to maximize the total profits of the network, including customer centers, 

collection centers, recycling centers, manufacturing/remanufacturing plants, 
distribution centers, and on the other hand, is looking to minimize environmental 

impact all over the supply chain network. Another novelty of the proposed model is 

in the solution methodology. By using an exact approach, the augmented ε‑constraint 
method, and meta-heuristic algorithm, a well-known Grasshopper Optimization 

Algorithm (GOA), optimal and Pareto solutions have been obtained for medium and 

large size sample problems. We analyze the effectiveness of these meta-heuristics 
through numerical experiments. Also, sensitivity analysis has been provided for 

some parameters of the model. Finally, the results and suggestions for future research 

are presented. 

Keywords: closed-loop supply chain, fuzzy mathematical programming, bi-

objective optimization, grasshopper optimization algorithms, augmented epsilon 

constraint, tire industry 

1-Introduction 
As a crucial planning problem, the supply chain network design (SCND) determines the physical 

structure and infrastructure of a supply chain (Melo, Nickel, & Saldanha-Da-Gama, 2009). Recently 
the reduction of impacts made by humans has attracted more attention because of growing 

environmental impacts and their significant role in human life. Green supply chains are among the most 

effective subjects’ related to environmental impacts, an increased number of studies in this area verifies 
this opinion. A green supply chain means a supply chain that considers at least one of its strategic 

decisions to protect the environment. Due to the increasing competition patterns and public awareness 

of environmental issues, some industries are using environmental considerations as a competitive 
advantage (Thierry, Salomon, Van Nunen, & Van Wassenhove, 1995). Hence, many researchers have 

studied reverse logistics (RL). The logistics activities entirely from used products, which are returned 

by end-users, to again usable in a market is defined as reverse logistics (Fleischmann et al., 1997). 

Forward and reverse logistics integration leads to a closed-loop supply chain (CLSC) network.  
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   Closed loops are durable products that cannot be destroyed in the short term and can be reused in the 
production of new products, recycled or sold in the secondary market, despite the fact that traditional 

Forward Logistics (FL), CLSC networks usually are more complex networks (Melo et al., 2009).  

   The most important strategic decisions in the supply chain are to design the network efficiently (Dai 

& Zheng, 2015; Khalifehzadeh, Seifbarghy, & Naderi, 2015; Ramezani, Kimiagari, Karimi, & Hejazi, 
2014). The decision-maker (DM) can consider several factors to designing a closed-loop supply chain 

network more efficiently, such as costs, governmental regulations, CO2 emissions, operational risks and 

disruption, social dimensions, uncertainty in the parameters, reliability of the network, and etc. The lack 
of precise and accurate information and the dynamics and complexity of supply chain components can 

be attributed to uncertainty in the parameters, which is probably posing a major challenge to the SCND 

(Tehrani & Gupta, 2021). This is so important that the output of the model in both deterministic and 
non-deterministic conditions, in addition to being different, can also change the CPU solution time 

(Ghasemzadeh, Sadeghieh, Shishebori, & Sustainability, 2021). 

In this study, we tried to design the Green Closed-loop Supply Chain (GCLSC) network for the 

automotive tire industry under the uncertainty of some parameters. There is an average of 50 to 65 
thousand tons of used tire varieties in Iran. Unfortunately, a very small percentage of them are in the 

recycling and retreading cycle. So, paying attention to the tire retreading industry can make significant 

savings in the country's resources, and in addition, the environment can be protected from the current 
pollution in this industry. One of the challenging tasks in a value chain for the tire industry is the 

management of new tires and the utilization of used tires as well as synchronization of the front and 

reverse logistics networks. Therefore, a suitable logistics network for this type of industry is necessary. 

Currently, there are three ways for tire recycling: 1- the manufacturer is responsible for recycling, 2- 
the manufacturer outsources the recycling to retailers (manufacturer does not play a role), and 3- third-

party logistics is responsible for recycling (manufacturer role is insignificant in this way but not zero) 

(Ran and Yin, 2021). In addition to recycling, tire retreading or remanufacturing is another choice for 
recovering tires in Iran. Retreaded tires can be used in different vehicles such as cars and trucks. Due 

to both price and using environmentally responsible aspects, tire remanufacturing is popular. The price 

of a retreaded tire is 40% to 50% of the brand-new tires. The quality of the remanufactured tire is almost 

equal to the quality of the new one. In Iran, used tires are of great importance due to the boom in road 
transport, which accounts for 80% of the country's transportation and also the poor quality of tires 

produced, and then the tires get out of the consumption cycle very quickly. The purpose of this study is 

to present a Green Closed-loop Supply Chain Network model for the automobile tires industry under 
uncertainty. According to the literature review, none of the earlier studies has examined the tire closed-

loop supply chain network with considering uncertainty in all parameters such as demand, rate of 

returned tires, rate of recoverable products, and so on. 
This study proposes a bi-objective mathematical model that considers two indispensable dimensions 

of a green closed-loop supply chain (exhaust gases and supply chain profit) and considers tire 

manufacturing/remanufacturing CLSC network configuration. To the best of our knowledge, this 

research is the first investigation that can be considered the effects of uncertainty in all parameters, 
especially the rate of returned products in the tire CLSC network. This way, questions that should be 

addressed in this research are as follows: 

 Which manufacturing/remanufacturing plants, distribution centers, collection centers, and 

recycling centers should be opened? 

 How many products exist in each part of the network? 

 How many raw materials are purchased from each supplier? 

   To answers the above questions, this study will be developed a mixed-integer linear programming 

model to design and optimize a tire closed-loop supply chain network. The objective function 
maximizes the total profit and minimizes exhaust gases.  

   The remainder of the paper is organized as follows. We present a review of the relevant literature in 

section 2, and propose a bi-objective mixed-integer linear programming model in section 3. The 

proposed solution approach to solve the problem is outlined in section 4, and the numerical results 
obtained from solving medium size and large size problems have been presented along with sensitivity 
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analysis for important model parameters in section 5. Finally, conclusions have been summarized in 

section 6. 

2-Literature review 
   In recent years, many articles have been published on the closed-loop supply chain (CLSC) and 

reverse logistics (RL). In fact, the profit of collecting and recycling the products leads to research on 

them (Devika, Jafarian, & Nourbakhsh, 2014). With regard to environmental concerns, the design of 

logistics networks in various industries requires the consideration of facilities for the return of End-of-
life products and recycling of them in other industries. According to the U.S. Environmental Protection 

Agency (EPA) report, world demand for tires is increasing 4.1 percent per year and reaches to 3.0 billion 

units in 2019 (Amin, Zhang, & Akhtar, 2017). Hence, the economic design of the tire supply chain 
network became an important issue for both academics and practitioners (Stadtler, 2015). Ferrer (1997) 

explained generic supply chains of tires. Also, he reviewed the tire retreading process and reviewed the 

value-adding operations. He offered suggestions for selecting the number of times the tire was retread. 
In 2009, the mathematical model to probe the tire supply chain was introduced by (Kannan, Noorul 

Haq, & Devika, 2009). They developed a CLSC system for tires and plastic via Mixed Integer Linear 

Programming (MILP). In addition, an RL system for the tire supply chain was addressed by (Sasikumar, 

Kannan, & Haq, 2010) for the truck tire remanufacturing process. 
   This study attempts to design and optimize the Closed-Loop supply chain network in the tire industry. 

Some papers have been published in the relevant literature, such as (Amin et al., 2017; Fakhrzad & 

Goodarzian, 2019; Fathollahi-Fard, Hajiaghaei-Keshteli, & Mirjalili, 2018; Mohammadi, Alemtabriz, 
Pishvaee, & Zandieh, 2020; Subulan, Taşan, & Baykasoğlu, 2015; Yadollahinia, Teimoury, & Paydar, 

2018). Subulan et al. (2015) published an article on a case study of tire remanufacturing in Turkey. 

They used a Fuzzy Mixed Integer Programming (FMIP) by a fuzzy solution approach to address their 
CLSC optimization model. Amin et al. (2017) designed and optimized the tire closed-loop supply chain 

network. They formulated the problem as a mixed-integer linear programming model. Their model is 

employed in the design of a real network in Toronto, Canada. Fathollahi-Fard et al. (2018) developed a 

tri-level programming model to design the location-allocation of the tire CLSC for the first time. They 
formulated the model on the static Stackelberg game between tri-level in the framework of CLSC. 

Yadollahinia et al. (2018) designed tire forward and reverse supply chain. A novel idea of their study 

was integrating customer relationship management (CRM) concepts into their mathematical modeling 
framework. Since customer segmentation is the fundamental essence of the CRM, they categorized the 

customers into three types. In addition, their model is employed in the design of a real network in 

Mazandaran, Iran. Fakhrzad and Goodarzian (2019) proposed a model for a green closed-loop supply 

chain (GCLSC). Also, a multi-objective Mixed Integer Linear Programming formulation is developed 
to minimizing the total costs, and the gas emissions costs due to vehicle movements between centers 

and maximizing the reliability of delivery demand due to the reliability of the suppliers. As an 

innovation, they developed their GCLSC model by considering resuscitation and recycle 
simultaneously. Mohammadi et al. (2020) presented a multi-stage stochastic programming model for 

sustainable closed-loop supply chain network design with considering financial and risk decisions. The 

parameters of the rate of return (on investment and debts) and customers' demand have been considered 
under uncertainty into closer to reality. Also, their model is employed in a case study of a plastic 

production and recycling supply chain network. 

   Fazli-Khalaf, Naderi, Mohammadi, Pishvaee, and Sustainability (2021) designed a tire closed-loop 

supply chain network that is resilient to supply-demand disruptions in addition to being sustainable. To 
immune network against disruptions, the authors maximize customers’ demand by incorporating the 

new concept of maximum coverage while there are distance-based limitations. This model is based on 

a real case in Iran, which examines four gaps in the literature in order to optimize four objective 
functions, including minimizing the total costs and CO2 emissions, maximizing the operational 

reliability of facilities, and the social responsibility of the network. Also, in this research, a mixed fuzzy 

possibilistic-flexible programming method has been used to deal with uncertainties. Like the Fazli-
Khalaf et al. (2021) paper, Mehrjerdi and Shafiee (2021) developed the tire CLSC network by 

incorporating the concepts of sustainability and resilience, But they achieve this goal in entirely 

different ways. First, the authors asked academic experts to identify the impacts of supply chain's 

strategies on the resilience criteria in linguistic variables. Then, by using the fuzzy TOPSIS method, 
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considered two criteria of information sharing and multiple sourcing as the main resilience criteria. 
Then they formulated a mixed-integer programming model by considering two criteria with sustainable 

goals simultaneously. The real data of the Barez factory located at Kurdistan State in Iran was applied 

to validate the model and the results indicate that the level of the network's response to customer needs 

has improved.  
   In table 1, some CLSCs papers have been categorized based on multi-period, multi-product, multi-

objective, uncertainty, sources of uncertainty, financial factors, type of product, and environmental 

issues. Also, in order to show the difference between this study and other researches, the classification 
of the related literature is illustrated in table 1. 

   Some authors have considered CLSC networks under uncertainty. Francas and Minner (2009) studied 

the network design problem of a firm that manufactures new products and remanufactures returned 
products in its facilities. They examined the expected performance and capacity decisions of two 

alternative manufacturing network configurations when both returned flow, and demand are uncertain. 

Demirel, Özceylan, Paksoy, and Gökçen (2014) developed the model by using a genetic algorithm 

approach with fuzzy and crisp objectives. Subulan et al. (2015) considered more sources of uncertainty 
in the model, including demand, return, and disposal rate. We observe that a few authors have 

considered more than three sources of uncertainty at the same time in CLSCs. 

   In the CLSC network configuration, a few authors have considered financial factors. Ramezani, 
Kimiagari, and Karimi (2014) proposed a financial approach to the CLSC network model. They 

included fixed and current assets and liabilities and a set of budgetary constraints in the model. 

However, they have not been considered uncertainty in the model. Cardoso, Barbosa-Povoa, and Relvas 
(2016) developed a mixed-integer linear programming (MILP) model that integrates financial risk 

measures in a CLSC network. They used the ε-constraint method to solve the optimization problem. 

Pishvaee, Yousefi, and Engineering (2019) used scenario-based stochastic programming to deal with 

the uncertainty of demand and rate of return products. They develop a mathematical model that 
simultaneously focuses on optimizing the financial and physical flows in an integrated manner and uses 

the financial ratios in the form of a closed loop supply chain. In Mohammadi et al. (2020) paper, 

financial decision-making involves a sequence of decisions to react to outcomes that evolve overtime 
periods have been considered. Financial decisions are related to both investment and loan. Also, they 

considered various investment alternatives for a corporate, which is making decisions on the SCND 

problem. Mohtashami, Aghsami, and Jolai (2020) design a bi-objective NLP model for green supply 

chain with forward and reverse logistic consideration to optimize transportation fleets' network's 
transportation and waiting time. The network includes supplier, production system, distribution center, 

repair center, recycling center, disposal center, and collection center.  Used products are collected from 

customers at the collection center and transferred to other centers based on their type. The authors 
employed queuing systems in the proposed supply chain to reduce environmental impacts and energy 

consumption of transportation fleets by determining loading. Since a sufficient number of servers are 

available in unloading centers, no queue will exist there. Moghadas Poor, Jabalameli, Bozorgi-Amiri, 
and Engineering (2020) proposed a multi-period, multiproduct, bi-objective mathematical model to 

design a closed-loop supply chain network in the tire industry concerning sustainability factors 

(economic and social) under the third-party logistics management. Their model aims to maximize 

profits from different processes and maximize the purposes of social sustainability. 
   Recently Ran and Yin (2021) presented the impact of government subsidies on automobile tire 

recycling in a dual-channel closed-loop supply chain at the International Conference on Mechanics and 

Civil, Hydraulic Engineering (CMCHE) which was held on 4th-6th June 2021 in Kunming, China. 
Because of the problems of recycling waste, especially automobile tires, in China, they see the role of 

government subsidies as a solution to the process of recycling automobile tire waste to address the 

severe environmental pollution and resource shortages that China's economy has recently faced. This 
study is mainly from a two-channel supply chain and has two models, the first model is without 

government subsidy and the second one with government subsidy. It is assumed that there is a 

relationship between the manufacturer and the retailer of Stackelberg games, and both of them are 

decided to maximize the profit. In this game, the manufacturer and the retailer are the leader and the 
follower, respectively. Both of them are risk-neutral and have exactly the same information. The results 

of this study show that government subsidies increased total profits and demand for tires as well as 

reduced the impact of their waste on the environment. 
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   Several articles have been published about CLSC networks configuration (Abbey, Meloy, Guide Jr, 
& Atalay, 2015; Alimoradi, Yussuf, Ismail, & Zulkifli, 2015; Amin & Zhang, 2013; Bottani, Montanari, 

Rinaldi, & Vignali, 2015; K. Das & Posinasetti, 2015; Hashemi, Chen, & Fang, 2014; Karimi, 

Ghezavati, Damghani, & Engineering, 2015; Moghaddam, 2015a, 2015b; Rezaei et al., 2021; Mohajeri 

& Fallah, 2016; Özceylan, Paksoy, & Bektaş, 2014; Ruimin, Lifei, Maozhu, Peiyu, & Zhihan, 2016; 
Zohal & Soleimani, 2016), recently (Fakhrzad & Goodarzian, 2019; Fathollahi-Fard et al., 2018; 

Moghadas Poor et al., 2020; Mohammadi et al., 2020; Pishvaee et al., 2019; Rad & Nahavandi, 2018; 

Moghadam et al., 2021). Most of the publications in the CLSC field have focused on general networks 
and locations based on random numbers. Based on the literature review and the associated 

summarization in table 1, it is evident that modeling the problem of a multi-period, multi-product, and 

multi-level closed-loop supply chain for the automotive tire industry with considering environmental 
issue could be an interesting and relevant research topic. This study follows to provide a solution for 

the proposed model considering the concerns of the environmental impacts of a green supply chain. 

This model includes some of the customer centers, collection centers, recycling centers, 

manufacturing/remanufacturing plants, and distribution centers.  
   We propose a fuzzy multi-objective programming approach to formulate a green closed-loop supply 

chain network design problem under an uncertain environment. Subsequently, fuzzy multi-objective 

programming is used to solve the proposed model. This approach would dominate other approaches 
used in previous studies owing to its use of fuzzy numbers for discrete distributions and stochastic 

variables for continuous distributions to deal with uncertainties. Also, in the model presented, 

transportation costs, manufacturing, and remanufacturing operations, distribution coefficientsCO2, 

return rates, used product collection and recovery, facility capacity are considered fuzzy due to the 
nature of the uncertainty in the real world. 
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3-Problem explanation 
3-1-Problem definition 

   According to figure 1, which shows the closed-loop supply chain network in this study, forward and 
reverse direction have four and three levels, respectively, i.e., suppliers, manufacturing plants, 

distribution centers, and customer centers in the forward direction, and in the reverse direction, 

collection centers, recycling centers, and remanufacturing centers are considered.  
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(Fleischmann et al., 1997)       Copier, Paper ✓ 

(Francas & Minner, 2009) ✓ Demand, Return   ✓    

(Kannan et al., 2009)    ✓   Tire ✓ 

(Sasikumar et al., 2010)    ✓   Tire  

(Shi, Zhang, Sha, & Amin, 2010) ✓ Demand, Return   ✓    

(Amin & Zhang, 2012)     ✓  Computer  

(Amin & Zhang, 2013) ✓ Demand, Return   ✓ ✓ Copier ✓ 

(Ramezani, Bashiri, & Tavakkoli-

Moghaddam, 2013) 
✓ 

Return, Cost 

Price 
 ✓ ✓ ✓   

(Demirel et al., 2014)   ✓ ✓ ✓ ✓   

(Mirakhorli, 2014) ✓ Demand, Return    ✓ Bread  

(Ramezani, Kimiagari, & Karimi, 

2014) 
  ✓ ✓     

(Zeballos, Méndez, Barbosa-Povoa, & 

Novais, 2014) 
✓ Demand, Supply  ✓ ✓   ✓ 

(Subulan et al., 2015)    ✓ ✓ ✓ Tire ✓ 

(Accorsi, Manzini, Pini, & Penazzi, 

2015) 
    ✓ ✓  ✓ 

(Keyvanshokooh, Ryan, & Kabir, 

2016) 
✓ Demand, Return  ✓     

(Cardoso et al., 2016) ✓ Demand ✓ ✓ ✓ ✓   

(Qiu & Wang, 2016) ✓ Demand, Supply ✓    Tea  

(Gaur, Amini, & Rao, 2017)   ✓ ✓   Battery  

(Amin et al., 2017) ✓ Demand, Return ✓ ✓ ✓  Tire ✓ 

(Nakao, Shen, & Chen, 2017) ✓ Demand       

(Rad & Nahavandi, 2018)   ✓ ✓ ✓ ✓  ✓ 

(Fathollahi-Fard et al., 2018) ✓ Demand   ✓  Tire  

(Yadollahinia et al., 2018) ✓ Demand, Capacity  ✓ ✓ ✓ Tire  

(Fakhrzad & Goodarzian, 2019) ✓ All parameters ✓ ✓ ✓ ✓  ✓ 

(Fattahi, 2020) ✓ Demand  ✓ ✓    

(R. Das, Shaw, & Irfan, 2020) ✓ Demand, Capacity      ✓ 

(Mohammadi et al., 2020) ✓ Demand, Return ✓ ✓ ✓ ✓ Plastic  

(Mohtashami et al., 2020) ✓     ✓  ✓ 

(Fazli-Khalaf et al., 2021) ✓ All parameters ✓   ✓ Tire ✓ 

(Mehrjerdi & Shafiee, 2021)   ✓  ✓ ✓ Tire ✓ 

(Ghasemzadeh et al., 2021) ✓ 
Demand, Return & Raw 

material 
✓ ✓  ✓ Tire ✓ 

(Ran & Yin, 2021)   ✓    Tire ✓ 

(Tehrani & Gupta, 2021) ✓ 
Return & Recycle & 

Retread 
✓  ✓ ✓ Tire ✓ 

This study ✓ All parameters  ✓ ✓ ✓ Tire ✓ 

Table 1. Summary of the literature review 
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In the forward direction, it is assumed that suppliers provide the raw material for the manufacturer. 

The manufacturer can manufacture and remanufacture the tires. The new tires or remanufactured tire 
are sent to distribution centers by the manufacturer. Then, customers purchase the tires. In the reverse 

direction, used tires are collected from customer centers. In fact, collection centers have to collect used 

tires from customer centers; in the collection centers, many inspections are executed for determining 

that the used tires are recoverable or not. Recoverable used tires are sent to manufacturing plants, and 
unrecoverable tires are sent to recycling centers to turn into raw materials for use in other industries, 

this strongly depends on the quality of the returned tires.  

   We aim to determine the location and number of facilities in each layer, the flow of tires between the 
facilities of each layer, the quantities of the produced tires by manufacturer, and the amount of 

purchased raw material from suppliers. The network will be the development of a complex integer linear 

programming problem. This study proposes a bi-objective mathematical model that takes into account 

two indispensable dimensions of a green closed-loop supply chain (exhaust gases and supply chain 
profit). The purpose of this model is to maximize the total profit in the CLSC network and minimize 

exhaust gases to achieve the best structure for the green closed-loop network by determining the location 

and number of facilities in each echelon and the amount of flow of tires between the facilities of each 

echelon. 

3-2-Assumptions 

The key assumptions of this research are as follows: 

 A multi-level, multi-product, and multi-period model has been developed. 

 The location of customers is known and fixed. 

 The number of facilities that can be opened and their capacity is limited. 

 Uncertainty for all parameters of the model is considered. 

 The amount of released gas 𝐶𝑂2 due to the transportation system is considered uncertainty. 

 All returned products from customers must be collected. 

 The manufacturer can manufacture and remanufacture (retread) the tires. 

 Purchasing of raw materials is performed at the beginning of the time period 𝑡, and suppliers should 

be sent the raw materials during the period to the manufacturing centers. 

 The distributors and customers do not differentiate between new and remanufactured tires; in fact, 

it is assumed that the quality of new and retreaded tires is the same. 

 The purchased raw materials are used to produce new tires, and remanufactured returned tires, e.g., 
remanufacturing plants use the raw materials for creating tires' casing. 

 Manufacturing/remanufacturing plants purchased used tires as raw materials from collection centers. 

 The transportation cost depends on the distances between locations and the transportation system 

provided by the supplier. 

3-3-Problem formulation 
   To describe the aforementioned CLSC network, the following notations are used in the model 
formulation: 

Recycling centers Collection centers Customer centers 

Distribution centers Remanufacturing & manufacturing  plants 

Reverse direction Forward direction 

Suppliers 

Fig 1. Automotive tire industry closed-loop supply chain network  
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3-3-1-Notations 

Indices: 

j Set of products, (j = 1,2,3,…,J) 

s Set of suppliers, (s = 1,2,3,…,S) 

k Set of customers centers locations, (k = 1,2,3,…,K) 

r Index for potential locations for distribution centers, (r = 1,2,3,…,R) 

i Index for potential locations of manufacturing/remanufacturing plants, (i = 1,2,3,…,I) 

l Index for potential locations for collection centers, (l = 1,2,3,…,L) 

n Index for potential locations for recycling centers, (n = 1,2,3,…,N) 

t Index of period time (t = 1,2,3,…,T) 

m Index of transportation system  provided by the supplier, (m = 1,2,3,…,M) 

Parameters: 

S̃jirt Selling price of product j from manufacturing plant i to distribution center r in period t 

CS̃jt Cost Saving of product j in period t (because of product recovery) 

cP̃jit Production Cost of product j in manufacturing plant i in period t 

cR̃st Purchased cost of raw material from supplier s in period t 

RC̃jnt Recycling Cost of product j in recycling center n in period t 

HC̃jrt Holding cost of the product j in distribution center r in period t 

SHC̃jkt Cost of shortage the unit of product j for customer center k in period t 

fcSst̃ Fixed-Cost associated with supplier s in period t 

fcP̃it Fixed-Cost for opening plant i by the manufacturer in period t 

fcD̃rt Fixed-Cost for opening distribution center r in period t 

fcC̃lt Fixed-Cost for opening the collection center l in period t 

fcÑnt Fixed-Cost for opening the recycling center n in period t 

eSsi The distance between locations of supplier s and plant i 

ePir The distance between locations of manufacturing plant i and distribution center r 

eDrk The distance between locations of distribution center r and customer centers k 

eKkl The distance between locations of customer centers k and collection center l 

eNln The distance between locations of collection center l and recycling center n 

eCli The distance between locations of collection center l and remanufacturing plant i 

ftS̃sit
m  Fixed-Cost of sending transportation system m from supplier s to manufacturing plant i in period t 

ftP̃irt
m 

Fixed-Cost of sending transportation system m from manufacturing plant i to distribution center r 
in period t 

ftD̃rkt
m  

Fixed-Cost of sending transportation system m from distribution center r to customer centers k in 

period t 

ftK̃klt
m  

Fixed-Cost of sending transportation system m from customer centers k to collection center l in 

period t 

ftÑlnt
m  

Fixed-Cost of sending transportation system m from collection center l to recycling center n in 

period t 

ftC̃lit
m  

Fixed-Cost of sending transportation system m from collection center l to remanufacturing plant i 
in period t 

tcS̃sit
m  

Transportation Cost of raw material per km from supplier s to manufacturing plant i with 

transportation system m in period t 

tcP̃jirt
m  

Transportation Cost of product j per km from manufacturing plant i to distribution center r with 

transportation system m in period t 

tcD̃jrkt
m  

Transportation Cost of product j per km from distribution center r to customer centers k with 

transportation system m in period t 

tcK̃jklt
m  

Transportation Cost of used product j per km from customer centers k to collection center l with 

transportation system m in period t 

tcÑjlnt
m  

Transportation Cost of used product j per km from collection center l to recycling center n with 

transportation system m in period t 
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tcC̃jlit
m  

Transportation Cost of used product j per km from collection center l to remanufacturing plant i 
with transportation system m in period t 

ṽj Volume of each unit product j 

vr̃  Volume of raw material 

urjt The rate of using the raw material for produce product j in period t 

urujt The rate of using the raw material for remanufacturing used product j in period t 

RR̃j Rate of Recoverable used product j 

RT̃j Rate of Return used product j 

capP̃it End Product Storage Capacity of manufacturing/ remanufacturing plant i in period t 

capPR̃it Raw material Storage Capacity of manufacturing/ remanufacturing plant i in period t 

capD̃rt Capacity of distribution center r in period t 

capC̃lt Capacity of collection center l in period t 

capÑnt Capacity of recycling center n in period t 

capS̃st Capacity of supplier s in period t 

capL̃mt Potential capacity of each of transportation tools m in period t 

d̃jkt Demand of customer centers k for product j in period t 

θ̃ 
m   Amount of released CO2 for transportation with transportation system m 

EĨSst Environmental impact of raw materials purchased from supplier s in period t 

EIP̃it Environmental impact of opening manufacturing/remanufacturing plant i in period t 

EID̃rt Environmental impact of opening distribution center r in period t 

EĨClt Environmental impact of opening collection center l in period t 

EIÑnt Environmental impact of opening recycle center n in period t 

Decision variables: 
QPjit Quantity of product j produced at manufacturing plant i in period t 

QRst Quantity of purchased raw material from supplier s in period t 

TRSsit
m  

Quantity of raw material shipped with transportation m  from supplier s to manufacturing plant i in 

period t 

TPPjirt
m  

Quantity of product j shipped with transportation m  from manufacturing plant i to distribution 

center r in period t 

TPDjrkt
m  

Quantity of product j shipped with transportation m  from distribution center r to customer centers 

k in period t 

TPKjklt
m  

Quantity of product j shipped with transportation m  from customer centers k to collection center l 
in period t 

TPCjlit
m  

Quantity of product j shipped with transportation m  from collection center l to remanufacturing 

plant i in period t 

TPNjlnt
m  

Quantity of product j shipped with transportation m  from collection center l to recycling center n 

in period t 
IDjrt Inventory of product j at the distribution center r in period t 

SHjkt Quantity of product j unsatisfied demand for customer centers k at the end of period t 

NSsit
m  Number of transportation system trips m from supplier s to manufacturing plant i in period t 

NPirt
m 

Number of transportation system trips m from manufacturing plant i to distribution center r in 

period t 

NDrkt
m  

Number of transportation system trips m from distribution center r to customer centers k in period 

t 
NKklt

m  Number of transportation system trips m from customer centers k to collection center l in period t 

NClit
m  

Number of transportation system trips m from collection center l to remanufacturing plant i in 

period t 

NNlnt
m  Number of transportation system trips m from collection center l recycling center n in period t 

Xit 
1, if the manufacturing/remanufacturing plant is located at potential site i during the period t, 0, 

otherwise 

Yrt 1, if the distribution center is located at potential site r during the period t, 0, otherwise 

Zlt 1, if the collection center is located at potential site l during the period t, 0, otherwise 
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Bnt 1, if the recycling center is located at potential site n during the period t, 0, otherwise 

Wst 1, if the supplier s is selected during the period t, 0, otherwise 

3-3-2- Objective function 
In terms of the above notation, the problem models can be formulated as: 

Max Z1 =∑∑∑∑∑S̃jirt.TPPjirt
m

∀t∀r∀i∀j∀m

− [∑∑∑(cP̃jit.QPjit)

∀t∀i∀j

+∑∑(

∀t∀s

cR̃st.QRst) 

+∑∑∑∑tcS̃sit
m . eSsi.TRSsit

m

∀t∀i∀s∀m

+∑∑∑∑∑tcP̃jirt
m . ePir.TPPjirt

m

∀t∀r∀i∀j∀m

 

+∑∑∑∑∑tcD̃jrkt
m . eDrk.TPDjrkt

m

∀t∀k∀r∀j∀m

+∑∑∑∑∑tcK̃jklt
m . eKkl.TPKjklt

m

∀t∀l∀k∀j∀m

 

+∑∑∑∑∑(−CS̃jt + tcC̃jlit
m . eCli)TPCjlit

m

∀t∀i∀l∀j∀m

 

+∑∑∑∑∑(RC̃jnt + tcÑjlnt
m . eNln)TPNjlnt

m

∀t∀n∀l∀j∀m

 

+∑∑∑(HC̃jrt.IDjrt)

∀t∀r∀j

+∑∑∑(SHC̃jkt.SHjkt)

∀t∀k∀j

+∑∑∑∑(

∀t∀i∀s∀m

ftS̃sit
m .NSsit

m ) 

+∑∑∑∑(

∀t∀r∀i∀m

ftP̃irt
m .NPirt

m) +∑∑∑∑(

∀t∀k∀r∀m

ftD̃rkt
m .NDrkt

m ) 

+∑∑∑∑(

∀t∀l∀k∀m

ftK̃klt
m .NKklt

m ) +∑∑∑∑(

∀t∀i∀l∀m

ftC̃lit
m .NClit

m) 

+∑∑∑∑(

∀t∀n∀l∀m

ftÑlnt
m .NNlnt

m ) +∑∑(fcP̃it.Xit)

∀t∀i

+∑∑(fcD̃rt.Yrt)

∀t∀r

 

+∑ ∑ (fcC̃lt.Zlt)∀t∀l + ∑ ∑ (fcÑnt.Bnt)∀t∀n +∑ ∑ (fcSst̃.Wst)∀t∀s ]                 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

     (1) 
 

   The first objective function (1) is to maximize the total profit in the CLSC network. The first term is 

related to the profit of selling products to distribution centers. The next part considers the production 
costs, including production cost of each product, costs of purchased raw material, transportation costs, 

holding costs, lack of inventory at customer centers costs, fixed costs of transportation, and cost of 

locating facilities at potential sites. The second and third terms are the cost of producing products and 
purchased raw material from suppliers. Note that, purchasing of raw materials is performed at the 

beginning of the time period𝑡, and suppliers should be sent the raw materials during the period to the 

manufacturing centers. The fourth to ninth terms are transportation costs. The transportation cost 

depends on the distances between locations and the transportation system provided by the supplier. The 
next two terms are related to holding costs and lack of inventory at customer centers. The twelfth to 

seventeenth are fixed costs transportation. The Fixed cost transportation system depends on the number 

of transportation system trips in the network. The eighteenth to twenty-first terms deal with the 
construction cost of manufacturing/remanufacturing, distribution, collection, and recycling centers. The 

last term is related to the cost of suppliers’ selected. 

The second objective function is presented in (2).  
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Min Z2 =∑∑∑∑(θ̃ 
m. eSsi.TRSsit

m )

∀t∀i∀s∀m

+∑∑∑∑∑(θ̃ 
m.ePir.TPPjirt

m )

∀t∀r∀i∀j∀m

 

+∑∑∑∑∑(θ̃ 
m.eDrk.TPDjrkt

m )

∀t∀k∀r∀j∀m

+∑∑∑∑∑(θ̃ 
m.eKkl.TPKjklt

m )

∀t∀l∀k∀j∀m

 

+∑∑∑∑∑ (θ̃ 
m.eCli. TPCjlit

m )

∀t∀i∀l∀j∀m

+∑∑∑∑∑(θ̃ 
m.eNln. TPNjlnt

m )

∀t∀n∀l∀j∀m

                              

+∑∑(EIS̃st.Wst)

∀t∀s

  +∑∑(EIP̃it.Xit)

∀t∀i

+∑∑(EID̃rt.Yrt)

∀t∀r

+∑∑(EĨClt.Zlt)

∀t∀l

 

+∑∑(EIÑnt.Bnt)

∀t∀n

 

 
 

 

 

 
 

 

 
 

 

 

        (2) 

   The second objective function (2) minimizes the environmental impacts of the network. Terms one to 

six of the objective function (2) minimizes the equivalent CO2 emissions caused by transportation. The 

CO2 emission depends on the transportation model, fuel usage, and geographical distances; additionally, 

it is assumed that the manufacturing/remanufacturing, supplier, distribution, customer, collection, 

recycle centers are committed to green development goals. The seventh term of the objective function 

(2) expresses the environmental effects of the raw materials purchased from the suppliers. Note that 
the environmental impact of raw materials that are more expensive is lower; for example, the cost of 

natural caoutchouc versus artificial caoutchouc is high, but the environmental impact is much lower. 

The remaining terms of the objective function (2) minimizes total environmental impacts made by 
opening manufacturing/remanufacturing plants, distribution, collection, and recycling centers at 

divergent potential locations of the CLSC network. 

3-3-3-Constraints 

   This subsection is devoted to present the constraints of the proposed model. The constraints are 

categorized into different categories explained in what follows. 

Balance constraints: These equalities(3) − (10), are used to ensure the balance inflow, raw material, 

product, inventory, and shortage throughout the entire CLSC. 

∑∑𝑇𝑅𝑆𝑠𝑖𝑡
𝑚

∀𝑖∀𝑚

= 𝑄𝑅𝑠𝑡                                                                                                     ∀𝑠, 𝑡 (3) 

∑∑𝑇𝑃𝑃𝑗𝑖𝑟𝑡
𝑚

∀𝑟∀𝑚

= 𝑄𝑃𝑗𝑖𝑡                                                                                                   ∀𝑗, 𝑖,𝑡        (4) 

∑∑∑(𝑇𝑃𝑃𝑗𝑖𝑟𝑡
𝑚 .𝑢𝑟𝑗𝑡)

∀𝑟∀𝑗∀𝑚

=∑∑𝑇𝑅𝑆𝑠𝑖𝑡
𝑚

∀𝑠∀𝑚

+∑∑∑(𝑇𝑃𝐶𝑗𝑙𝑖𝑡
𝑚 .𝑢𝑟𝑢𝑗𝑡)

∀𝑙∀𝑗∀𝑚

         ∀𝑖,𝑡                (5) 

∑∑𝑇𝑃𝐷𝑗𝑟𝑘𝑡
𝑚

∀𝑟∀𝑚

= 𝑑̃𝑗𝑘𝑡 − 𝑆𝐻𝑗𝑘𝑡 + 𝑆𝐻𝑗𝑘(𝑡−1)                                                           ∀𝑗, 𝑘,𝑡 (6) 

∑∑𝑇𝑃𝐾𝑗𝑘𝑙𝑡
𝑚

∀𝑙∀𝑚

= (𝑑̃𝑗𝑘(𝑡−1) − 𝑆𝐻𝑗𝑘(𝑡−1)) × 𝑅𝑇̃𝑗                                                     ∀𝑗, 𝑘,𝑡   (7) 

∑∑𝑇𝑃𝐶𝑗𝑙𝑖𝑡
𝑚

∀𝑖∀𝑚

= (𝑅𝑅̃𝑗 .∑∑𝑇𝑃𝐾𝑗𝑘𝑙𝑡
𝑚

∀𝑘∀𝑚

)                                                                  ∀𝑗, 𝑙,𝑡 (8) 

∑∑𝑇𝑃𝑁𝑗𝑙𝑛𝑡
𝑚

∀𝑛∀𝑚

= ((1 − 𝑅𝑅̃𝑗).∑∑𝑇𝑃𝐾𝑗𝑘𝑙𝑡
𝑚

∀𝑘∀𝑚

)                                                    ∀𝑗, 𝑙,𝑡    (9) 
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∑∑𝑇𝑃𝐷𝑗𝑟𝑘𝑡
𝑚

∀𝑘∀𝑚

=∑∑𝑇𝑃𝑃𝑗𝑖𝑟𝑡
𝑚

∀𝑖∀𝑚

− 𝐼𝐷𝑗𝑟𝑡 + 𝐼𝐷𝑗𝑟(𝑡−1)                                         ∀𝑗, 𝑟,𝑡 (10) 

 

   Constraint (3) ensures that all raw materials produced by each supplier must be shipped to plants 

within the same time period. Constraint (4) ensure that all products produced in each plant must be 

shipped to distribution centers within the same time period. Constraint (5) ensure that the rate of using 
the raw material for each plant to manufacture tires in each period is equal to the total received raw 

materials from suppliers and the percentage of using the raw material for recoverable tires to 

remanufacturing within the same time period. Constraint (6) ensure the shortage balance equation in 

the past period. Constraints (7) − (9) ensure that the rate of returning, recovering, and recycling tires 

are balanced. Constraint (10) ensure that the balance of inventory in distribution centers. 

 

Capacity constraints: The following constraints are to define and apply the capacities of facilities. 

∑(IDjrt.ṽj
∀j

) ≤ capD̃rt                                                                                                ∀ r,t (11) 

(vr̃ .TRSsit
m ) ≤ (capL̃mt.NSsit

m )                                                                                 ∀ m, s, i, t    (12) 

∑(ṽj.TPPjirt
m )

∀j

≤ (capL̃mt.NPirt
m)                                                                             ∀ m, i, r, t (13) 

∑(ṽj.TPDjrkt
m )

∀j

≤ (capL̃mt.NDrkt
m )                                                                         ∀ m, r, k, t (14) 

∑(ṽj.TPKjklt
m )

∀j

≤ (capL̃mt.NKklt
m )                                                                          ∀ m, k, l, t (15) 

∑(ṽj.TPCjlit
m )

∀j

≤ (capL̃mt.NClit
m)                                                                             ∀ m, l, i, t   (16) 

∑(ṽj.TPNjlnt
m )

∀j

≤ (capL̃mt.NNlnt
m )                                                                          ∀ m, l, i, t (17) 

∑∑TRSsit
m

∀i∀m

≤ (capS̃st.Wst)                                                                                   ∀s, t (18) 

∑∑TRSsit
m

∀s∀m

+∑∑∑TPCjlit
m

∀l∀j∀m

≤ (capPR̃it.Xit)                                            ∀i, t (19) 

∑∑∑TPPjirt
m

∀r∀j∀m

≤ (capP̃it.Xit)                                                                               ∀i, t (20) 

∑∑∑TPPjirt
m

∀i∀j∀m

≤ (capD̃rt.Yrt)                                                                             ∀r, t (21) 

∑∑∑TPKjklt
m

∀k∀j∀m

≤ (capC̃lt.Zlt)                                                                           ∀l, t (22) 

∑∑∑TPNjlnt
m

∀l∀j∀m

≤ (capÑnt.Bnt)                                                                        ∀ n, t (23) 

 

   Constraint (11) controls the remaining inventory at the distribution center at the end of each period. 

Constraint (12) − (17) ensures the transportation system capacity. Constraint (18) ensures that the 

total flow of output from each supplier to all manufacturing plants does not exceed the suppliers' 

capacity. Constraint (19) ensures that the total input flow to each manufacturing/remanufacturing plant 

from all suppliers and collection centers does not exceed the manufacturing capacity. Constraint (20) 
ensures that, for all products, the total flow of output from each manufacturing plant to all distribution 

centers does not exceed the manufacturing plant capacity. Constraint (21) ensures that, for all products, 

the total flow of input to each distribution center from all manufacturing plants does not exceed the 



238 

 

distribution centers' capacity. Constraint (22) ensures that, for all products, the total flow of input to 
each collection center from all customer centers does not exceed the collection centers' capacity. 

Constraint (23) ensures that, for all products, the total flow of input to each recycling center from all 

collection centers does not exceed the recycling centers capacity. Also, constraint (18) − (23) ensure 

that which the facilities are constructed and which suppliers are selected. 

Logical constraints: Constraints (24) and (25) impose the non-negativity and binary restriction on 

the corresponding decision variables, respectively. 

QRst, QPjit, IDjrt , SHjkt , TRSsit
m , TPPjirt

m , TPDjrkt
m , TPKjklt

m , TPCjlit
m  

,TPNjlnt
m ,NSsit

m ,NPirt
m ,NDrkt

m , NKklt
m  , NClit

m , NNlnt
m ≥ 0                                 ∀ i, j, r, k, m, t, l, n, s 

(24) 

Xit, Yrt, Zlt, Bnt , Wst ∈ {0,1}                                                                         ∀ i, r, t, l, n, s (25) 

   The proposed CSCND model is actually a bi-objective possibilistic mixed-integer linear 

programming one (BOPMILP). Since, in the real world, uncertainty is an inevitable factor, most of the 

parameters used are considered triangular fuzzy numbers because of their uncertain nature. In general, 
the fuzzy programming problem must first be transformed into a definite equivalent problem and then 

solved with standard methods, and the optimal answer is obtained. As a result, the final solution of the 

problem is obtained with respect to the fuzzy structure of the problem. .To solve this model, a two-

phased approach is proposed; In the first phase, the proposed model with fuzzy parameters is 
transformed into a certain auxiliary model by Jiménez, Arenas, Bilbao, and Rodrı (2007) method. In 

the second stage, using the augmented ε‑constraint method (Mavrotas & Florios, 2013), we solve the 

bi-objective certain model, which was obtained in the first stage. 

3-4-Jiménez et al. method 

   First, Yager (1981) and Dubois and Prade (1987) developed the definition of the “expected value” 
and the “expected interval” of a fuzzy number, respectively, which was the method of the Jiménez et 

al. (2007) is based on them. These concepts were later followed by Heilpern (1992) and Jiménez (1996). 

Assume that 𝑐̃ = (𝑐𝑜, 𝑐𝑚, 𝑐𝑝)   is a triangular fuzzy number, the following equation can be defined as 

the membership: 

μc̃(x) = r =

{
 
 

 
 fc

 (x) =
x − co

cm − co

1

gc
 (x) =

cp − x

cp − cm

0

                 

if  cp ≤ x ≤ cm

if     x = cm

if  cm ≤ x ≤ co

f  x ≤ cp  or  x ≥ co

 (26) 

Jiménez et al. presented a method for ranking fuzzy numbers. In this method, the Expected Interval 

(EI) and the expected value (EV) of triangular fuzzy numberc̃ = (co, cm, cp) defined as relations (27) 
and (28). 

EI(c̃) = [E1
c , E2

c] = [∫ fc
−1(r)dr

1

0

,∫ gc
−1(r)dr

1

0

] 

= [∫ (r(cm − co) + co)dr
1

0

, ∫ (r(cm − cp) + cp)dr
1

0

] 

= [
1

2
(cm − co) + co,

1

2
(cm − cp) + cp] = [

1

2
(cm + co), 

1

2
(cm + cp)] 

(27) 

EV(c̃) =
E1
c+ E2

c

2
=

1
2
(cm + co) +

1
2
(cm + cp)

2
=
co + 2cm + cp

4
 

(28) 

   Note that we can use a trapezoidal fuzzy number for similar equations. Moreover, Based on the 

ranking fuzzy numbers method of Jiménez (1996) for any couple of fuzzy numbers 𝑏̃ and 𝑎̃, the degree 

in which 𝑏̃ is bigger than 𝑎̃ is defined as follows: 
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μM(b̃, ã) =

{
 

 
0

E2
b − E1

a

(E2
a − E1

a) + (E2
b − E1

b)

1

                 

if  E2
a − E1

b < 0

if  0 ∈ [E1
a − E2

b, E2
a − E1

b]

if  E1
a − E2

b > 0

 (29) 

   We can say that b̃ is bigger than, or equal to, ã at least in degree β when μM(b̃, ã) ≥ β and it will be 

shown as b̃ ≥β ã. According to the definition of fuzzy equations in Parra, Terol, Gladish, and Urıa 

(2005) for any pair of fuzzy numbers b̃ and ã, we can say that b̃  indifferent (equal) to ã in degree of β 

if the following relationships hold simultaneously: 

b̃ ≥β

2

ã ,  b̃ ≤β

2

ã (30) 

The above equations can be rewritten as follows: 

β

2
≤ μM(b̃, ã) ≤ 1 −

β

2
 (31) 

   To get the answer, since we can use Max(−Z2) instead of MinZ2, generally, we consider the following 

fuzzy mathematical programming model in which all parameters are defined as triangular fuzzy 

numbers: 

Max  Z =  c̃tx 
s.t. 

ãix ≤ b̃i,

ãix = b̃i,
x ≥ 0

                                                                                   

i = 1, 2,… , l         
i = l + 1, 2,… , m

 
  

(32) 

As mentioned by Jiménez et al. (2007), a decision vector x ∈ ℜn is feasible in degree β if 

Mini=1, 2,…,m{μM(b̃, ãix)} = β or x ∈ ℜn is infeasible in degree (1 − β) if Maxi=1, 2,…,m{μM(ãix, 

b̃)} = 1 − β. According to (29) and(30), the equations ãix ≤ b̃i and ãix = b̃i are equivalent to the 

following ones, respectively: 

E2
bi − E1

aix

(E2
aix − E1

aix) + (E2
bi − E1

bi)
≥ β                                                  i = 1, 2,… , l (33) 

β

2
≤

E2
bi − E1

aix

(E2
aix − E1

aix) + (E2
bi − E1

bi)
≤ 1 −

β

2
                                 i = l + 1, 2,… , m (34) 

These equations can be rewritten as follows: 

[(1 − β) E1
ai + β E2

ai ] × x ≤ [(1 − β) E2
bi + β E1

bi]                i = 1, 2,… , l 

[
β 

2
E2
ai + (1 −

β

2
) E1

ai ] × x ≤ [
β

2
 E1
bi + (1 −

β

2
) E2

bi]           i = l + 1, 2,… , m 

[
β 

2
E1
ai + (1 −

β

2
) E2

ai ] × x ≥ [
β

2
 E2
bi + (1 −

β

2
) E1

bi]           i = l + 1, 2,… , m 

(35) 

   Similarly, by using Jiménez (1996) ranking method, it can be proved that a feasible solution like x0 

is an β-acceptable optimal solution of the model (32) if and only if for all feasible decision vectors say 

x such that ãix ≤β b̃i, i = 1, 2,… , l and  ãix ≈β b̃i, i = l + 1, 2,… , m, x ≥ 0, the following equation 

holds: 

c̃tx ≥1
2
c̃tx0 (36) 

   Therefore, x0 is a better choice (with the objective of maximizing) at least in degree 
1

2
 as opposed to 

the other feasible vectors. The above equation can be rewritten as follows: 
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E2
c̃tx + E1

c̃tx

2
≥
E2
c̃tx0 + E1

c̃tx0

2
 (37) 

   Consequently, using the definition of expected interval and the expected value of a fuzzy number, the 

equivalent crisp β − parametric model of the model (32) can be written as follows: 

Max     EV(c̃)x 
s.t. 

[(1 − β) 
ai 
m + ai 

o

2
+ β

ai 
m + ai 

p

2
 ] × x ≤ [(1 − β) 

bi 
m + bi 

p

2
+ β

bi 
m + bi 

o

2
]   

i = 1, 2,… , l    

[
β 

2

ai 
m + ai 

p

2
+ (1 −

β

2
)
ai 
m + ai 

o

2
 ] × x ≤ [

β

2

bi 
m + bi 

o

2
+ (1 −

β

2
) 
bi 
m + bi 

p

2
] 

i = l + 1, 2,… , m 

[
β 

2

ai 
m + ai 

o

2
+ (1 −

β

2
)
ai 
m + ai 

p

2
 ] × x ≥ [

β

2
 
bi 
m + bi 

p

2
+ (1 −

β

2
) 
bi 

m + bi 
o

2
] 

i = l + 1, 2,… , m 

x ≥ 0    

(38) 

Given that if the pessimistic value is the highest, we have c̃ = (co, cm, cp) and the Expected Interval 

(EI) and the Expected value (EV) of triangular fuzzy number c̃ = (co, cm, cp) defined as relations (27) 
and (28), and the rest of the formulas are the same as before. Also, if the pessimistic value is the lowest, 

we have c̃ = (cp, cm, co) and the Expected Interval (EI) and the Expected value (EV) of triangular 

fuzzy number c̃ = (cp, cm, co) defined as [
1

2
(cm + cp), 

1

2
(cm + co)] and  

cp+2cm+co

4
 respectively. In 

the latter case, the equations can be rewritten as follows: 

 

 
   According to the above descriptions, the equivalent auxiliary crisp model of the CSCND model can 

be formulated as follows: 
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capÑnt 
m
+ capÑnt 
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4-Solution methods 
The proposed model is a bi-objective mixed-integer linear programming model. One of the most 

widely used methods for solving multi-objective problems is the Epsilon constraint method. The 

ε‑constraint method has been developed for general multi-objective problems. It solves problems 𝑃𝑘(ε) 
obtained by transforming one of the objectives into a constraint (Bérubé, Gendreau, & Potvin, 2009). 

For the bi-objective case, the problems 𝑃1(𝜀2) and 𝑃2(𝜀1) are: 

Min f1(x⃗ ) 
s.t.  x⃗ ∈ 𝒳 

f2(x⃗ ) ⩽ ε2 

And, 

Min f2(x⃗ ) 
s.t.  x⃗ ∈ 𝒳 

f1(x⃗ ) ⩽ ε1 

(41) 

The Epsilon constraint method has undeniable advantages compared to the other exact methods like 

the weighted sum method, especially in the presence of discrete variables (problems with integer or 
mixed-integer variables). In this study, we first delineate a medium-sized problem and solve this model 

using the augmented ε-constraint method. The model is computed in the GAMS software 25.1.3 using 

the BARON solver. Due to the integer complexity of the model, the solution time for the large size of 
the problem increases significantly. In fact, when integer variables are entered into the proposed model, 

the solution time increases. Therefore, this study uses the metaheuristic grasshopper optimization 

algorithm to solve large-scale problems in logical computational time, which will be explained in detail 

in the following sections.  
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4-1-Augmented ε‑constraint method 
   Multiple-Objective Mathematical Programming (MOMP) solving algorithms can be divided into 

three groups: a priori methods, Interactive methods and posteriori methods (Hwang, Paidy, Yoon, & 

Masud, 1980). In a priori methods, the decision-makers have the ability to express objective function 
weights prior to solving the problem. In interactive methods analysts and decision-makers have a 

constant dialogue in order to get synchronized priorities with solutions. And finally, in a posteriori 

methods, the decision-makers can choose based on their preferences from the effective Pareto solutions, 
which are found after solving the problem. Because of the decision-makers having difficulty in a 

complete overview of the Pareto front associated with interactive methods, as well as the lack of early 

knowledge and quantification capacity of their preference model, a posteriori method to solving a 

MOMP problem as follows: 

Max {f1(x), f2(x), …, fp(x)} 

s.t.  
x ∈ S 

(42) 

   Where f1(x), f2(x), …, fp(x) are the p objective functions, x is the vector of decision variables, and S  

is the space of efficient solutions. The ε-constraint algorithm optimizes one objective function, while 

considering all other objective functions as constraints. is thus transformed to: 
Max {f1(x)} 
 s.t. 

f2(x) ≥ e2 

f3(x) ≥ e3 
… 

fp(x) ≥ ep 

x ∈ S 

(43) 

   The model is solved on a step-by-step basis on an N2 ×N3 ×  … × Np grid point, where Ni is the 

integer range of the objective function fi. Also, efficient solutions are obtained by changing the ei (right-

hand side of the constrained objective functions). 
We can control the number of efficient solutions by adjusting the number of grid points on which 

each optimization is solved, along with the scope of each objective function. However, it cannot be 

secured that solutions are not weak but effective, and this range must be calculated. These weaknesses 
and the time-consuming of solving any problem with more than two objective functions motivated the 

development of augmented ε-constraint or AUGMECON (Mavrotas, 2009), In this method, one of the 

objective functions (e.g., the most important one) is considered as the objective of the corresponding 

single-objective problem, and another objective function is transmitted to the constraint, which 
transforms the problem into the following: 

Max {f1(x) + eps × (S2 + S3 +…+ Sp)}  

s.t. 
f2(x) − S2 = e2 

f3(x) − S3 = e3 
… 

fp(x) − Sp = ep 

x ∈ S and Si ∈ R
+ 

(44) 

Where e2, e3, …, ep are the parameters for the right-hand side for the particular iteration drawn from 

the grid points of the objective functions 2, 3, …,p. The parameters r2, r3, …, rp are the ranges of the 

respective objective functions. S2, S3, …, Sp are the surplus variables of the respective constraints and 

eps ∈ [10−6,10−3]. 
AUGMECON modifies the original ε-constraint method by changing all constraints corresponding 

to the p − 1 objective functions to strict inequalities and introducing slack (or surplus) variables to the 

primary objective function and the constrained ones. To ensure that only effective Pareto solutions are 

obtained. Mavrotas and Florios (2013) further extended this algorithm in AUGMECON-2, by 
presenting a bypass coefficient as well as a type of lexicographic optimization to all objective functions, 

the order of which was insignificant in AUGMECON: 

Max (f1(x) + eps × (
S2
r2
+ 10−1 ×

S3
r3
+…+ 10−(p−2) ×

Sp

rp
)) (45) 
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To avoid unnecessary iterations and accelerate the solution, AUGMECON-2 uses the information 
of the slack/surplus variables of the constrained objective functions by means of the bypass coefficient. 

And, to help accelerate grid scanning, we can identify the exact Pareto set by decreasing the step of the 

process and increasing the grid points which are derived from the jumps in the innermost loop. 

4-2-Grasshopper optimization algorithm (GOA) 

The grasshopper optimization algorithm is an evolutionary computation technique developed by 

mimicking the food source-seeking tendencies of grasshopper's swarms (Saremi, Mirjalili, & Lewis, 
2017; Momeni et al, 2019). By utilizing the characteristic swarming behavior of grasshoppers while 

searching for food, the mathematical equations are developed for GOA. The grasshoppers swarming 

behavior is impressed by social interaction among themselves, gravitational force and wind advection. 
The position of the grasshopper in the search space can be mathematically formulated by the following 

equation (Luo, Chen, Xu, Huang, & Zhao, 2018; Saremi et al., 2017;  Abazari et al., 2021). 

Xi = Si + Gi +Wi (46) 

Where Xi is the position of the ith grasshopper in the search space, Si is the benefit of social 

interaction gained by the ith grasshopper. Si, Gi and Wi are the social interaction, gravitational and wind 

advection effects on the grasshopper. 

Si = ∑ s(|xj − xi|)
(xj − xi)

Dij

NGH

j=1
j≠i

 (47) 

s(u) = fe−u/lg − e−u  (48) 

The social forces between the grasshoppers is calculated by the ‘𝑠’ function described by 𝑠(𝑢) where 

‘𝑢’ is the distance between grasshoppers, ‘𝑓’ is the intensity of attraction and ‘𝑙𝑔’ is the length of 

attraction. In this work, the value of ‘𝑓’ is 0.5, and 𝑙𝑔 is 1.5 taken for running optimization. The 

gravitational force effect is not considered because its effect is negligible on the swarm behavior of 

grasshoppers, and the wind effect is modeled as the global best solution. Accordingly, the grasshopper 
position can be updated by the following statement. 

xi
k = C(∑ C

(xmax
k − xmin

k )

2

NGH

j=1
j≠i

s(|xj
k − xi

k|)
(xj

k − xi
k)

Dij
k + xgbest

k  (49) 

C = Cmax − iter
Cmax − Cmin
itermax

 (50) 

Where xi
k is the kth variable ith position in the population, Dij

k  is the distance between ith and jth 

position of the kth  variable and xgbest
k  is the global best of kth variable. The variablesC, Cmax and Cmin 

are the GOA parameters and in this work Cmax is 1 and Cmin is 0.00001. 

5-Numerical results  
5-1-Computational experiments 

In this section, to illustrate the effectiveness of the proposed bi-objective model, we will compare 

the model in several problems with different sizes, which different sizes of the problem shown in table 

2. The third column in table 2 indicates the size of each problem. In other words, the problems are 

labeled as(J, S, K, R, I, L, N, T, M). For example, problem (3, 3, 4, 4, 4, 4, 4, 3, 4) represents an 

instance is solved in multi-product mode and considering three products with three suppliers, four 

potential locations for manufacturing/remanufacturing, distribution, collection, customer and recycling 

centers, three-time periods and four types of transportation vehicles. 
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Table 2. Size and level of problems 

Problem levels  Problem size (𝐉, 𝐒, 𝐊, 𝐑, 𝐈, 𝐋, 𝐍, 𝐓, 𝐌) 
Small scale 1 (2, 2, 2 ,2, 2, 2, 2, 2, 2) 

2 (2, 2, 3, 3, 3, 3, 3, 2, 3) 
Medium scale 3 (3, 3, 3, 3, 3, 3, 3, 3, 3) 

4 (3, 3, 4, 4, 4, 4, 4, 3, 4) 
Large scale 5 (4, 4, 4, 4, 4 ,4, 4, 4, 4) 

6 (4, 4, 5, 5, 5, 5, 5, 4, 5) 

First, we delineate small and medium-size examples and solve these problems by using the 

AUGMECON-2 method. Some parameters (e.g., capacity, cost and time) of the problems have been 

given in table 3. The problems are computed in the GAMS software 25.1.3 using the BARON solver. 
All calculations are made using a computer with a Core i7.1.99GHz processor with a 12.00GB RAM 

of the operating system Windows 10 (64 bit).   

Table 3. Parameters’ values/ranges for the test problems 

Value Parameter Value Parameter Value Parameter 

𝛉̃ 
𝐦 ~ 1U(0.04, 0.07) fcSst̃ ~ U(65, 70) ftS̃sit

m  ~ U(11, 21) 

𝐯̃𝐣 ~ U(0.007, 0.014) fcP̃it ~ U(850, 1050) ftP̃irt
m  ~ U(15, 21) 

𝐑𝐑̃𝐣 ~ U(0.4, 0.45) fcD̃rt ~ U(850, 1050) ftD̃rkt
m  ~ U(15, 21) 

𝐑𝐓̃𝐣 ~ U(0.6, 0.8) fcC̃lt ~ U(850, 1050) ftK̃klt
m  ~ U(15, 21) 

𝐞𝐒𝐬𝐢 ~ U(10, 13) fcÑnt ~ U(850, 1050) ftÑlnt
m  ~ U(15, 21) 

𝐞𝐏𝐢𝐫 ~ U(10, 25) EĨSst ~ U(3,10 ) ftC̃lit
m  ~ U(15, 21) 

𝐞𝐃𝐫𝐤 ~ U(10, 34) EIP̃it ~ U(8,15 ) tcS̃sit
m  ~ U(0.8, 1) 

𝐞𝐊𝐤𝐥 ~ U(10, 29) EID̃rt ~ U(8,15 ) tcP̃jirt
m  ~ U(0.8, 0.97) 

𝐞𝐍𝐥𝐧 ~ U(12, 19) EĨClt ~ U(8,15 ) tcD̃jrkt
m  ~ U(0.8, 0.97) 

𝐞𝐂𝐥𝐢 ~ U(12, 22) EIÑnt ~ U(8,15 ) tcK̃jklt
m  ~ U(0.8, 0.97) 

𝐮𝐫𝐣𝐭 ~ U(0.6, 0.9) capP̃it ~ U(4850, 4880) tcÑjlnt
m  ~ U(0.8, 0.97) 

𝐮𝐫𝐮𝐣𝐭 ~ U(0.6, 0.7) capPR̃it ~ U(3850, 3880) tcC̃jlit
m  ~ U(0.8, 0.97) 

𝐂𝐒̃𝐣𝐭 ~ U(250, 257) capD̃rt ~ U(4000, 5045) S̃jirt ~ U(1500, 1670) 

𝐜𝐑̃𝐬𝐭 ~ U(10, 17) capC̃lt ~ U(4800, 5815) HC̃jrt ~ U(38.3, 48.5) 

𝐑𝐂̃𝐣𝐧𝐭  ~ U(30, 35) capÑnt ~ U(3800, 4815) SHC̃jkt ~ U(49, 58) 

𝐜𝐏̃𝐣𝐢𝐭 ~ U(22, 37) capS̃st ~ U(3836, 3915)   

𝐝̃𝐣𝐤𝐭 ~ U(4715, 4720) capL̃mt ~ U(22, 25)   

5-2-Model validation 

   To show the validity and reliability of the represented model, several numerical experiments are 

executed and relevant solution results are provided in this section. As it is shown in table 4 the second 

medium-sized problem is solved for Beta 0.9, 0.85, 0.6 and the Pareto solutions, total profit, CO2 

emission, solving time (in seconds), the number of located facilities, and the number of transportation 

in the first period of the Pareto solutions are considered. Table 4 indicates the fact that two objective 

functions are in conflict. 

 

 

 

 

                                                                                                                                                  
1 Continuous uniform distribution 
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Table 4. Numerical experiments for the test problem 

   Figure 2 and 2a-2b reveal that the changes in β (the minimum level of satisfaction of the constraints) 
are conformable with the direction of the objective functions. Since the constraints in the solution space 

are specified by the less than or equal sign (i.e., ≤), then the relation β1 < β2 → N(β1) ⊃ N(β2) is true 

for the set of the β-feasible vectors that are represented in N(β ), so as the β increases, the solution space 

of the model and the possibility of finding a better answer for Z1 and Z2 decreases. In this case, the 

decision-maker is faced with two opposing goals of improving the Z as much as possible and improving 

the minimum degree of satisfaction of the constraints (i.e., β). So as can be seen in figure 2, the validity 

of the model is confirmed.  
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   Figure 3 shows changes in total profit and carbon emission in each Pareto solution. With respect to 

the Pareto solutions trend, it is clear that two objective functions conflict with each other. This means 
that the lower the carbon emission is, the lower the total profit is to achieve, and vice versa. We can see 

in figure 3, for a given Beta, unlike the amount of carbon emission, the total profit isn't improved among 

the number of Pareto solutions, which means the CLSC model works correctly. 

 
Fig 3. Pareto’s Objective functions obtained through the Augmecon2 method and different Betas 

   The execution time for different Betas is also shown in figure 4. This chart shows that when the Beta 
gets closer to one, or the decision-maker tends to choose a higher percentage for the minimum level of 

satisfaction of the constraints, the execution time is almost everywhere gradually shortened. We can 

interpret that the bigger beta is, the less possibility of the better answer becomes to find. In fact, when 
the algorithm searches for the best answer, the problem tends to be infeasible, and naturally, the 

execution time is decreased. 
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Fig 4. Pareto’s execution time obtained through the Augmecon2 method and different Betas 

5-3-Parameter tuning  

   In this sub-section, we adjust the parameters of the Grasshopper optimization algorithm (GOA). The 
Taguchi technique is used for tuning parameters. Taguchi's result for tuning some GOA's parameters 

like iteration, NPop (the number of grasshoppers) are determined in table 5. If the objective minimizes 

the variables, the lowest state is used, and if the objective maximizes the variables, the highest state is 

used. According to figure 10, the best parameters which help to the efficiency of the algorithm for 

problem 6 (see table 2) are selected to use in the algorithm (Max-Iteration=100, NPop=50). The results 

for other problems are presented in table 11. Also, figure 6 and table 6 show the effect of Max-It and 

NPop on total profits and execution time in problem size 6. 

Table 5. Size and level of problems 

Parameters 
State 

Low Medium High 

Max-It 50 75 100 

𝐍𝐏𝐨𝐩 40 50 60 
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Table 6. Best profit 

[𝐌𝐚𝐱 − 𝐈𝐭,𝐧𝐏𝐨𝐩] Best profit Time(s) 

[50,40] 83905616218 437 

[50,50] 1.02014E+11 433 

[50,60] 1.29321E+11 668 

[75,40] 1.09894E+11 510 

[75,50] 1.65517E+11 622 

[75,60] 1.31754E+11 759 

[100,40] 1.09412E+11 657 

[100,50] 1.85517E+11 835 

[100,60] 1.6022E+11 1182 

 
5-4-Result 
   We redesigned figure 1 as presented in section 3-1, in the period t as follows (see figure 7), which is 
the schematic view of our CLSCND model. The Pareto solutions can be achieved by changing the 

values of the right-hand side of the constraint that corresponding to the transmitted objective function 

and solving the obtained single-objective problem at each run to obtain computational results (Mavrotas 
& Florios, 2013).  

 

 
   The Payoff table of the second medium-sized problem is shown in table 9. Also, the results of the 

problem and the Pareto solutions obtained are shown in table 10.  

Table 9. Payoff table 

  𝐙𝟏  𝐙𝟐 

𝐌𝐚𝐱 𝐙𝟏 8.99E+07 277273.654 

𝐌𝐢𝐧 𝐙𝟐 951380.009 47954.086 

Table 10. Pareto Solution of the second medium-sized problem 

Obj. function Pareto Solution 

1 2 3 4 5 6 

 𝐙𝟏 9.00E+07 8.95E+07 8.79E+07 8.59E+07 8.29E+07 7.90E+07 

 𝐙𝟐 2.77E+05 2.45E+05 2.12E+05 1.79E+05 1.46E+05 1.13E+05 

   Figure 8 and 8a-8b depict the resulting Pareto front of the test problem. As the figure shows, logical 

results are achieved regarding the Pareto frontier 1 and 3 and feasible solutions for t = 1 by considering 

the Augmecon-2 method. 
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Fig 7. Schematic view of the proposed CLSCND model 
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The first and second rows in table 11 give the best setting for the main parameters of the GOA 

algorithms for six problem samples in this study, and the next two rows present the objective values 

(profits) obtained from the Grasshopper optimization algorithm and execution time (second). 

Table 11. Best level of parameters for Grasshopper Optimization Algorithm 

Parameter 
Parameter tuning 

1 2 3 4 5 6 

Max-It 75 100 50 50 75 100 

𝐍𝐏𝐨𝐩 40 50 50 50 50 50 

Total Profit 3282129585 14418774605 25390136602 67976828600 87994953853 1.85517E+11 

Time (s) 21 54 52 139 393 835 

In more detail, we provided GOA algorithm results of the problem sample 6 (the problem which is 

labeled (4, 4, 5, 5, 5, 5, 5, 4, 5), and then we analyzed results in detail. For problem sample 6, four 

diagrams have been drawn (see figure 9). 

 Worst Profit curve: This diagram shows the objective value of the worst solutions obtained so 

far (target) in each iteration. 

 Mean Profit curve: This diagram indicates the average objective value of all grasshoppers in 

each iteration. 

 Best Profit curve: This diagram shows the objective value of the best solutions obtained so far 
(target) in each iteration 

8a 

8b 

Fig 8.  Pareto frontier and feasible solutions by considering the Augmecon-2 method 

𝑛,𝑖           𝑙          𝒌          𝒓          𝒊          𝒔 𝑛,𝑖         𝑙          𝒌         𝒓        𝒊         𝒔 



252 

 

 Total Profit curve: This diagram shows the total profit objective value of all grasshoppers in 

each iteration. 

 

 
   As shown in figure 9, grasshoppers eventually tend to explore the different search space regions 
around the global optimal. These results show that the GOA algorithm beneficially balances exploration 

and exploitation to drive the grasshoppers towards the global optimum. Generally, table 12 indicates 

the trend GOA for six sample problems.  
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Table 12. Convergence GOA diagram 

Problem Figure Problem Figure Problem Figure 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

   The curves show the ascending behavior and it proves that the GOA enhances the initial random 
population and improves the accuracy of the approximated optimum over the course of iterations. Table 

13 shows the Results of GOA and a comparison with actual values for the second medium-sized 

problem. The trajectory curves in figure 9 show that the grasshoppers largely made abrupt changes in 

initial steps of optimization. Exploration of search space is taking place due to the high repulsive rate 
of GOA. It is also seen that, as the optimization approaches further, the fluctuation decreased gradually. 

This is done due to the attraction forces as well as the comfort zone between grasshoppers. This 

guarantees that the algorithm will converge to a point eventually because of exploration and 
exploitation.  

Table 13. Results of GOA and comparison with actual values 

Function 
Actual 

(GAMZ) 

GOA 

Best Profit Mean Profit Worst Profit 

𝐙𝟏(Profit) 8.54707E+10 85461880636.9177 73215170804.7486 80406027915.9712 

   To ensure the validity of the Grasshopper Optimization Algorithm results, we compared exact method 
and metaheuristic GOA with single objective. The results of this comparison are shown in table 14. 

 

Table 14. Results of GOA and comparison with exact values 

Problem size 

(𝑱, 𝑺, 𝑲, 𝑹, 𝑰, 𝑳, 𝑵, 𝑻, 𝑴) 
Gap 

exact 
 

GOA 

Profit Time (s) Best Profit Time (s) 

(𝟑, 𝟑, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟑, 𝟑) 1.17E-01 6.635E+10 980  7.510E+10 280 

(𝟒, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑) 7.37E-02 8.633E+10 1853  9.320E+10 303 

(𝟒, 𝟑, 𝟒, 𝟒,𝟒, 𝟒, 𝟒, 𝟒, 𝟑) 1.43E-01 11.042E+10 1965  12.891E+10 421 

5-5-Sensitivity analysis 
   In this section, to evaluate the efficiency of the proposed method, we apply a sensitivity analysis on 

it, so we will compare the model in several problems that are solved by changing the value of some 

important parameters to analyze the model's sensitivity. 

5-5-1-Demand 
   Figure 10 illustrates that decreasing demands consequences significantly impact on the number of 

located facilities in the first period. When demand decrease, it has the greatest impact on the number of 

collection and recycling centers, as the amount of collecting or recycling used tires in these centers, 

respectively, depending on a specific ratio of RT̃ and 1 − RR̃  for each type of tires, so decreasing 

demands lead to closing a number of these centers. 
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Fig 10. Impacts of decreasing demands on the number of located facilities 

   The table below shows the number of facilities located in the sixth Pareto Solution due to the 

decreasing demands in each period for the second medium-sized problem. 

Table 15. Number of located facilities due to the decreasing demands in each period 

Sixth 

Pareto 

Solution 

de  0.5*de  0.25*de  0.125*de 

t=1 t=2 t=3  t=1 t=2 t=3  t=1 t=2 t=3  t=1 t=2 t=3 

i 4 4 4  4 4 4  3 4 4  1 2 1 

r 4 4 4  4 4 4  3 4 4  1 2 2 

l 4 3 3  4 3 2  3 3 1  2 2 1 

n 4 3 2  3 2 1  3 2 1  2 1 1 

s 3 3 3  3 2 3  3 3 3  1 2 2 

   As can be seen in the following figures, the number of located facilities decreases as long as the 

demand decreases (in a given period). It is also observed that this analysis between the two factors is 
still valid from one period to another. 

 
Fig 11. Impacts of decreasing demands on the number of located facilities in each period 

5-5-2-Rate of return 
   Figure 12 shows the effect of increasing the rate of return used tires on total profits and carbon dioxide 

emissions. As seen, with the increasing rate of return used tires, the amount of carbon dioxide emissions 

has increased and supply chain total profits have decreased. Carbon dioxide emissions increase because 
of increasing transportation for collecting used tires and increasing the number of located facilities. 

Note that we have not considered the positive impact of collecting tires and returning them to collection 

centers on the environment. That is why the value of the second objective function is continuously 

increasing. 
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Fig 12. Impacts of increasing the rate of return used tires on total profits and Co2 emission 

5-5-3-Price of raw materials 

   Table 16 indicates the main results of solving the six test problems with sensitivity analyses on the 

price of raw materials and their effects on total profits and carbon dioxide emissions. 

Table 16. The sensitivity analyses on the price of raw materials 

𝐜𝐑 
Obj. 

Function 

Pareto Solution 

1 2 3 4 5 6 

uniform(10,17) 
Z1 8.79E+07 8.78E+07 8.66E+07 8.50E+07 8.26E+07 7.89E+07 

Z2 3.17E+05 2.79E+05 2.42E+05 2.05E+05 1.68E+05 1.30E+05 

uniform(10,15) 
Z1 8.85E+07 8.79E+07 8.67E+07 8.51E+07 8.27E+07 7.90E+07 

Z2 3.19E+05 2.81E+05 2.44E+05 2.06E+05 1.69E+05 1.31E+05 

uniform(10,13) 
Z1 8.79E+07 8.79E+07 8.67E+07 8.50E+07 8.26E+07 7.90E+07 
Z2 3.16E+05 2.79E+05 2.42E+05 2.05E+05 1.67E+05 1.30E+05 

uniform(10,11) 
Z1 8.79E+07 8.85E+07 8.79E+07 8.67E+07 8.51E+07 8.26E+07 

Z2 3.16E+05 3.16E+05 2.79E+05 2.42E+05 2.05E+05 1.68E+05 

   Figure 13 shows the effect of decreasing the price of raw materials on total profits and carbon dioxide 

emissions in the second Pareto Solution. It can be seen that as the purchase cost of raw materials 

decreases, both objective functions gradually increase. In fact, by reducing the purchase cost of raw 
materials, on the one hand, the cost of the tire is reduced, which leads to an increase in profits, and on 

the other hand, more facilities are opened, which leads to increased environmental impact.  

 

Fig 13. Impacts of decreasing the purchase cost of raw materials on total profits and 𝐶𝑜2 emission 

5-6-Discussion 
   In this study six test problems in various dimension are designed. The test problems 1–2, test problems 
3–4, and test problems 5–6 are considered small size, medium size, and large size, respectively. It should 
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be noted that the test problems 1–4 have been solved by using the Augmecon-2 method and using the 
GOA algorithms for the test problems 5–6 and three additional test problems with medium sizes (see 

table 14). The main results of solving the test problem 4 is provided in table 4 and we provided GOA 

algorithm results of the test problem 6 in section 5-4 in detail. By using these results, and based on table 

14 and figure 9, we understand that the GOA algorithm has good performance in terms of CPU time in 
large-scale test problems.  

   Based on the model and by evaluating the relationship between demands and opening different 

facilities, managers can determine the number of facilities they need to open in each period and allocate 
the appropriate funds and resources to them at the right time. So, they can manage their demand and 

financial constraints more efficiently. Also, as the purchase price of raw materials decreases, revenue 

increases, but the model shows that pollution also increases. Therefore, managers must control 
environmental impacts by adopting appropriate policies and environmental restrictions, in situations 

where they can purchase raw materials at low prices. 

   This paper design a closed-loop supply chain network for the automotive tire industry by proposing a bi-objective 

mathematical model that thinks of a bi-objective mathematical model whose environmental aspects are also 
considered in this formulation. This network attempt to help managers for finding proper suppliers, suitable facilities 

locations, and optimal shipped quantity of products and proposed managerial implications. Thus, results confirm that 

considering the uncertainty and integrating it with a bi-objective mathematical model caused the model to be closed 
the real world. Also, considering the environmental aspects can help the company achieve fund or avoid being 

penalties by environmental officials and from the perspective of the people be popular. In most of the literature 

cases, uncertainty has been considered in one or two parameters (see table 1). In this study, by using 
the proposed model, it is straightforward to take into account the effects of uncertainty in all parameters, 

especially the rate of returned products in Tire CLSC network. 

6-Conclusion 
   In recent years, the field of closed-loop supply chain (CLSC) has received more attention from 

manufacturers from different economic, environmental, and political points of view. Accordingly, 

considering reverse supply chains along with forward supply chains has become essential more than 
ever. On the other hand, the ever-increasing number of used tires brings on serious environmental 

problems. In addition, the approach followed to deal with used tires plays an important role in terms of 

economic benefits, market demand, etc. In this regard, a comprehensive and effective planning is needed 
to collect and recycle end-of-life tires in an appropriate way.  

   In this work, a bi-objective mixed-integer linear programming model was proposed to design a green 

closed-loop supply chain tire remanufacturing network. This model includes some of the customer 

centers, collection centers, recycling centers, manufacturing/remanufacturing plants, and distribution 
centers. The network design of this tire industry, considering the uncertainty in parameters such as 

demand, the rate of return used tires, makes the model closer to reality. A mathematical model that takes 

into account two indispensable dimensions of a green closed-loop supply chain (exhaust gases, and 
supply chain profit). The purpose of this model is to maximize the total profit in the CLSC network and 

minimize exhaust gases to achieve the best structure for the green closed-loop network by determining 

the location and number of facilities in each echelon and the amount of flow of tires between the 
facilities of each echelon. To achieve this, different potential locations of facilities and flows of tires 

between them were defined and the corresponding decisions, considering their estimated costs, were 

modeled as binary variables and positive variables, respectively. To solve the proposed fuzzy model, it 

was converted to an equivalent counterpart by Jimenez method. In this method as the β decreases, the 
solution space of the model and the possibility of finding a better answer for both objective functions 

increase. As we can see in figure 4 with decreasing the level β, the computational time, it has also been 

uptrend. Also, an augmented ε‑constraint method was applied for obtaining an efficient solution with 
the bi-objective functions of the model. To illustrate the efficiency of the proposed model, a numerical 

example is considered. Also, to obtain computational results, the proposed model is computed in the 

Gams software and using the BARON solver.  In order to adjust the parameters and operators of the 
GOA algorithms, the relevant parameters are tuned. The computational results show that the proposed 

GOA is capable of obtaining closer solutions compared with actual values in sample problem 6. Finally, 

for future research, the following directions can be useful.  
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 Combining other topics such as pricing and vehicle routing with the issue  

 Considering the environmental impact of released tire type on the environment 

 Analyzing cannibalization effects on the volume of new manufactured tires 

 Reviewing the conditions of other nascent industries and modeling for their improvement and 

development  
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